
Université de Bordeaux
Année 2018-2019

Mastère 2
T.A.P

TD n°8 - Programmation par aspects

. Scala est un langage de programmation conçu par Martin Odersky et dévelopé
à l’EPFL (http://www.scala-lang.org). Il peut être compilé vers du bytecode Java et
s’exécuter au sein de la machine virtuelle Java. Pour compiler un programme Scala,
il suffit de :

• Compilation : utiliser le compilateur scalac pour transformer un fichier .scala
en un ensemble de fichiers .class :

scalac file.scala

• Execution : exécuter le code à l’aide de la machine virtuelle :
scala file

La machine virtuelle scala, si elle est lancée seule, peut être utilisée comme
une REPL pour le langage Scala.

Voici un exemple très simple de programme Scala :

object HelloWorld {
def main(args: Array[String]) {

println("Chapito␣les␣tepos")
} // This is a comment

}

Exercice 1: Implicits in Scala
En Scala, le mot-clé implicit permet à ce que des paramètres de fonctions soient dé-
terminés de manière implicite. Concrètement, certaines valeurs peuvent être marquées
comme étant implicit, et lorsque le programme en a besoin, il recherche parmi ces va-
leurs laquelle peut être utilisée. Les règles concernant les implicites sont plutôt com-
plexes et sont expliquées dans le livre Programming in Scala (http://www.artima.com/pins1ed/
implicit-conversions-and-parameters.html). En particulier, une erreur se produit lorsque plus de
deux implicites différents peuvent convenir lors de la phase de recherche.

Une application de cette construction consiste à ajouter des conversions implicites de
type dans le langage. Considérons pour l’instant une classe Complex très simple permettant

1

http://www.scala-lang.org
http://www.artima.com/pins1ed/implicit-conversions-and-parameters.html
http://www.artima.com/pins1ed/implicit-conversions-and-parameters.html

de représenter des nombres complexes 1, fournie avec un objet compagnon :

class Complex(val real : Double, val imag : Double) {
def +(that: Complex) =

new Complex(this.real + that.real, this.imag + that.imag)
def -(that: Complex) =

new Complex(this.real - that.real, this.imag - that.imag)
override def toString =

real + "␣+␣" + imag + "i"
}
object Complex {

def I = new Complex(0, 1)
implicit def Double2Complex(value : Double) =

new Complex(value, 0.0)
}

Remarquer que l’objet compagnon contient une fonction permettant de construire un
objet de type Complex simplement à partir d’une valeur de type Double.

1. Construire une valeur de type Complex à partir d’une valeur de type Double, sans faire
appel à la fonction Double2Complex.

2. Vérifier qu’il est possible d’additioner ou de soustraire un Complex avec un Double.

Une utilisation des implicites permet d’étendre le comportement d’objets existant sans
avoir à modifier ni leur code, ni leur type. Dans l’exemple suivant, on étend la classe
Complex en lui ajoutant une méthode de comparaison.

class OrderedComplex (override val real : Double, override val imag : Double)
extends Complex(real, imag) with Ordered[OrderedComplex] {

def compare(that : OrderedComplex) : Int = {
if (this.real < that.real) -1 else 1 }

}

3. Écrire une méthode implicite Complex2OrderedComplex qui transforme un Complex en sa
classe dérivée.

4. Vérifier que, après avoir inclus la méthode précédente, il devient possible de direc-
tement comparer des valeurs de type Complex.

. AspectJ (http://www.eclipse.org/aspectj) est une extension du langage de programma-
tion Java permettant de faire de la programmation par aspects. Son utilisation est
facilitée depuis l’interieur de l’environnement Eclipse, à travers les AJDT (AspectJ
Development Tools, http://eclipse.org/ajdt).
L’adresse d’installation des AJDT pour Eclipse Neon est http://download.eclipse.org/

tools/ajdt/46/dev/update.

1. Exemple tiré de tomjefferys.blogspot.fr/2011/11/implicit-conversions-in-scala

2

http://www.eclipse.org/aspectj
http://eclipse.org/ajdt
http://download.eclipse.org/tools/ajdt/46/dev/update
http://download.eclipse.org/tools/ajdt/46/dev/update
http://tomjefferys.blogspot.fr/2011/11/implicit-conversions-in-scala.html

Exercice 2: Hello, aspect
Considérons le fichier d’exemple (très simple) Java suivant, que nous allons instrumenter
à l’aide d’aspects en AspectJ :

class Hello {
public void print_int(int i) {

System.out.println("Just␣an␣integer␣:␣" + i);
}

public void print_nothing() {
System.out.println("That’s␣nothing");

}

public static void main(String [] args) {
System.out.println("Howdy␣?");
Hello h = new Hello();
h.print_nothing();
h.print_int(42);
h.print_nothing();
System.out.println("Hasta␣la␣vista␣...");

}
}

3

. Un aspect se présente sous la forme d’une classe Java utilisant le mot-clé aspect, et
contenant en plus des méthodes et attributs usuels :

— des pointcuts, définissant des points du code à partir desquels il est possible
d’insérer les aspects, sous la forme d’une expression booléenne :

pointcut tournevis(): execution(∗ Tournevis.∗(..)) || call(void ∗.main(..));

— des advices, définissant le code à insérer avant (before), après (after) voire
pendant (around) les appels réalisés aux pointcuts.

before() : tournevis() {
System.out.println("Advice␣from␣:␣" +

thisJoinPoint.getSignature().getName()); }}

Ainsi, l’aspect suivant permet de rajouter du code s’exécutant avant l’exécution de
toutes méthodes de la classe Tournevis.

aspect PinceCoupante {
pointcut tournevis(): execution(∗ Tournevis.∗(..));
before() : tournevis() {

System.out.println("Advice␣from␣:␣" +
thisJoinPoint.getSignature().getName());}

}

Une courte liste des éléments de langage appartenant à AspectJ se trouve à l’adresse
http://eclipse.org/aspectj/doc/released/progguide/quick.html.

1. Ajouter un premier aspect qui, pour toutes les méthodes de la classe Hello, affiche
un message avant l’appel de la méthode et un message après cet appel.

2. Créer un second aspect qui ne capture que la méthode print_int, en s’inspirant de la
syntaxe suivante :

pointcut justints(int x) : execution(∗ Hello.∗(int)) && args(x);
before(int x) : justints(x) { /∗ ... ∗/ }

Exercice 3: Stockage de myrtilles
Plusieurs threads doivent partager une ressource commune, dans un système producteur/-
consommateur. Dans notre exemple, la ressource commune est une classe nommée Storage

possédant deux méthodes d’ajout (addResource) et de retrait (removeResource). Un thread
Producer s’occupe de remplir le Storage, tandis que le Consumer s’occupe de le vider. Le dia-
gramme de classes suivant décrit l’architecture du projet :

4

http://eclipse.org/aspectj/doc/released/progguide/quick.html

! Sauf mention explicite, il est demandé de ne pas modifier le code existant.

1. Créer un nouveau projet AspectJ sous Eclipse, dans lequel vous inclurez les fichiers
source suivants :

Consumer.java, EmptyStorageException.java,
LockedStorageException.java, Main.java,
Producer.java, Storage.java

Rappel : pour importer des fichiers dans un projet sous Eclipse, suivre le sinueux
chemin 〈Project name〉 → src → Import → General → File System.
Vérifier que l’exécution de la classe Main s’exécute sans problèmes en n’affichant
qu’une seule ligne de texte.

Tel quel, ce code n’est pas particulièrement pratique à manipuler : il n’effectue aucun
affichage permettant de savoir si le code s’exécute. Plutôt que de modifier le code existant
(a fortiori uniquement pour des fins de débuggage), nous allons écrire un aspect permettant
d’afficher des messages à l’écran.

2. Ajouter un aspect Log.aj dans le code affichant un message lors de l’entrée et de la
sortie des méthodes de la classe Storage, et toute autre méthode considérée comme
intéressante pour cette question.

Remarque : Il n’existe pas de mécanisme simple en AspectJ permettant d’activer ou de
désactiver des aspects. Pour faire simple, il est recommandé de commencer chacun de vos
aspects avec une variable ENABLED :

final static boolean ENABLED = true;
pointcut marteau() : if (PinceCoupante.ENABLED) && // ...

Les aspects peuvent accéder à certaines informations du contexte appelant, en utilisant
une variable nommée thisJoinPoint. Par exemple l’objet appelant peut être obtenu par

5

thisJoinPoint.getTarget() (cf. https://eclipse.org/aspectj/doc/released/runtime-api/org/aspectj/lang/

JoinPoint.html pour les méthodes appelables sur cet objet).

3. Étendre l’aspect précédent en ajoutant un appel à la méthode Storage.display() lors
de toute modification d’un objet Storage. Faire de manière à ce que les deux aspects
soient activables indépendamment l’un de l’autre.

Exercice 4: Race conditions
Un problème important lorsque l’on manipule des threads provient du partage des res-
sources, partage qui peut mener à des situations de concurrence (race condition). Ici,
l’accès à la ressource Storage est fait de manière concurrente par plusieurs threads. Nous
proposons de sécuriser ce mécanisme à travers un aspect, en ajoutant un mutex Java pour
chaque objet de la classe Storage (sous la forme d’un Lock de la classe ReentrantLock) 2.

1. Combien d’aspects sont nécessaires dans ce cas particulier ?
Remarque : regarder la rubrique « Per-object aspects » de https://eclipse.org/aspectj/

doc/released/progguide/semantics-aspects.html

Proposer un pointcut ainsi qu’un ou plusieurs advices permettant d’implémenter un
aspect créant un objet de type ReentrantLock pour chaque objet de type Storage, et
utilisant les méthodes lock() et unlock() pour encadrer les appels aux méthodes de la
classe Storage.

. L’utilisation du pointcut around permet de transmettre les arguments passés fonc-
tion, tout en ajoutant du code avant et après l’appel à cette fonction.

public aspect CaptainAgeAspect {
pointcut setAge(Integer i): call(∗ setAge(..)) && args(i);

Object around(Integer i): setAge(i) {
System.out.println("Before␣that,␣he␣was␣" + i + "years␣old.");
Integer newi = (Integer) proceed(i∗2);
System.out.println("After,␣he␣got␣older␣:␣" + newi + "years.");
return newi;

}}

L’utilisation (facultative) du type Object permet même de récupérer l’appel à la
méthode avant de le retransmettre.

Dans l’exemple précédent, il est possible que les demandes d’entrée en section critique
restent en attente. En effet, l’appel à la méthode lock() est bloquant pour le thread courant,
sans lever d’exception. Raffinons ce comportement, en notifiant par une exception au
thread appelant qu’il a dû passer son tour 3.

2. Dans un exemple aussi simple, il est possible de résoudre le problème simplement en utilisant des
méthodes synchronized. Ici, on propose d’implémenter le mécanisme à la main afin de pouvoir détecter
les accès concurrents.

3. Les ReentrantLock peuvent gérer une partie de leur scheduling par eux-même, pour éviter de laisser
certains threads patienter trop longtemps.

6

https://eclipse.org/aspectj/doc/released/runtime-api/org/aspectj/lang/JoinPoint.html
https://eclipse.org/aspectj/doc/released/runtime-api/org/aspectj/lang/JoinPoint.html
https://eclipse.org/aspectj/doc/released/progguide/semantics-aspects.html
https://eclipse.org/aspectj/doc/released/progguide/semantics-aspects.html

2. Proposer une manière de faire pour lever une exception LockedStorageException lors-
qu’un appel à lock() est fait alors que le Mutex est possédé par un autre thread.

Les implémentations des classes comme Storage contiennent déjà les exceptions que l’on
vient de rajouter. Dans l’esprit de la programmation par aspect, il serait bon de pouvoir
les ajouter directement à travers l’aspect que nous venons d’écrire.

3. Est-il possible, en utilisant AspectJ, d’écrire un aspect faisant qu’une fonction qui
initialement ne levait pas d’exception en lève une après application ?

4. Est-il possible, en utilisant AspectJ, de modifier le prototype d’une fonction exis-
tante ?
Remarque : La FAQ d’AspectJ (à l’adresse http://www.eclipse.org/aspectj/doc/released/

faq.php) peut aider à répondre à ces questions.

Exercice 5: Aspects réutilisables
Il est dommage de ne pouvoir appliquer un tel mécanisme qu’à la classe Storage, alors qu’en
fait il est naturel de vouloir spécifier des familles de méthodes qui doivent s’exécuter sans
concurrence.

1. Inclure dans votre code 4 les fichiers source suivants :
Condition.java, CoordinationAction.java, Exclusion.java,
Method.java, MethodState.java, Mutex.java, Selfex.java,
TimeoutException.java, ainsi que le fichier Coordinator.aj

Le fichier Coordinator.aj définit un pointcut générique synchronizationPoint, et plusieurs advice
dépendant de ce pointcut. Il permet de mettre automatiquement en place un système de
verrous permettant qu’un ensemble de méthodes ne s’exécutent pas en même temps. Il
définit deux classes :

— un Selfex correspond à une méthode s’exécutant sans interruption (à la manière de
synchronized) ;

— un Mutex (dans cet aspect) correspond à une liste de méthodes ne devant pas s’exé-
cuter en même temps.

Il est possible d’interagir avec cet aspect simplement avec les méthodes addMutex et
addSelfex, qui prennent en paramètre respectivement un nom de méthode (sous forme de
chaîne de caractères) et un tableau de noms de méthodes.

2. Écrire un aspect étendant Coordinator, définissant un pointcut correct, afin de faire
que les méthodes addResource et removeResource ne puissent pas être exécutées en même
temps par deux threads différents.

3. Quels problèmes de maintenabilité la programmation avec AspectJ pose t’elle ?

4. Exemple tiré de la documentation d’AspectJ 1.7

7

http://www.eclipse.org/aspectj/doc/released/faq.php
http://www.eclipse.org/aspectj/doc/released/faq.php

	Implicits in Scala
	Hello, aspect
	Stockage de myrtilles
	Race conditions
	Aspects réutilisables

