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Abstract. In this paper, we handle the problem of conformance testing
for data-flow critical systems with time constraints. We present a formal
model (Variable Driven Timed Automata) adapted for such systems in-
spired from timed automata using variables as inputs and outputs, and
clocks. In this model, we consider urgency and the possibility to fire sev-
eral transitions instantaneously. We present a conformance relation for
this model and we propose a test generation method using a test purpose
approach, based on a region graph transformation of the specification.

1 Conformance testing with VDTA
We define the conformance testing relation tvco for Data-flow reactive systems.
such systems are characterized by the fact that they interact with their environ-
ment in a continuous way by means of continuous input and output set of events
(taking their values in (possibly) infinite domains), while obeying some timing
constraints. In this framework, continuous means that the values of the inputs
events can be updated at anytime, while the value of the outputs events can
always be observed. We choose to model our sytems by Variable Driven Timed
Automata (VDTA) [7] that is a variant of timed automata [2] with only urgent
transitions (i.e fired as soon as constraints are true). VDTA rather uses vari-
ables communication mechanism than synchronising actions. We first introduce
the VDTA model and then our conformance relation tvco.

1.1 Variable driven timed automata (VDTA)
Given a set of variables V , each variable Vi ∈ V ranges over a (infinite) domain
Dom(Vi) in N, Q+ or R+. We denote G(V ) the set of variable constraints defined
as boolean combinations of constraints of the form Vi ./ c with Vi ∈ V , c ∈
Dom(Vi) and ./∈ {<,≤,=,≥, >}. For a set V , variable assignment for V is
a tuple Πi∈[1..n]({Vi} × (Dom(Vi) ∪ {⊥})) and we denote by A(V ) the set of
variable assignments for V . Given G ∈ G(V ) and a valuation v ∈ Dom(V ), we
write v |= G when G(v) ≡ true. Given a valuation v = (v1, · · · , vn) of V and
A ∈ A(V ), we define the valuations v[A] as v[A](Vi) = c if (Vi, c) ∈ A and c 6= ⊥,
and v[A](Vi) = vi otherwise. Intuitively, (Vi, c) of A requires to assign c to Vi if c
is a constant from Dom(Vi); otherwise c is equal to ⊥ and no access to Vi should
be done. The identity IdV ∈ A(V ) lets unchanged all the variables of V . We
define the constraint [A]G = {v | v[A] |= G}. ProjVi(G) denotes the constraint
such that (v1, · · · , vi−1, vi+1, · · · , vn) |= ProjVi(G) iff ∃vi ∈ Dom(Vi) such that
(v1, · · · , vn) |= G. We extend it to a subset V ′ of V and we denote it ProjV ′(G).
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Definition 1 (VDTA). A Variable Driven Timed Automaton (VDTA) is a
tuple A = 〈L,X, I,O, l0, G0, ∆A〉, where L is a finite set of locations, l0 ∈ L
is the initial location, G0 ∈ G(I,O) is the initial condition, a constraint with
variables in I∪O and transitions in the transition relation ∆A ⊆ L×G(I,O,X)×
A(O)× 2X × L : 〈l, G,A,X , l′〉 ∈ ∆A is a transition such that
– G ∈ G(I,O,X) is a boolean combination of elements of G(I), G(O) and
G(X) whereas A ∈ A(O) is an assignement on output variables.

– X ∈ 2X is a set of clocks that are reset when triggering the transition.
A is deterministic if G0 is satisfied by at most one valuation (i0, o0); and for all
l ∈ L, for all G,G′ ∈ GA(l) s.t. G 6= G′, G ∩G′ is unsatisfiable.

In the sequel, we write l G,A,X−−−−→ l′ when 〈l, G,A,X , l′〉 ∈ ∆A. A state of a VDTA
as above defined is of the form (`, i, o, x) where i, o and x are valuations of input,
output and clock variables. A valuation v ∈ V al(V ) is simply a function that
returns the values of the variables in V . If A ∈ A(I) is an assignement on input
variables, the valuation i[A] change the value of input variables according to the
assignement. If x is clock valuation, X is a subset of clocks, and δ ∈ R+ a delay,
the valuation x+ δ add δ to each clock value and the valuation x[X ′ ← 0] resets
from x all clocks in X . These notions are standard in the literature.
Definition 2. The semantics of a VDTA A = 〈L,X, I,O, l0, G0, ∆A〉, is a TTS
defined by the tuple [[A]] = 〈S, s0, Σ,→〉 where S = L×Dom(I)×Dom(O)×RX+
is the (infinite) set of states, s0 = (l0, i0, o0, x0) is the initial configuration where
x0 is the clock valuation that maps every clock to 0 and (i0, o0) is the only
solution of G0, Σ = A(I)∪A(O)∪RX+ is the (infinite) set of actions, and → is
the transition relation with the following three types of transitions:

T1 (l, i, o, x) A−→ (l′, i, o[A], x[X ← 0]) if there exists (l, G,A,X , l′) ∈ ∆A such
that (i, o, x) |= G,

T2 (l, i, o, x) A−→ (l, i[A], o, x) with A ∈ A(I) if ∀(l, G,A′,X , l′) ∈ ∆A, (i, o, x) 6|= G.
T3 (l, i, o, x) δ−→ (l, i, o, x + δ) with δ > 0 if for every δ′ < δ, for every symbolic

transition (l, G,X ′, l′) ∈ ∆A, we have (i, o, x+ δ′) 6|= G.

The environment (e.g. the tester) of a system modeled by a VDTA observes all
the variables; it can assign a value by to an input in I by performing a transition
of type T2. Only the system can assign values to outputs in O by performing a
transition of type T1. Transitions in A are urgent and output-update transitions
(T1) are taken prior to input-update (T2) and time-elapsing (T3) transitions.
Notations. We denote −→Ti

for transitions of type Ti, i = 1...3. Out(s) = o
gives access to the output value of [[A]] in state s = (l, i, o, x) ∈ S. We write
s
A−→ when there exists s′ such that s A−→ s′ otherwise we write s 6 A−→. The latter

notation is standard and it extends to sequences in Σ∗. A run is a sequence of
alternating states and actions s = s0a1s1 · · · ansn in S.(Σ.S)∗ such that ∀i ≥
0, si

ai+1−→ si+1. Run(s, [[A]]) denotes the set of runs that can be executed in [[A]]
starting in state s and we let Run([[A]]) = Run(s0, [[A]]). The trace ρ(r) of a run
r = s0a1s1 · · · ansn is given by the sequence ρ(r) = ProjS(r) = a1 · · · an ∈ Σ∗.



Tr([[A]]) = {ρ(r)|r ∈ Run([[A]])} is the set of traces generated by A. We note
CoReach(S) the set of states from which S can be reached in [[A]].
Stable VDTA. Thanks to their priority, several output-update transitions can
be triggered in null delay. A stable state is a state from which no output-update
transition can be fired. Formally a state s of [[A]] is stable whenever for every
A ∈ A(O), s 6 A−→. To leave this state, either the input values need to be updated
or we need to let the time elapse. A stable run is a run that ends in a stable
state. A VDTA A is stable if there is no loop of unstable states in [[A]]. In the
sequel, we shall only consider stable VDTA.
Relation with other models. Timed automata [2] and most of its extensions
(with delayable, eager [3], lazy transitions and variables [1] or UPPAAL model)
use synchronising actions even for passing variable communication values. But
the use of synchronising actions is not adequate for variable-based communica-
tion systems as the models should describe all synchronisations with the envi-
ronment and they become rather unclear and big. To our knowledge urgency
and variable passing mechanism are not accurately studied in timed systems for
model-based testing. Results in [3] show that timed automata and urgent timed
automata (with only clock variables) are equivalent in a language point of view.

1.2 Conformance testing relation
Conformance testing consists in checking that an implementation exhibits an
observable behavior consistent with its specification. The main idea of confor-
mance relation is that all observable behaviours of the implementation have to
be allowed by the specification. Especially:
1. An implementation is not allowed to update a variable in a time (too late

or too early) when it is not allowed by the specification.
2. An implementation is not allowed to omit to change a memory-variable at

the time it is required by the specification.
A general conformance testing activity consists in executing sequences of input
and delays and in checking whether the output of the implementation coincide
with those of the specification. The tioco relation [5] (a timed extension of
ioco [9]) requires to observe all synchronising output actions on sequences (even
of duration equals to zero) the conformance relation for VDTA considers the
values of outputs in states many assignements on outputs (state changing) can
occur in zero time unit and each of these assignements on outputs can or not be
observed depending on the granularities (frequency) of clocks of the tester and
the implementation. We assume the same granularity and thus the outputs are
observed only when the implementation is in stable states. Given a stable state
s, we will thus be interested in the next stable states (or a singleton if the VDTA
is deterministic) the implementation can reach from s after the execution of an
input-update Ai ∈ A(I). Given two stable states s, s′ ∈ S, we write:

– s
Ai=⇒ s′ if there exists a sequence σ ∈ A(O)∗ s.t s Ai−→ s” σ−→ s′, i.e. s′ is

the unique stable state that can be reached from s after updating the input
variables with Ai, only triggering urgent transitions in zero time unit.



– s
δ=⇒ s′ if there is a sequence σ = σ1 · · ·σn ∈ ({IdO} ∪ R+)∗ s.t s σ−→ s′ and

δ =
∑
δi∈ProjO(σ) δi, i.e. s′ is the stable state that can be reached by letting

the time elapse during δ units of time with no observable output update.

The timed transtion system Obs(A) = (S, s0, A(I)∪R+,=⇒) is inductively gen-
erated from [[A]] by starting from s0 (that is supposed to be stable) and by using
the two previous rules. We let ObsRun(A) = Run(Obs(A)) and ObsTr(A) =
Tr(Obs(A)) denote the set of observed runs and observed traces of A. Finally,
we define s Safter α = {s′ | s α=⇒ s′} and A Safter α = s0 Safter α.

We assume that the implementation Imp and the specification A are both mod-
eled by compatible VDTA (i.e. they share the same input and output variables).

Definition 3. Imp conforms to A (Imp tvco A) whenever
∀σ ∈ ObsTr(A),Out(Imp Safter σ) ⊆ Out(A Safter σ)

This relation intends to check if the values of output variables of the implemen-
tation are correct after any sequence made of assignments of input variables or
time elapsing. The tester can observe all output variables of the implementation.
The tester can only update the input variables of the implementation or let the
time elapse. Note that the blocking aspect as in [9] is not considered so far.

2 Reachability analysis
When testing, it is sometimes useful to target some particular states of the
systems. To do so, we shall use a backward reachability analysis algorithm on the
so-called timed abstract graph based on the known region abstraction [2]. We let
Reg(X) be the finite set of clock regions with respect to K, the maximal constant
clocks in A are compared with. [x] denotes the clock region that contains x, and
[[r]] denotes the set of clock valuations whose clock region is equal to r. I Succ(r)
denotes the immediate successor of r. A region can be represented by a diagonal
clock constraint that involves comparisons of two clocks. If r is a region, then Gr
denotes the unique atomic (smallest) clock constraint such that r ⊆ [[Gr]]. Given
a location ` and a region r, GdsA(`, r) = {G | ` G,A,X−−−−→ `′ and [[r]] ⊆ [[G]]} is
the set of constraints whose timing part is satisfied by r.

Definition 4 (Time-abstract graph). The time-abstract graph (TAG) of a
VDTA A as above, is the VDTA RG(A) = 〈Reg(A), X, I,O, (`0, r0), G0, ∆RG〉
where Reg(A) = L × Reg(X) is the set of locations of RG(A), The transition
relation, ∆RG ⊆ Reg(A)× G(I,O,X)×A(O)×Reg(A) is such that:

U1 (`, r) GI∧GO∧Gr,A,X−−−−−−−−−−−→ (`′, r′) iff ∃` G,A,X−−−−→ `′ s.t. [[r]] ⊆ [[GX ]], r′ = r[X ← 0]
U2 (`, r) G′∧Gr′ ,IdO,∅−−−−−−−−−→ (`, r′) with G′ = ¬(

∨
G∈GdsA(`,r) GI∧GO), r′ = I Succ(r)

Our backward reachability algorithm for deterministic VDTA works on RG(A)
instead of [[A]]. It computes predecessors from which we can reach the target
configuration of RG(A). A configuration of RG(A) is of the form (q,G) where
q is a state of RG(A) and G is a constraint of G(I,O). We consider urgent



abstract predecessors (aPredu), time-elapsing abstract predecessor (aPredδ) and
input-update abstract predecessors (aPrede) defined over as follows:

aPredu(q,G) = {(q′, P rojX(G′) ∧ ProjV ar(a)(G) | q′ G
′,a,Y−−−−→U1 q

∧ ProjI∪X(G′)[a] ⊆ ProjI(G)}

aPredδ(q,G) = (q,G) ∪ {(q′, P rojX(G′) ∧G | q′ G
′,IdO,∅−−−−−−→U2 q}

aPrede(q,G) = (q, (¬
∨
G′∈GdsA(q) ProjX(G′)) ∧ ProjI(G))

We consider aPred(Q,G) = aPredu(Q,G)∪aPredδ(Q,G)∪aPrede(Q,G) where
aPredθ(Q,G) =

⋃
q∈Q aPredθ(q,G) for θ ∈ {u, i, δ} and a set of configurations

Q. Finally, CoReacha(Q,G) = µX.(Q,G) ∪ aPred(X).

Proposition 1. Given q = (l, [x]) and G ∈ G(I,O), CoReacha(q,G) is effec-
tively computable.

Q = L × Reg(X) × CM (I,O) where CM (I,O) denotes the set of constraints on
input/outputs the maximal constant occuring in them is lower or equal to M ,
is finite and aPred : 2Q → 2Q is monotonic. Using fixpoint computation results
in [8], we get the termination of the computation of CoReacha. Proposition 2
allows to use CoReacha in RG(A) instead of CoReach in [[A]].

Proposition 2. Let G′ ∈ G(I,O) be a constraint. It holds that
(l, i, o, x) ∈ Coreach(l′, G′ ∧ [x′]) iff ((l, [x]), i, o) ∈ Coreacha((l′, [x′]), G′)

Note that Zones [4] can also be used for the analysis of VDTA provided a so-
phisticate construction to handle the urgency in the model. For practical issues
zones are more suitable but regions are adequate for a theoretical issues.

3 Automatic test generation
In the sequel, specifications are deterministic. The test selection is based on Test
Purposes (TP) that allow to select behaviors to be tested from the specification.

Definition 5. A test purpose TP of a specification A = 〈L,X, I,O, l0, G0, ∆A〉
is a deterministic VDTA 〈S,X∪X ′, I, O, s0, G0, ∆TP 〉 such that: S is a finite set
of locations with a special trap location AcceptTP ∈ S, s0 is the initial location; I,
O and X are respectively the input, output and clock variables of the specification;
the initial condition G0 ∈ G(I,O) is the one of A; X ′ is the set of clocks with
X ′∩X = ∅, the transition relation1 is ∆TP ⊆ S×G(I,O,X,X ′)×IdO×2X′×S.

TP is non intrusive with respect to the specification: it does not reset clocks of
the specification S and does not assign new values to the output variables. Test
purposes are complete, meaning that whatever is the observation of variables or
clocks either a transition is taken or the current location does not change. The
derivation of test cases proceeds in two steps:
Step 1. Product of the specification A and the test purpose TP

1 G ∈ G(I, O, X, X ′) if G is a combination of elements of G(I), G(O), G(X) and G(X ′)



Definition 6 (Synchronous product). Given A = 〈L,X, I,O, l0, G0, ∆A〉 a
specification and a test purpose TP = 〈S,X ′ ∪ X, I,O, s0, G0, ∆TP 〉, the syn-
chronous product of A and TP is the VDTA A×TP = 〈L×S,X∪X ′, I, O, (l0, s0),
G0, ∆A×TP 〉 where ∆A×TP is defined by the following rules (R1, R2, R3):

R1: (l, s) G∧Gs,A,X−−−−−−−→ (l′, s) with Gs =
∧
G′∈GT P (s) ¬G′ iff there is l G,A,X−−−−→ l′

R2: (l, s) Gl∧G′,IdO,X ′

−−−−−−−−−→ (l, s′) with Gl =
∧
G′∈GA(l) ¬G′ iff there is s G,IdO,X ′

−−−−−−→ s′

R3: (l, s) G∧G′,IdO,X∪X ′

−−−−−−−−−−−→ (l, s′) iff there are l G,A,X−−−−→ l′ and s G′,IdO,X ′

−−−−−−−→ s′

An output-update transition can be performed either exclusively in the spec-
ification (R1), or exclusively in the test purpose (R2), or simultaneously in
both systems (R3). We can show that Tr(A) = Tr(A × TP ) and ObsTr(A) =
ObsTr(A× TP ). The set of locations of the form (l, AcceptTP ) is denoted Acc.
Step 2. Symbolic test case selection and execution. Let Pass be the
set of locations of the form (Acc, r) in RG(A×TP ). Locations of RG(ATP ) are
tagged with adequate constraints on the input/output variables when computing
CoReacha(Pass). A symbolic test case is a path from the initial location of
RG(A×TP ) to a location in Pass. The execution of a test case consists, in each
location, to select an input or a delay that satifies the tagged input constraint or
allows to change the region. An implementation Imp passes a test case if and
only if any test run leads to a pass verdict. Similar to [7], we can show that our
algorithm for a specification A and for all test purposes TP is complete w.r.t.
all possible test cases and the relation tvco.
4 Concluding Remarks
We described an adapted conformance relation and a model-based testing frame-
work with test purposes for reactive systems modeled by VDTA. A long version
of this paper is available in [6].
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