
Test Selection for Data-Flow Reactive Systems based on Observations

Omer Nguena-Timo and Antoine Rollet
University of Bordeaux (LaBRI - CNRS)

Talence, France
{nguena,rollet}@labri.fr

Abstract—Conformance testing amounts to verifying ade-
quacy between the behaviors and the specified behaviors of
an implementation. In this paper, we handle model-based
conformance testing for data-flow critical systems with time
constraints. Specifications are described with a formal model
adapted for such systems and called Variable Driven Timed
Automata (VDTA). VDTA are inspired by timed automata but
they use input/output communication variables, allowing clear
and short specifications. We present a conformance relation for
this model and we propose a symbolic test selection algorithm
based on a test purpose. The selection algorithm computes the
variations on inputs allowing to reach an expected state of the
implementation. Then we propose an on-line testing algorithm.

Keywords-Data-flow systems, Modelling, Timed constraints,
Model-based testing, Conformance relation, Symbolic Test
Selection.

I. INTRODUCTION

Testing is a popular technique used to increase the
quality of systems. Since systems are getting more and
more complex, formal approaches permit to obtain efficient
and rigorous testing frameworks. Testing is a large domain
since many characteristics may be focused, such as con-
formance, performance, interoperability or robustness, etc.
Testing techniques may be very different depending on the
kind of systems we intend to validate (e.g. embedded sys-
tems, concurrent, sequential, reactive, interactive, real-time,
communication protocols, etc.). In this work, we consider
formal conformance testing for data-flow reactive systems
i.e. checking if the behavior of an implementation conforms
to its specification described in a formal model.

Data-flow reactive systems continuously compute outputs
and internal states according to the inputs and timing con-
straints. In this framework, continuous means that either
the values of the input events can be updated at anytime
or the time elapses when no output update is performed.
An output update is performed as soon as a constraint
is satisfied. So, output updates are eager and performed
prior to time elapsing and input updates. The environment
can observe outputs when systems are stabilized. Data-flow
reactive systems are widely used in the industrial automation
domain. Examples of such systems are digital/sequential
circuits and control command systems. Testing data-flow
reactive systems remains an important challenge.

The success of a formal testing framework depends on
specifications. Test cases are selected from the specification
and it is better to work with models that allow concise,
clear and short specifications. Thus, choosing adequate
formalisms for specifying data-flow reactive systems is
not a neglected task. To the best of our knowledge, the
widespread existing transition systems formalisms are not
adequate. Modelling data-flow systems with the event-
based formalisms (FSM, LTS, EFSM, UPPAAL, models
with urgency [1], [2], etc.) often results huge and rather
unclear models and variable-based formalisms ([3], [4],
[5], [6], [5], [7]) do not usually permit to handle dense time.

Contributions. We propose a conformance testing
framework for data-flow reactive systems composed of : (1)
the formal model called Variable Driven Timed Automata
(VDTA), (2) a timed variable conformance testing relation
(tvco), (3) and a test selection algorithm based on test
purposes and deterministic specifications. VDTA is a
new variable based formalism [8] adapted for specifying
data-flow systems with dense time. The inputs and the
outputs of systems are variable updates: the environment
can assign new values to the input variables and observes
the output ones. Transitions are urgent and fired as soon as
constraints are satisfied. Outputs occur on transition firing.
Input updates or time elapsing occur when no output update
is performed. Roughly, an implementation conforms to its
specification whenever the observed values of the output
variables of the implementation are the same as the ones
of the specification after any stabilized sequence of input
updates or delays. Test purposes permit to describe behaviors
we intend to test. The test selection algorithm based on
test purposes uses a principle inspired by [9], [10]: (a) we
define the observation product of the specification and the
test purpose; from the observation product, (b) we check
existence of a sequence of variable observations and finally
(c) we derive test cases. Step (b) uses a reachability analysis.

Related work. Event-based transition systems formalisms
(FSM, LTS, EFSM, Timed Automata, UPPAAL, TEFSM,
TIOA, etc.) are widely used for testing synchronous real-
time systems [11], [12], [13], [14], [15]. These real-time
testing approaches are adaptations of untimed testing
approaches based on LTS/ioco theory ([9], [10]). The

event-based formalisms are not adapted for data-flow and
variable based communication systems. Events are not
persistent (they disappear as soon as they occur) and a
single occurrence of an event does not allow to fire several
transitions. Each event represents a combination of possible
values of flows. From each state and each expected event, it
is necessary to add a direct transition to a target state. This
phenomenon is broken in the variable-based transitions
systems: transitions are fired when conditions on variables
become true. The Dijkstra Guarded Command Language [3]
is a variable-based model adapted for data-flow systems as
well as industrial models [4], [5], [6], [5], [7]. But, they do
not permit to handle dense time. The IF representation [16]
allows to express in a convenient way most useful concepts
needed for the specification of asynchronous systems.
The representation considers the dense time domain and
combines synchronous (with gates) and asynchronous
communication (with buffers). VDTA, that is inspired by
urgent timed automata [2], can be seen as timed extension
of the Dijkstra language [3]. VDTA are not far from a
fragment of the IF representation: communication in VDTA
uses variables only. In IF, the definition of stable states is
based on syntax [16] whereas it is based on semantic in
VDTA. This seems more realistic. A sound and exhaustive
on-the-fly testing algorithm with VDTA is given in [8]. But
this algorithm does not allow to select observable behaviors
we want to test. A test purpose based selection algorithm
is proposed in [17]; but test purposes are used to describe
non observable behaviors.

Organization of the paper. The structure of the document
is as follows : Section II presents some definitions and
notations concerning the VDTA model and its semantics.
In Section III, we summarize the principle and the expected
results of the reachability analysis of VDTA. Section IV
presents the conformance relation called tvco and the execu-
tion algorithm for a symbolic test case. Section V presents
the test selection algorithm based on the definition of the
observation product and the reachability analysis. Section VI
gives further directions to this work.

II. VARIABLE DRIVEN TIMED AUTOMATA

Variable Driven Timed Automata (VDTA) are introduced
as they allow concise, short and clear specification of
data-flow reactive systems. VDTA use the variable-based
communication mechanism which allows to restrict the
number of transitions in the model. Transitions in VDTA
are taken when constraints become true; this allows to
fire instantaneously (within zero time unit) more than one
transition after a variable value has changed. This is not the
case with event-based model where transitions are taken on
the occurrence of events. When modelling with the event-
based formalism one needs to specify, for each state and
each expected event, the target state. We illustrate these

`0

`1

?L
R

;x
:=

0

`2

t ≤ 1;?LR

`3 `4

`5

`6

?LR; t := 0
?LR; t := 0

t ≤ 1;?LR;x := 0

t > 1; !timeout

x = 0; !S

?LR;x := 0

?LR;x := 0
?LR;x := 0

x = 0; !S

?LR

x = 0;!S

(a) TIOA model for the two buttons machine.

`0

`1

`2

`3
L

=
0
∧
R

=
0

L = 1 ∨R = 1
t := 0

L
=

0
∧
R

=
0
∧
t
<

1

L = 1 ∧R = 1
∧t ≤ 1
S := 1

L = 0 ∨R = 0
S := 0

t > 1

(b) VDTA for the two buttons ma-
chine.

Figure 1. Event-based Vs variable-Based Model

statements on models specifying the control program of a
“two buttons machine” [18]: Consider the control program
of a device designed to start some machine when two buttons
(L and R for left and right buttons) are pushed within 1 time
unit. If only one button is pushed (then L or R is true) and
a delay of less than 1 time unit is performed (time-out has
occurred), then the whole process must be started again.
After the machine has started (S=1), it stops as soon as one
button is released, and it can start again only after both
buttons have been released (L and R are both false).

The VDTA in Figure 1(b) is clearer and shorter than
the Timed Input Output Automata (TIOA) in Figure 1(a).
The TIOA has 4 input events (LR, LR, LR, LR where L/
L mean that the left button is pushed/released), 2 output

events (S, S) and 2 clocks (x, t) whereas the VDTA model
has 2 boolean input variables(L and R), 1 boolean output
variable (S), and a unique real-valued clock variable (t). The
TIOA assumed that in every state the program may receive
(denoted by the symbol “?”) an event that corresponds a
combination of values of L and R before leaving the state.
More generally, if there are n buttons (variables) all in
domains of size m, one may need to consider up to nm

outgoing edges from each node of the model. This explosion
can be reduced using a variable-based modelling approach.
The main idea is to hide the synchronisation (between
the environment and the system) that happens on variable
updates and to concentrate on the functional behaviour of
the system that depends on constraints. In the VDTA model
in Figure 1(b) one can move instantaneously (through `1)
from `0 to `2 if L and R are pressed simultaneously. The
description of this behavior in Figure 1(a) has required a
direct transition from `0 to `2 labelled with LR.

The rest of the section presents formal definitions for
VDTA.

A. VDTA Model

Let N, Q+ and R+ denote the sets of natural, non-
negative rationals and real numbers, respectively. Let V =
{V1, · · · , Vn} be a set of variables; each variable Vi ∈ V
ranges over a (possibly infinite) domain Dom(Vi) in N,
Q+ or R+. We define Dom(V) = Πi∈[1..n]Dom(Vi),
the domain of V . In the sequel, vi denotes a valuation
of the variable Vi and v the tuple of valuations of the
set of variables V . A variable assignment for V is a
tuple Πi∈[1..n]({Vi} × (Dom(Vi) ∪ {⊥})) and we denote
by A(V) the set of variable assignments for V . Given a
valuation v = (v1, · · · , vn) of V and a variable assignment
A ∈ A(V), we define the tuple of valuations v[A] as
v[A](Vi) = c if (Vi, c) is an element of A and c 6= ⊥,
and v[A](Vi) = vi otherwise. Intuitively, an element (Vi, c)
of variable assignment A, requires to assign c to the variable
Vi if c is a constant from Dom(Vi); otherwise c is equal to
⊥ and no access to the variable Vi should be done. V ar(A)
denotes the set of variables of V that are updated by A.
We denote IdV the identity variable assignment that let
unchanged all the variables of V . We denote by G(V) the
set of variable constraints defined as boolean combinations
of simple constraints of the form Vi ./ c with Vi ∈ V ,
c ∈ Dom(Vi) and ./∈ {<,≤,=,≥, >}. Given G ∈ G(V)
and a valuation v ∈ Dom(V), we write v |= G when
G(v) ≡ true. As usual, we denote ProjVi(G) ∈ G(Vi)
the projection of G over Vi.

Definition 1 A Variable Driven Timed Automaton (VDTA)
is a tuple A = 〈L,X, I,O, `0, G0,∆A〉, where L is a finite
set of locations, X is a finite set of clocks, I and O are
disjoint finite sets of input and output variables, `0 ∈ L is
the initial location, G0 ∈ G(I,O) is the initial condition

with only one solution, a constraint with variables in I ∪O
and ∆A ⊆ L×G(I,O,X)×A(O)×2X×L is the transition
relation

In a transition 〈`,G,A,X , `′〉 ∈ ∆A (often written `
G,A,X−−−−→

`′): G ∈ G(I,O,X) is a boolean combination of elements
of G(I), G(O) and G(X); A ∈ A(O) is an assignment on
output variables and X ∈ 2X is a set of clocks that are reset
when triggering the transition.

The environment of a system modeled by a VDTA ob-
serves all the variables. The set I of input variables repre-
sents the variables to which the environment (e.g. the tester)
can assign a value whereas the set O of output variables
represents the variables for which the values are updated
by the system while triggering a transition. Furthermore, we
assume that all the transitions are urgent, meaning that as
soon as the guard of a transition is satisfied, the transition is
triggered. We also assume that the assignment of new values
to the input variables is performed instantaneously. Finally,
note that in each location the environment can choose any
value for the input variables.

B. Semantics and Notations

A state of a VDTA is of the form (`, i, o, x) where ` ∈ L
is a location, i, o and x are valuations of input, output and
clock variables. A valuation is simply a function that returns
the values of the variables. If A ∈ A(I) is an assignment
on input variables, the valuation i[A] changes the value of
input variables according to this assignment. If x is clock
valuation, X is a subset of clocks, and δ ∈ R+ a delay, the
valuation x+δ adds δ to each clock value and the valuation
x[X ← 0] resets from x all clocks in X .

Definition 2 The semantics of a VDTA A is a timed tran-
sition system [[A]] = 〈SA, s0,Σ,→〉 where SA = L ×
Dom(I) × Dom(O) × RX+ is the (infinite) set of states,
s0 = (`0, i0, o0, x0) is the initial state where x0 is the clock
valuation that maps every clock to 0 and (i0, o0) is the only
solution of G0, Σ = A(I)∪A(O)∪RX+ is the (infinite) set of
actions, and → is the transition relation with the following
three types of transitions:

T1 (`, i, o, x) A−→ (`′, i, o[A], x[X ← 0]) if there exists
(`,G,A,X , `′) ∈ ∆A such that (i, o, x) |= G,

T2 (`, i, o, x) A−→ (`, i[A], o, x) with A ∈ A(I) if
∀(`,G,A′,X , `′) ∈ ∆A, (i, o, x) 6|= G.

T3 (`, i, o, x) δ−→(`, i, o, x+ δ) with δ > 0 if for every δ′ <
δ, for every symbolic transition (`,G,X ′, `′) ∈ ∆A,
we have (i, o, x+ δ′) 6|= G.

The semantics considers discrete transitions (T1 and T2)
and delay transitions (T3). Discrete transitions concern the
updates of either input (T2) or output (T1) variables. De-
lay transitions represent the elapse of time. Output-update
transitions are obliged to be fired as soon as constraints
are satisfied. Input-update transitions allow to change the

input values only; they are fired by the environment. Input
updates and delays occur only when no guard is satisfied (or
equivalently no output-update is possible).
Notations. Given a state s = (l, i, o, x) ∈ S, Out(s) = o
gives access to the outputs value of [[A]] in state s. We write
s
a−→when there exists s′ such that s a−→ s′; otherwise we

write s 6a−→. For a sequence σ = a1.a2.ak−1.ak of Σ∗,
s
σ−→ s′ if there exists {si}i=1..k−1 such that s a1−→ s1

a2−→
.

ak−1−−−→sk−1
ak−→s′ and we write s

σ−→ if there exists s′

such that s σ−→s′. Given a state s of [[A]], a run is a sequence
of alternating states and actions r = s0a1s1 · · · ansn in
S.(Σ.S)∗ such that ∀i ≥ 0, si

ai+1−→ si+1. Run(s, [[A]])
denotes the set of runs that can be executed in [[A]] starting
in state s and we let Run([[A]]) = Run(s0, [[A]]). The
trace ρ(r) of a run r = s0a1s1 · · · ansn is given by the
sequence ρ(r) = ProjΣ(r) = a1 · · · an ∈ Σ∗. Tr([[A]]) =
{ρ(r)|r ∈ Run([[A]])} is the set of traces generated by A.
Here are two possible runs of the VDTA in Figure 1(b):
(`0, (0, 0), 0, 0)

L:=1−−−→ (`0, (1, 0), 0, 0)
IdO−−→ (`1, (1, 0), 0, 0)

0.3−−→
(l1, (1, 0), 0, 0.3) and (`0, (0, 0), 0, 0)

L:=1,R:=1−−−−−−−→(`0, (1, 1), 0, 0)
IdO−−→(`1, (1, 1), 0, 0)

S:=1−−−→(`2, (1, 1), 1, 0).

C. Deterministic VDTA

It can happen that the two constraints on two transi-
tions leaving a location are satisfied by the same values
of clocks and variables. In this case, the system behaves
non-deterministically. A VDTA A is deterministic if G0 is
satisfied by at most one valuation (i0, o0); and whenever
there exists `

G1,A1,X1−−−−−−→`1, `
G2,A2,X2−−−−−−→`2 with `1 6= `2, we

have that G1 ∩G2 is unsatisfiable.

D. Stable VDTA.

Thanks to their priority, several output-update transitions
can be triggered in null delay. A stable state is a state from
which no output-update transition can be fired. Input-updates
and time elapsing are not allowed in non stable states. A
state s of [[A]] is stable whenever for every A ∈ A(O), s 6A−→.
To leave this state, input updates or delays are required.
Considering Figure 1(b), the states (`0, (1, 0), 0, 0) and
(`0, (1, 1), 0, 0) are not stable; but the state (`2, (1, 1), 1, 0)
is stable. A stable run is a run that ends in a stable state. A
VDTA A is stable if there is no loop of unstable states in
[[A]]. In the sequel, we shall only consider stable VDTA.

III. REACHABILITY ANALYSIS OF VDTA

The reachability analysis consists in checking whether
from a source state we can reach a target state. It is
required in validation (model-checking) algorithms. In the
following, we use the reachability analysis of VDTA in order
to generate test cases. Our algorithm will also construct
sequences of constraints on input updates and delays that
allow to reach the target state. Such sequences can be used
as test cases. It is not the purpose of the paper to detail the

`0

`1 `2

`3

L = 1 ∧ 0 < t < 1
S := 0

L = 0 ∧ 1 < t < 2
S := 1

L = 0 ∧ 3 < t < 4
S := 1

(a) A Deterministic VDTA

`2`1

L = 1
S := 2

`0

L = 1 ∧R = 1
S := 1

(b) A VDTA without clocks

Figure 2. Examples of VDTAs

reachability algorithm for VDTA (it can be found in [17]),
but we summarize the results.

The backward reachability analysis works, in a standard
way, as follows: it starts in the set of target states and
it computes in each step the predecessors of already en-
countered states. The algorithm stops when no new state is
computed. Let P ⊆ SA be a subset of states of A. The com-
putation of the set of predecessors of P (denoted Pre(P))
involves the computation of its output-update predecessors
(Preo(P)), its input-update predecessors (Prei(P)) and
its time predecessors (Pret(P)). The output-update prede-
cessors of P , Preo(P) is the set of states from which a
state in P can be reached just after an output-update is
performed. A similar definition holds for the input-update
predecessors. The time predecessors of P , Pret(P) is the
set of states from which a state in P can be reached
by letting the time elapse. Finally the predecessors of P ,
Pre(P) = Preo(P) ∪ Prei(P) ∪ Pret(P).

For example, consider the VDTA in Figure 2(a) where L
is the only boolean input variable, S is the only boolean
output variable and t is the only clock variable. The state
(`0, 0, 0, 2.2) is a time predecessor of (`0, 0, 0, 2.8); but
(`0, 0, 0, 1.999) is not time predecessor of (`0, 0, 0, 2.8)
since (`0, 0, 0, 1.999) is not stable and the transition to `2
is taken prior to time elapsing. (`0, 0, 0, 1.999) is an output-
update predecessor of (`2, 0, 1, 1.999).

Since the number of states is infinite, the algorithm may
not terminate. So, we compute predecessors on symbolic
states. Since the number of encountered symbolic states is
finite, the algorithm terminates. A symbolic state is of the
form (`, ZI , ZO, ZX) where ZI , ZO and ZX are constraints
over input, output and clock variables. ZX may represent
the (un)famous clock region [19] like in [17] or clock
zone [20]. Following the semantics, a symbolic state has a
set of input-update predecessor, output-update predecessors,
and time-elapsing predecessors. The paper does not focus
on the computation of the predecessors which is effective
and rather technical. We are interested in the resulting
reachability graph.

Reachability Graph. The reachability graph is a kind of

`0, L = 0, true, t ≤ 1 `0, L = 0, true, t = 1

`0, L = 1, true, t = 1`0, L = 1, true, 1 ≤ t ≤ 3

`0, L = 0, true, 2 ≤ t ≤ 3 `0, L = 0, true, 3 < t < 4

`3, true, true, true

(Pret)

(Prei)

(Pret)

(Prei)

(Pret)

L = 0 ∧ 3 < t < 4
S := 1 (Preo)

Figure 3. A path in a reachability graph.

VDTA where locations are tagged with invariants. Locations
are symbolic states and invariants are constraints on vari-
ables and clocks. We construct a reachability graph during
the reachability analysis. Let us consider, Z[A] = {x[A] |
x ∈ Z} is set of valuations from which we can reach a
valuation satisfying Z after an update A is executed and
Z↓ = {x | ∃ δ ∈ R+, s.t x + δ ∈ Z} is the set of
valuations (the zone) from which clock valuations in Z
can be reached by letting the time elapse. The construction
works as follows: if (`′, Z ′I , Z

′
O, Z

′
X) ∈ Pre(`, ZI , ZO, ZX)

then, the transition (`′, Z ′I , Z
′
O, Z

′
X)

G,A,X−−−−→(`, ZI , ZO, ZX)
exists if there are `′

G,A,X−−−−→` ∈ ∆A, A′ ∈ A(I) such that
Z ′I [A] ⊆ ZI , Z ′O ⊆ ZO and Z ′X ∩ (ZX↓) 6= ∅; otherwise
there is no label on the transition from (`′, Z ′I , Z

′
O, Z

′
X) to

(`, ZI , ZO, ZX).
Let us give the intuitive semantics of the reachability graph:
one can stay in a location only if the invariant holds. The
invariant can be violated provided that a transition is fired
after the violation. The invariant must be satisfied when
entering a location. A transition in the graph asserts that we
can move from the source to the target location provided
that the constraint is satisfied.
Figure 3 presents a path (the whole graph is too large) in

the reachability graph we can construct from the model in
Figure 2(a) using the clock zone abstraction. We assumed
that (`3, true, true, true) and (`0, L = 0, S = 0, t = 0) are
the target and source locations. s1 = (`0, L = 0, true, t = 1)
is the input predecessor of s2 = (`0, L = 1, true, t = 1).
Note that s2 ∈ Prei(s1) but this is not represented in the
path in Figure 2(a).

IV. CONFORMANCE TESTING WITH VDTA

Conformance testing consists in checking that an imple-
mentation exhibits an observable behavior consistent with
its specification. The main idea of our conformance relation
is that all observable behaviors of the implementation have
to be allowed by the specification. Especially:

1) An implementation is not allowed to update a variable
in a time (too late or too early) when it is not specified.

2) An implementation is not allowed to omit to change
the values of variables at the time it is specified.

A. Observations and Conformance Testing Relation

In the context of VDTA, it is not obvious when output
observations should be performed. Transitions are urgent and
several transitions can be fired in null time. There are two
directions for observing the outputs: either one observes the
outputs after each transition firing as it is done for tioco [14],
or one observes the outputs when the implementation has
reached a stable state. We consider that the environment
and the implementation run with the same speed implying
that the tester can not observe a value of a variable if it lasts
zero time unit. In this case we observe the outputs in stable
states only.
Given a stable state s, we consider the next stable states (or
a singleton in case of determinism) the implementation can
reach from s after the execution of an input-update Ai ∈
A(I). Given two stable states s, s′ ∈ S, we write:

• s
Ai=⇒s′ if there exists a sequence σ ∈ A(O)∗ s.t s Ai−→

s′′
σ−→ s′, i.e. s′ is a stable state that can be reached

from s after updating the input variables with Ai, only
triggering urgent transitions in zero time unit.

• s
δ=⇒ s′ if there is a sequence σ = σ1 · · ·σn ∈

({IdO}∪R+)∗ s.t s σ−→s′ and δ =
∑
δi∈ProjR(σ) δi, i.e.

s′ is a stable state that can be reached by letting the
time elapse during δ units of time with no observable
output update.

The timed transition system Obs(A) = (S, s0, A(I) ∪
R+,=⇒) is inductively generated from [[A]] by starting
from s0 (that is supposed to be stable) and by using the
two previous rules. We let ObsRun(A) = Run(Obs(A))
and ObsTr(A) = Tr(Obs(A)) denote the set of ob-
served runs and observed traces of A. Note that a trace
in ObsTr(A) is a sequence of input updates and delays.
Finally, we define s Safter α = {s′ | s α=⇒ s′} and
A Safter α = s0 Safter α. For example, using Fig-
ure 1(b): (`0, (0, 0), 0, 0)Safter {0.3.(L := 1; R := 1)} =

{(`2, (1, 1), 1, 0)}.
Now we define the conformance testing relation tvco (i.e

timed variable conformance relation) adapted for VDTA. We
assume that the implementation Imp and the specification
A are both modeled by compatible VDTA (i.e. they share
the same input and output variables).

Definition 3

Imp tvco A
⇔

∀σ ∈ ObsTr(A), Out(Imp Safter σ) ⊆ Out(A Safter σ)

where Out(.) returns the values of the output variables.

Intuitively, the relation intends to check if the values of
output variables of the implementation are correct after
any stabilized sequence made of input assignments or time
elapsing. The tester can observe all output variables of the
implementation and can only update the input variables of
the implementation or let the time elapse. Remark that the
blocking aspect as in [9] is not considered so far.

Comparison with tioco. In [14], the tioco relation allows to
observe all the outputs of consecutive transitions, even those
that are fired in null delay. The relation tvco only considers
the outputs that are observable in the next stabilized states,
which seems more realistic for us.

B. Testing With a Symbolic Test Graph

A symbolic test graph is like a deterministic VDTA
except that its locations are tagged with invariants. Invariants
are constraints on variables and clocks. A symbolic test
graph has two special locations denoted Pass and Inc (for
inconclusive). For example, Figure 3 is a symbolic test graph
assuming that the trap location `3 is a Pass location.

The conformance testing algorithm of an implementation
Imp with respect to a test graph works as follows: the
algorithm starts at the initial state. The tester performs either
an input update or delay for a chosen duration δ. An input-
update or a delay is performed provided that they do not
violate the invariant of the current location except if they
allow to fire a transition of the test graph. After an input-
update is performed, the tester compares the outputs of the
implementation with the outputs of the current state of the
test graph. It returns the verdict “fail” when they do not
conform. While delaying for δ time units, the tester observes
the outputs and checks their conformance. If the location
Inc is reached, it means that a non relevant behavior is
being tested. If the location Pass is reached, it means that
a specified behavior has been successfully tested; the tester
returns the verdict “pass” and it tries to test another behavior.
This algorithm is inspired by the on-line testing algorithm
in [8]. For example, the graph in Figure 3 can be used for
testing the reachability of `3 in the VDTA of figure 2(a) and
the following test case (scenario) can be generated: let the
time elapse until t = 1, and set L to 1; then let the time
elapse and set L to 0 when t is between 3 and 4.

We consider in a usual way that an implementation Imp
passes a test case if and only if any test run leads to a pass
verdict.

V. TEST SELECTION WITH TEST PURPOSE

The test selection algorithm is based on the notion of
Test Purpose (TP) and it follows the methodology described
in [9], [10]. Given a specification A and a test purpose TP ,
we construct a test graph from which we select symbolic test
cases. A test graph results from the observation product (it
differs from the synchronous product due to the stabilization

aspects) of the specification with the test purpose. The
selection algorithm analyses the reachability of a location
Pass in the test graph.

A. Test Purpose

In practice, a test purpose allows to select some observ-
able behaviors of the specification we want to test. A test
purpose is modeled by a VDTA. We consider that a test
purpose is non intrusive with respect to the specification:
it is not allowed neither to reset clocks of the specification
nor to assign new values to the output variables. But a test
purpose is equipped with its own set of clocks that allow to
time-stamp and to check the observations.

Definition 4 A test purpose TP of a specification
A = 〈L,X, I,O, l0, G0,∆A〉 is a deterministic VDTA
TP = 〈S,X ∪X ′, I, O, s0, G0,∆TP 〉 such that: S is a
finite set of locations with a mandatory special trap location
AcceptTP and an optional special trap location RejectTP ;
s0 is the initial location; I , O and X are respectively
the input, output and clock variables of the specification;
G0 ∈ G(I,O) is the initial condition of TP and A; X ′

is the set of private clocks of TP , with X ′ ∩ X = ∅;
and ∆TP ⊆ S × G(I,O,X,X ′) × IdO × 2X

′ × S is the
transition relation.

As for the specification, we assume that the guards in
G(I,O,X,X ′) are given by a boolean combination of
elements of G(I), G(O), G(X) and G(X ′). Note that TP
is allowed to observe the states (the values of variables) of
A.

Intuitively, a location of a test purpose allows to observe
the values of clocks and variables (in stable states of the
implementation) and checks whether they satisfy constraints
on transitions leaving the location. When a constraint is
satisfied, the corresponding transition is passed and the
location changes. As in [9], [10], a location of a test purpose
acts like the Until operator of the temporal logic LTL (stay
in the location until a constraint becomes true). A path from
s0 to AcceptTP specifies the observations we want to test
while a path to RejectTP specifies non relevant observations
that we do not want to test. According to the semantics of
VDTAs, test purposes are complete meaning that whatever
is the observation of variables or clocks either a transition
is taken or the current location does not change.

Figure 4 presents three examples of test purposes. Test
purposes in Figure 4(a) and 4(b) observe variables of the
VDTA and they only specify which behaviors of the im-
plementation are interesting for the test. The test purpose
in Figure 4(c) has its own clock variable x; it specifies
which behavior of the implementation should be tested, but
also the behavior of the implementation that should not be
tested (from the location RejectTP , the location AcceptTP ,
cannot be reached anymore). Let us comment the three test

s0

s1

AcceptTP

L = 1 ∧R = 1

S = 1

(a)

s0

AcceptTP

L = 1 ∧R = 1
∧S = 1

(b)

s0

AcceptTP

RejectTP

s = 1 ∧ x < 2

x ≥ 2

(c)

Figure 4. Test purposes.

purposes:
• The one in Figure 4(a) requires that if L and R equal

1 in the same time during the test process, then the
variable S equals to 1 in the future.

• The one in Figure 4(b) requires to have s equal to 1 in
the same time that L and R equal 1.

• The one in Figure 4(c) requires to test the behaviors
of the implementation in which s is set to 1 at most 2
time units after the beginning of the session.

B. Observation Product

Since we use a test purpose to select the observable
behaviors we want to test, we consider an operation that
allows to observe and to check the values of clocks and
variables when the specification (implementation) is in
stable states only. We call this operation the observation
product.

Given a location ` of A, GA(`) denotes the set of
constraints on outgoing transitions of ` and it is defined by
GA(`) = {G ∈ G(I,O,X) | ∃`′ ∈ L, ` G,A,X−−−−→`′}.

Definition 5 Let A = 〈L,X, I,O, `0, G0,∆A〉 be a speci-
fication and let TP = 〈S,X ′ ∪X, I,O, s0, G0,∆TP 〉 be a
test purpose. The observation product of A and TP is the
VDTAA⊗TP = 〈L×S,X∪X ′, I, O, (`0, s0), G0,∆A⊗TP 〉
where the rules R1 and R2 define ∆A⊗TP :

R1: (`, s)
G`,A,X−−−−−→(`′, s) iff there is `

G`,A,X−−−−−→`′

R2: (`, s)
G∧Gs,IdO,X ′−−−−−−−−−→ (`, s′) with G =∧

G′∈GA(`) ¬G′ iff there is s
Gs,IdO,X ′−−−−−−−→s′

We shall denote Accept the set of states of A⊗ TP of the
form (`, AcceptTP).

Intuitively, in a location (`, s) (or a state ((`, s), i, o, x)) of
A⊗TP we want to observe and check the values of clocks
and variables. There are two situations: the first situation,
described byR1, occurs when we can not observe the values
because the specification is in a non-stable state. In this
case, only the system is allowed to fire an urgent transition.
In the second situation, described by R2, the state of the
specification is stable (no constraint on transitions leaving
the location is satisfied) and we observe the values. Then, we
check the observations and a transition of the test purpose
can be passed.

`0, s0 `1, s0

`2, s0`2, AcceptTP

L = 1 ∧R = 1
S := 1

L = 1
S := 2

L = 1 ∧R = 1 ∧ S = 1

Figure 5. The observation product of Figure. 2(b) Figure. 4(b)

For example, Figure 5 presents the observation product
of the specification in Figure 2(b) with the test purpose in
Figure 4(b). The location (`0, s0) has one outgoing transition
since when L and R equal 1 the transition from `0 is urgently
taken, no matter the value of S. Thus, the corresponding
state of the specification (or the system) is non-stable and
consequently variables can not be observed. Since variables
can not be observed, we can not check whether the constraint
L = 1∧R = 1∧S = 1 on the transition leaving s0 holds. The
same principle applies to every location of the observation
product. Note that conformance is tested only when TP has
reached its stable states.

In [17], TP was used to describe non observable be-
haviors. The notion of synchronous product in [17] is no
longer adequate for this framework since TP only describes
observable behaviors.

C. Test Graph Construction

Given a specification A and a test purpose TP , we now
describe how to derive test cases that target the behaviors
of the test purpose while checking for conformance of the
implementation. It consists in two steps:
Step 1. We perform the observation productATP = A⊗ TP
in order to characterize in A the behaviors the test purpose
requires to test.
Step 2. The reachability analysis applied to ATP , returns
a reachability graph. The test graph is obtained from the
reachability graph by transforming every Accept location
to Pass and every Reject location to Inc.

Discussion. The test graph constructed with the above
algorithm has no Fail location. This is a difference with the
construction in [9], [10]. The reason is that the backward
reachability analysis algorithm does not determine the exact
value of the outputs in locations of the test graph. In addition
to the backward analysis that allows to compute location
invariant, a forward reachability analysis can be performed
to have outputs values in locations. However, performing
this analysis before running the testing algorithm can be ex-
pensive. Our testing algorithm presented in Subsection IV-B
performs the forward analysis during the test and it computes
the Fail locations on-the-fly.

VI. CONCLUDING REMARKS

In this work, we have been interested in the automatic
test generation for data-flow systems. In order to model
such systems, we have presented the Variable Driven Timed
Automata model. We have proposed the new timed variable
conformance testing relation (tvco) adapted to the model,
and a test generation method with a selection based on a
test purpose.
As a future work, we intend to consider blocking aspect
in systems. Note that we are currently working on a real
industrial case study: a “flashmanager” application. First
results are promising. Besides, we also intend to consider
assignments of variables with delicate operations (e.g. x :=
y + 3). Such tough operations will increase the expressive
power of VDTA.

ACKNOWLEDGMENT

This work has been supported by the French ANR Testec
Project. We also would like to thank the INRIA Vertecs team
for their comments.

REFERENCES

[1] S. Bornot, J. Sifakis, and S. Tripakis, “Modeling urgency
in timed systems,” in Proc. of COMPOS’97, ser. LNCS.
Springer, 1998, pp. 103–129.

[2] R. Barbuti and L. Tesei, “Timed automata with urgent tran-
sitions,” Acta Inf., vol. 40, no. 5, pp. 317–347, 2004.

[3] E. W. Dijkstra, “Guarded commands, nondeterminacy and
formal derivation of programs,” Commun. ACM, vol. 18,
no. 8, pp. 453–457, 1975.

[4] L. D. Bousquet, F. Ouabdesselam, J.-L. Richier, and
N. Zuanon, “Lutess: A specification-driven testing environ-
ment for synchronous software,” in Proc. ICSE’99, 1999, pp.
267 –276.

[5] B. Marre and A. Arnould, “Test sequences generation from
lustre descriptions: Gatel,” in Proc. of ASE’00. IEEE, 2000,
p. 229.

[6] P. Raymond, X. Nicollin, N. Halbwachs, and D. Waber,
“Automatic testing of reactive systems,” in Proc. of RTSS’98.
IEEE, 1998, pp. 200–209.

[7] B. Seljimi and I. Parissis, “Using clp to automatically generate
test sequences for synchronous programs with numeric inputs
and outputs,” in Proc. of ISSRE’06. IEEE, 2006, pp. 105–
116.

[8] O. Nguena-Timo and A. Rollet, “Conformance testing of
variable driven automata,” in Proc. of WFCS’10. IEEE, 2010,
pp. 241–248.

[9] J. Tretmans, “Test generation with inputs, outputs, and repet-
itive quiescence,” Software-Concepts and Tools, vol. 17, pp.
103–120, 1996.

[10] C. Jard and T. Jéron, “Tgv: theory, principles and algorithms,”
Int. J. Softw. Tools Technol. Transf., vol. 7, no. 4, pp. 297–315,
2005.

[11] R. Cardell-Oliver, “Conformance testing of real-time systems
with timed automata specifications,” Formal Aspects of Com-
puting Journal, vol. 12, no. 5, pp. 350–371, 2000.

[12] J. Springintveld, F. Vaandrager, and P. R. D’Argenio, “Timed
Testing Automata,” Theor. Comput. Sci., no. 254, pp. 225–
257, 2001.

[13] M. Krichen and S. Tripakis, “Black-box conformance testing
for real-time systems,” in Proc. of SPIN, ser. LNCS, vol. 2989.
Springer, 2004, pp. 109–126.

[14] M. Mikucionis, K. G. Larsen, and B. Nielsen, “T-uppaal:
Online model-based testing of real-time systems,” in Proc.
of ASE’04. IEEE, 2004, pp. 396–397.

[15] M. Núñez and I. Rodrı́guez, “Conformance testing relations
for timed systems,” in Proc. of FATES’05, ser. LNCS, vol.
3997. Springer, 2005, pp. 103–117.

[16] M. Bozga, J.-C. Fernandez, L. Ghirvu, S. Graf, J.-P. Krimm,
and L. Mounier, “If: An intermediate representation and
validation environment for timed asynchronous systems,” in
Proc. of FM ’99. Springer, 1999, pp. 307–327.

[17] O. Nguena-Timo, H. Marchand, and A. Rollet, “Automatic
test generation for data-flow reactive systems with time con-
straints,” in Proc. of ICTSS (Short paper) 2010. CRIM-
Canada, 2010, pp. 25–30.

[18] H. B. Mokadem, B. Bérard, P. Bouyer, and F. Laroussinie,
“A new modality for almost everywhere properties in timed
automata,” in Proc. of CONCUR’05, ser. LNCS, vol. 3653,
2005, pp. 110–124.

[19] R. Alur and D. Dill, “A theory of timed automata,” Theor.
Comput. Sci., vol. 126, pp. 183–235, 1994.

[20] J. Bengtsson and W. Yi, “Timed automata: Semantics, algo-
rithm and tools,” in Lectures on Concurrency and Petri Nets,
ser. LNCS, vol. 3098. Springer, 2004, pp. 87–124.

