
ENSEIRB-Matmeca
Year 2024-2025

IF Course
IT234

Tutorial #7 - Types and Proofs

Exercice 1: Phantom types in OCaml
A phantom type is a type parameter having no influence at runtime. There are used
as indications (tags) for the type system. In this exercise, we use these indications
to represent logic properties on the values. Let us define the following types for
denoting emptiness and non-emptiness :

type empty
type nonempty

These types are uninhabited 1 : they stand for an empty set of values. Now it be-
comes possible to use these tags to make the compiler check particular expressions,
depending on the tags. In the following example, the PList module constructs lists
whose type also encodes the property of its emptiness :

type empty
type nonempty

module PList : sig (∗ The signature / interface of the module ∗)
type ’a plist
val nil : empty plist
val cons : int → ’a plist → nonempty plist
val head : nonempty plist → int

end = struct (∗ The implementation of the module ∗)
type ilist = Nil | Cons of int ∗ ilist
type ’a plist = ilist (∗ Add a phantom type parameter ∗)
let nil = Nil
let cons x xs = Cons (x, xs)
let head l = match l with

| Nil → assert false (∗ Never reached ∗)
| Cons (x, _) → x

end;;

1. Create an empty list, and a list containing at least two elements.
For each of them, note the corresponding type. Verify that taking the head of
an empty list is statically detected as an error.

2. What type would the tail function have in this setting ? Write the associated
function. What is missing here in order to preserve our property ?

1. Beware of the false friend in English : inhabited (habité) and uninhabited (inhabité).

1



In order to overcome this limitation, we propose to encode the length of the list
directly into the type parameter. Let us begin with the following phantom types :

type zero
type ’n succ

3. What family of types does this define ? Are they inhabited ?
4. Propose type for generic lists with a phantom type that contains their length

encoded with zero and succ.

5. Rewrite the previous module so as to preserve the length property in the types.

Exercice 2: Phantom types in Haskell
Consider again the problem of creating a datatype for lists whose type contains
enough information to determine the length of the list. Let us switch to the Haskell
language, that allows other constructs on types that simplify this encoding. For the
moment, let us begin with the following definition for lists :

{-# LANGUAGE GADTs, TypeOperators, StandaloneDeriving #-}

data Zero
data Succ n

data BList size a where -- Lists with encoded length
Nil :: BList Zero a -- ∗ empty list
Cons :: a → BList n a → BList (Succ n) a -- ∗ cons

deriving instance Show a ⇒ Show (BList size a) -- Allow lists display

Considering the question of finding the length of a list, let us bijectively associate
to each of our Peano types a value in the following way :

data Nat size where -- Singleton type for Zero and Succ
Z :: Nat Zero -- ∗ zero
S :: Nat n → Nat (Succ n) -- ∗ successor

deriving instance Show (Nat size) -- Allow Nat display

1. Write a size function on the BList n a. In which way does the type of this
function express that a list of n elements possesses effectively n elements ?

Now, suppose that we want to be able to access an element of the list in a type-safe
way, through a get function. The get function takes two arguments, namely a list
and an index, and returns the element existing at that index if the index is less than
the length of the list. Here, we need to be able to encode the fact that an integer is
smaller than another. Consider the following definition for the type “n :< m” :

2



data n :< m where -- Type witness for ’n < m’
LessZ :: Zero :< Succ n -- LessZ is a proof that ’0 < S x’ forall x
LessS :: (m :< n) → Succ m :< Succ n -- LessS is a proof that ’n < m’ implies ’S n < S m’

deriving instance Show (n :< m)

2. If we read these types as logical propositions, what do they represent ?
3. The return of the following lt function is called a witness.

What does it witness ?

lt :: Nat n → Nat m → Maybe (n :< m)
lt Z (S n) = Just LessZ
lt (S n) (S m) = case lt n m of

Just proof → Just (LessS proof)
Nothing → Nothing

lt _ _ = Nothing

4. Write the code of a get function that is type-safe.
5. In which way is this kind of programming different from the usual ?

▷ LiquidHaskell (https://ucsd-progsys.github.io/liquidhaskell) is an extension of the
Haskell language that enhances the type system with refinement types, a par-
ticular sort of type that may contain a logic predicate. The language is asso-
ciated to a SMT solver that checks whether the logic constraints given in the
types can be satisfied. This code defines a type-safe head function on lists :

{-@ type NonEmpty A = ((len A) > 0) @-} -- Type definition

{-@ head :: {v:[a] | (NonEmpty v)} → a @-} -- Liquid Haskell annotation
head (x:_) = x
head [] = liquidError "Never␣reached"

The source code in LiquidHaskell is written in .hs files, and is checked with a
liquid executable (working in combination with the z3 solver).
One can use the online version at https://liquidhaskell.goto.ucsd.edu/index.html.

Exercice 3: Proofs in LiquidHaskell
In the following example in LiquidHaskell, a list of integers is annotated with a more
precise type that alows only even integer values inside :

{-@ type Even = { v : Int | v mod 2 = 0 } @-} -- Type definition

{-@ weAreEven :: [Even] @-} -- Liquid Haskell annotation
weAreEven :: [Int] -- Plain Haskell annotation
weAreEven = [-10, 4, 0, 2, 666]

3

https://ucsd-progsys.github.io/liquidhaskell
https://liquidhaskell.goto.ucsd.edu/index.html


1. What happens when adding an odd value inside the list and checking the
code ?

2. The following functions are meant to manipulate Even values. Complete the
code with the appropriate annotations to enforce this fact.

{-@ isEven :: Nat → Bool @-}
isEven :: Int → Bool
isEven 0 = True
isEven 1 = False
isEven n = not (isEven (n-1))

shift :: [Int] → Int → [Int]
shift xs k = [x + k | x ← xs]

double :: [Int] → [Int]
double xs = [x + x | x ← xs]

{-@ range :: lo:Int → hi:Int → [{v:Int | (lo <= v && v < hi)}] / [hi-lo] @-}
range :: Int → Int → [Int]
range lo hi
| lo < hi = lo : range (lo+1) hi
| otherwise = []

evens :: Int → [Int]
evens n = [i | i ← range 0 n, isEven i]

Consider now the following types for lists encoding their length :

{-@ type ListN a N = { v:[a] | len v == N } @-}
{-@ type Btwn Lo Hi = { v:Int | Lo <= v && v < Hi } @-}
{-@ type NEList a = { v:[a] | 0 < len v } @-}

3. Propose a safe type for the average function.

{-@ avg :: [Int] → Int @-}
avg :: [Int] → Int
avg xs = divide total n where
total = sum xs
n = length xs

4. Propose safe types for the head and tail functions on lists
5. Consider the source code for the loop and dotProduct functions (given below),

and check their types. Write an example that type checks in Haskell and that
does not in LiquidHaskell.

4



{-@ loop :: lo:Nat → hi:{Nat|lo <= hi} → a → (Btwn lo hi → a → a) → a @-}
loop :: Int → Int → a → (Int → a → a) → a
loop lo hi base f = go2 base lo where

{-@ go2 :: a → {i:Nat | i >= lo } → a / [hi-i] @-}
go2 acc i | i < hi = go2 (f i acc) (i + 1)

| otherwise = acc

{-@ dotProduct :: x:[Int] → { y:[Int] | len x = len y } → Int @-}
dotProduct :: [Int] → [Int] → Int
dotProduct x y = loop 0 sz 0 body

where
sz = length x
body i acc = acc + (x !! i) ∗ (y !! i)

nhead :: [a] → a
nhead vec = head vec

ntail :: [a] → [a]
ntail l = tail l

▷ Coq is a proof assistant written in OCaml and based on the calculus of
constructions, a higher-order typed λ-calculus, initially developed by Thierry
Coquand. This calculus contains (among others) the 2nd-order λ-calculus.
One cas use the online version at https://jscoq.github.io/scratchpad.html

Exercice 4: Proofs in Coq
Coq is a proof assistant, and therefore its main object consists in proving theorems.
The general idea for proving theorems consists in defining a series of axioms as re-
writing rules, and then deducing more general theorems by applying these rewriting
rules in a particular manner.
Caveat : this exercise is just an introduction to Coq, makes a series of oversimpli-
fications, and is certainly not sophisticated enough to provide a full understanding
of its possibilities. Readings of interest are given at the end of the exercise.
Coq contains in its standard library the following definition for integers :

Inductive nat : Set :=
| O : nat
| S : nat → nat.

For an introduction, we propose to work with the following addition function :

5

https://jscoq.github.io/scratchpad.html


(∗ A definition of plus for nat values ∗)
Fixpoint plus (n m:nat) : nat :=

match n with
| O ⇒ m
| S p ⇒ S (plus p m)
end.

1. Execute the computations given in the source file one by one, and examine the
results.

A theorem in Coq is the expression of a logical formula. A proof is a sequence of
rewriting steps leading to a trivially true expression. The following is an example of
a very simple theorem :

Theorem plus_O_n : forall n : nat, 0 + n = n.
Proof.

intros n.
simpl.
reflexivity.

Qed.

Each step between Proof and End is a particular operation on expressions.

2. Execute the steps of the proof one by one, checking the state of the proof at
each step.

3. Prove that ∀n m, S n + m = S (n+m).

For more complex proofs, more complex tactics are required. In the following proofs,
it is necessary to do an induction n.

4. Prove that ∀n, n + 0 = n.
5. Prove that ∀n m, n + S m = S (n+m).
6. Prove that the addition is commutative.

Coq allows a certain form of programming with proofs, mixing code and propositions.
In the following example taken from A. Chlipala, a definition is given for lists with
their length encoded into their type :

6



Section list_length.

Inductive ilist (A : Type) : nat → Type :=
| Nil : ilist A O
| Cons : forall n, A → ilist A n → ilist A (S n).

Arguments Nil [A].
Arguments Cons [A] [n] _ _.

Inductive fin : nat → Set :=
| First : forall n, fin (S n)
| Next : forall n, fin n → fin (S n).

Arguments First [n].
Arguments Next [n] _.

Fixpoint get A n (ls : ilist A n) : fin n → A :=
match ls with

| Nil ⇒ fun idx ⇒
match idx in fin n’ return (match n’ with

| O ⇒ A
| S _ ⇒ unit

end) with
| First ⇒ tt
| Next _ ⇒ tt

end
| Cons x ls’ ⇒ fun idx ⇒

match idx in fin n’ return (fin (pred n’) → A) → A with
| First ⇒ fun _ ⇒ x
| Next idx’ ⇒ fun get_ls’ ⇒ get_ls’ idx’

end (get _ _ ls’)
end.

Arguments get [A] [n] _ _.

End list_length.

Check that the types and the computations both mix types and integer values.

7. Write an example of a call to get that type-checks and one that does not
because of an unsafe array access.

For further reading about programming and proving theorems with Coq :

— B. C. Pierce et al. Logical Foundations, available at https://softwarefoundations.

cis.upenn.edu/

— A. Chlipala Certified Programming with Dependent Types, available at http:

//adam.chlipala.net/cpdt/

7

https://softwarefoundations.cis.upenn.edu/
https://softwarefoundations.cis.upenn.edu/
http://adam.chlipala.net/cpdt/
http://adam.chlipala.net/cpdt/

	Phantom types in OCaml
	Phantom types in Haskell
	Proofs in LiquidHaskell
	Proofs in Coq

