
Guiding Symbolic Execution with A-star

Theo De Castro Pinto1,2, Antoine Rollet1, Grégoire Sutre1, and Ireneusz Tobor2

1Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400, Talence, France
{theo.de-castro-pinto, antoine.rollet, gregoire.sutre}@labri.fr

2Serma Safety & Security, F-33600, Pessac, France
{t.de-castro, i.tobor}@serma.com

Abstract

Symbolic execution is widely used to detect vulnerabilities in software. The idea is to symbolically
execute the program in order to find an executable path to a target instruction. For the analysis to be
fully accurate, it must be performed on the binary code, which makes the well-known issue of state
explosion even more critical. In this paper, we introduce a novel exploration strategy for symbolic
execution aiming to limit the number of explored paths. Our strategy is inspired from the A∗ algorithm
and steered towards least-explored parts of the program. We compare our approach, using the Binsec
tool, to three other classical strategies: depth-first (DFS), breadth-first (BFS) and non-uniform random
(NURS). Our experiments on real size programs show that our approach is promising.

Based on the paper [4] presented at the 21st International Conference on Software Engineering and
Formal Methods (SEFM 2023).

1 Introduction

Context. Software verification is a crucial step during the development of programs permitting to discover
potential failures. It consists not only in assessing the correct behavior of the program but also in checking
if vulnerabilities exist. The number of inputs of a program is usually very big, inducing a huge number of
possible paths. A popular technique used to handle this problem is symbolic execution [7]. A major problem
of this approach is that it generally does not scale well on real size programs. The order of exploration is
crucial and decided by the exploration strategy, which can be for instance depth-first (DFS), breadth-first
(BFS) or non-uniform random (NURS).

Contributions. In this paper, we introduce two novel exploration strategies for symbolic execution, in-
spired by the well-known A∗ algorithm [6]. We first adapt the A∗ algorithm to symbolic execution of binary
code, using a precomputed distance heuristic, which has never been done previously to our knowledge. We
then improve this basic A∗-like strategy to steer the exploration towards least-explored parts of the program.
The total number of explored paths is reduced, implying better performance. Our strategies have been im-
plemented in the binary code analysis tool Binsec [5]. We present an experimental evaluation of our two
A∗-like exploration strategies on seven programs, two of them being of real size (Wookey’s bootloader [1]
and the NetBSD leave command). Our experiments show that our approach is promising.

Related Work. In 2021, Blondin et al. proposed an approach based on the A∗ algorithm [6] to perform
reachability analysis on Petri nets [3]. Their results showed that using this approach outperforms existing
state-of-the-art Petri nets tools. The idea is to use distance oracles to guide the exploration of Petri nets.
Regarding symbolic execution, many strategies aiming to guide the exploration towards more promising
paths have been proposed in the literature. Some of them prioritize paths that are closer to the target
state [2, 9] while others prioritize paths that explore new parts of the program [8, 11]. In both cases, only
partial aspects of the A∗ algorithm are implemented. To our knowledge, none of them apply both strategies,
and they are applied on source code. Our proposal combines both of these concepts into a novel exploration
strategy, and applies it directly on binary code.

1

1 # d e f i n e MAX_SIZE 10000000
2 # d e f i n e EXPECTED_SIZE 100
3 vo id v a l i d (i n t y) {
4 i n t x ;
5 f o r (x = 0 ; x < MAX_SIZE ; x ++) {
6 i f (! c o r r e c t (y)) b r e a k ;
7 y − −;
8 }
9 i f (x != EXPECTED_SIZE) t r a p () ;

10 c r i t i c a l () ;
11 }

Listing 1: C-style running example.

(a) DFS (b) BFS

(c) NURS (d) A∗-guided

Figure 1: Illustration of different symbolic execu-
tion strategies.

2 Running Example

The code given in Listing 1 is a simplified version of a security-critical code inspired from a real-life
application. The parameter y of the function valid is a secret value that an attacker is not supposed to
know. This value must satisfy a certain condition, namely that correct(n) returns true for all integers n
with y− 99 ≤ n ≤ y, and correct(y− 100) returns false (where y is the initial value of the parameter
y, i.e., y is the actual argument). Note that the corresponding loop (lines 5–8) may, in fact, be traversed up
to 107 times. If the above-mentioned condition on y is satisfied then the critical function is executed,
otherwise a counter-measure, here trap, is triggered. Our goal is to use symbolic execution to (efficiently)
find an executable path from the start of the valid function to the target critical function.

A depth-first (DFS) strategy either exits the loop early and ends up in the trap function, or executes
the loop entirely and still ends up in the trap function. This behavior is illustrated in Figure 1a, where the
red branch is the only one leading to the target, and the gray zone represents the branches already explored.
A breadth-first (BFS) strategy is also highly inefficient as it generates all branches of length smaller than
the length of the branch reaching the target, including the ones that are stuck in the trap function. Its
behavior is exhibited in Figure 1b where a large part of the reachability tree is explored. A non-uniform
random (NURS) strategy chooses randomly which branch to explore further (see Figure 1c). This strategy
can be lucky but it mostly fails on real size programs.

The approach proposed in this paper is inspired from the A∗ algorithm and aims to explore a limited
amount of branches. The resulting exploration strategy is illustrated in Figure 1d, where only a very small
portion of the whole tree is explored.

3 Symbolic Execution Based on A∗

Symbolic execution has originally been proposed for program testing [7], but the technique can also be
used for reachability analysis. Our main contribution concerns exploration strategies for symbolic execu-
tion, which uses a worklist to order path exploration. An element of the worklist is a node of the exploration
tree presented in Figure 1 and an associated priority. Elements of the worklist are addressed from the lowest
to highest priority. Hence, the order of exploration can be customized via a priority function Prio. Natu-
rally, the classical search exploration strategies DFS, BFS and NURS can be encoded as priorities. Given a
node u to add to a worklist W , the priority functions are given by:

PrioDFS(u,W) =

{
0 if W = ∅
min{n.priority | n ∈ W} − 1 otherwise

PrioBFS(u,W) =

{
0 if W = ∅
max{n.priority | n ∈ W}+ 1 otherwise

PrioNURS(u,W) = random(0, 1)

Recall that A∗ is a single-pair shortest path algorithm for nonnegatively weighted directed graphs. As-
sume that we are given such a graph together with a source vertex and a target vertex. Let V denote the
set of vertices of the graph. The main idea of the A∗ algorithm is to guide the exploration using a heuristic
function h : V → N ∪ {+∞} that underestimates the (minimal) distance from any vertex to the target
vertex. Note that h(v) may be +∞ if there is no path from v to the target vertex. When A∗ picks a vertex
to process from its worklist, it chooses a vertex v that minimizes the sum g(v) + h(v), where g(v) is the
weight of the shortest path seen so far from the source vertex to v.

We adapt A∗ to symbolic execution as follows. The g value of a node u is the length of the explored
branch leading to u. Note that this is an underapproximation of the real g value used in the A∗ algorithm:
ideally, the length of the shortest branch to the same symbolic state as u should be used. The distance from
an instruction ℓ to a target instruction t is the length of the shortest executable path from ℓ to t. We compute
an underapproximation h of this distance that only accounts for the stack contents and ignores the values of
the variables. To compute the h values, we first generate a summary of every procedure in the program, and
then apply Dijkstra’s algorithm starting from the target instruction (a more efficient algorithm is proposed
in [2]). With u a node to add to a worklist W and u.instr the current instruction we obtain:

PrioASTAR(u,W) = g(u) + h(u.instr) (1)

The issue with the approach presented previously is that in large programs the g value tends to dominate
the h value. Consequently, the strategy mostly behaves like a BFS which does not scale well. To fix this
issue, we propose to replace g by another measure that still accounts for the length of the branch from the
root of the tree to u, but prioritizes nodes corresponding to parts of the system that have rarely been visited.
The resulting priority function is defined as:

PrioASTAR-2(u,W) = g′(u) · λ(µ(u)) + h(u) (2)

Where u is a node to add to a worklist W . We define g′(u) as the elementary depth of the branch, that is
the number of unique instructions visited along the branch until the current instruction was first visited. And
µ(u) is defined as the number of times the current instruction has been visited along the branch. Finally,
λ is an attenuation function to mitigate the impact of the g′ values, it may for example be a logarithmic
function.

4 Experimental Results

We evaluate our new approach on seven programs: the running example in Listing 1, a complex version
of it exhibiting the limitations of the first priority function based on A∗, three “crackme” challenges [10]
which are relatively easy to solve and with a reasonable size (around 200 instructions), and two “real size”
programs namely the Wookey bootloader [1] which is a popular software designed by the ANSSI1 meant to
be robust against various type of attacks (∼10K locations), and the leave command of NetBSD (∼100K
locations). We use the symbolic execution tool Binsec (version 0.6), in which we have implemented our
new strategies. A time limit of 100 seconds is allowed for each experiment, beyond which we stop it and
report a timeout. The NURS exploration strategy has been run ten times on each program and the mean
of the results are displayed. Timeouts for this strategy are discarded in order to not affect the final results.
Results are shown in Figure 2.

Clearly, our new exploration strategy astar-2 always outperforms the classical strategies. More-
over, it also always outperforms the strategy solely based on astar, as expected. The astar exploration
strategy is generally not powerful enough to reach the target on real programs (leave, Wookey’s boot-
loader). Regarding the duration of the symbolic execution, the strategy astar-2 also always outperforms
the other strategies. Note that the number of unrolled instructions is not directly correlated to the execution
time of symbolic execution. In fact, what really slows it down are satisfiability queries, which are made at
conditional branching points.

1French National Cybersecurity Agency.

D B N A A’ D B N A A’ D B N A A’ D B N A A’ D B N A A’

101

105

109

example
complex
example crackmes

unix
leave

wookey’s
bootloader

0

50

100

SS
E

du
ra

tio
n

(i
n

se
co

nd
s)

un
ro

lle
d

in
st

ru
ct

io
ns

(l
og

ar
ith

m
ic

sc
al

e)

reached target timeout (100 seconds) D DFS

B BFS N NURS A astar A’ astar-2

Figure 2: Experimental results obtained with Binsec: bars represent the number of unrolled instructions in
a logarithmic scale and dots represent the SSE duration in seconds.

5 Conclusion

In this paper, we have introduced a novel exploration strategy for symbolic execution inspired from the
A∗ algorithm permitting to find efficiently an executable path to a target instruction. This approach orders
the exploration of symbolic states by using heuristics permitting to visit in priority states that have been less
explored. Consequently the number of paths to explore is smaller than in usual approaches such as DFS,
BFS and NURS, implying better performance.

References
[1] ANSSI: Wookey. https://wookey-project.github.io/ (2018)

[2] Babić, D., Martignoni, L., McCamant, S., Song, D.: Statically-directed dynamic automated test generation. In: Proceedings
of the 2011 International Symposium on Software Testing and Analysis. pp. 12–22 (2011)

[3] Blondin, M., Haase, C., Offtermatt, P.: Directed reachability for infinite-state systems. In: Tools and Algorithms for the
Construction and Analysis of Systems: 27th International Conference, TACAS 2021, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2021, Luxembourg City, Luxembourg, March 27–April 1, 2021,
Proceedings, Part II 27. pp. 3–23. Springer (2021)

[4] De Castro Pinto, T., Rollet, A., Sutre, G., Tobor, I.: Guiding symbolic execution with a-star. In: International Conference on
Software Engineering and Formal Methods. pp. 47–65. Springer (2023)

[5] Djoudi, A., Bardin, S.: Binsec: Binary code analysis with low-level regions. In: Tools and Algorithms for the Construction
and Analysis of Systems: 21st International Conference, TACAS 2015, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015, Proceedings 21. pp. 212–217. Springer
(2015)

[6] Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE transac-
tions on Systems Science and Cybernetics 4(2), 100–107 (1968)

[7] King, J.C.: Symbolic execution and program testing. Communications of the ACM 19(7), 385–394 (1976)

[8] Li, Y., Su, Z., Wang, L., Li, X.: Steering symbolic execution to less traveled paths. ACM SigPlan Notices 48(10), 19–32
(2013)

[9] Ma, K.K., Yit Phang, K., Foster, J.S., Hicks, M.: Directed symbolic execution. In: Static Analysis: 18th International
Symposium, SAS 2011, Venice, Italy, September 14-16, 2011. Proceedings 18. pp. 95–111. Springer (2011)

[10] NoraCodes: crackmes.
https://github.com/NoraCodes/crackmes/ (2017)

[11] Xie, T., Tillmann, N., De Halleux, J., Schulte, W.: Fitness-guided path exploration in dynamic symbolic execution. In: 2009
IEEE/IFIP International Conference on Dependable Systems & Networks. pp. 359–368. IEEE (2009)

