ROBUSTNESS TESTING OF COMMUNICATING
SYSTEMS : FRAMEWORK AND CASE STUDY

A. ROLLET, F. SAAD-KHORCHEF

Abstract. A system is considered as robust if it is able to adopt an aab&pbehavior under un-
expected running conditions. Nowadays, robustness ¢eistem important aspect of the validation
process of complex software. The aim of such testing is totleagdystem into unexpected condi-
tions and to check the behavior. In this article, we propoaraework and a tool for robustness
test cases generation. Our framework consists of two maineghabhe first one constructs an
increased specificatioby integrating hazards in the nominal specification model. flite of the
increased specification is to specify the acceptable behavipresence of hazards. This phase
uses a robustness relation permitting to check robustness i T (Implementation Under Test)
compared to the increased specification. The second phasdgs@ specific method to generate
robustness test cases from the increased specificationrabdstness test purpose. Our tool per-
mits to increase the specification, and to generate autortiatiohustness test cases (in TTNC-3
format) from system specifications written in SDL. We alseegome experimental results on the
SSL handshake protocol.

Keywords: Robustness testing, Formal testing, Robustness rela@if,3, RTCG Tool, Com-
municating systems, SSL protocol

1. Introduction

In recent software or hardware development, formal vabdas highly needed
in order to reduce development cost and to avoid catastators. The com-
plexity of present systems becomes higher and higher. Thproper valida-
tion is highly needed in order to increase the quality ancctrdidence of the
system. Testing is an important part of the validation pssaensisting in a
direct execution of the system implementation (IUT lfmplementation Under
Tes) using a tester. Resulting outputs are observed and coohpauthe ex-
pected behavior of the system or component. Testing maysfoouifferent
topics such as conformance, reliability, interoperap#ihd robustness. Exist-
ing generation techniques usually deal with conformanstintg : the principle
is to use a formal specification of the system in order to geeeautomatically

LaBRI Research Report

2 A. Rollet, F. Saad-Khorchef

sequences. These sequences are applied on the IUT usiegtire and results
are observed and compared with the specification.

In this article, we deal with robustness testing of commaiting systems
(e.g. communicating protocols). Although a precise definibf robustness is
somewhat elusive, functionally the meaning is clear ; "thiéitg of a system to
function correctly in presence of faults or stressful eswinental conditions”
[IEEE std 610.12-199@lescribed in [11]. The term "hazards" will be used to
gather faults and stressful conditions. Robustness is poriant aspect of a
software : many bugs are caused by a situation not expectibe ispecifica-
tion : indeed system specifications usually do not take daoetaunexpected
conditions. Note that it is never possible to have a comglpéeification of the
system directly, but it is possible to specify a behavioirfg@ specific hazard
when this latter is identified. Then the major problem of isthess testing is
to find a way to lead the system into unexpected situations.

In the hardware domain robustness testing has been welbd{umbntrary to
the software domain in which less contributions are avilap to our knowl-
edge. One contribution of our work is to provide a framewogknpitting to
take into account robustness aspects. This aim is achigveddgrating rep-
resentable hazards in the nominal specification of the sysfEhe obtained
model is called théncreased specificatiorBecause of its possibly important
size, we propose a specific method to generate robustnéssages using a
test purpose. We propose a generation method inspired grooence test-
ing technics.

We present the RTCG tool which implements the previous aguroFirstly,
RTCG provides some help to obtain an increased specificafiben RTCG
permits to extract robustness test cases (in the TTCN-3dbdascribed in
[19]) based on a given robustness test purpose and on tleased specifica-
tion (written in the SDL format specified in [9]).

The article is organized as follows. We give a state of thénasection 2.
Section 3 recalls the models used in our study. Section £pte®ur frame-
work for robustness testing. Section 5 describes the RTOGatw provides a
case study on the SSL handshake protocol and we finally cdedtusection
6.

2. Related work

Many research have been done in the domain of protocol tesfihe majority

of these works deals with conformance testing, normalingd]i An overview

may be found in [10]. In this section, we focus particularly mbustness
testing works.

LaBRI Research Report

Robustness Testing of Communicating Systems : framework amdstasy 3

In [4], authors proposes a study on robustness testingsiiogwn hazard
classification and some possible directions to handle tobl@m. Authors
define the robustness notion as "the ability of a system totioim acceptably
in the presence of faults or stressful environmental camst and provide a
state of the contributions in this domain.

In [14], authors present the PROTOS project in which theycidies the
system with a high level of abstraction and then to simulbteamal inputs in
the specification. It is mainly focused on the detection dhetabilities of a
network software system. In this case, robustness is ct=drto the notion of
network security.

Some approaches are based on software fault injection :

The FIAT tool exposed in [2] modifies a processus binary imagaemory.
In [12], authors propose to apply randomly interruptionshie IUT, whereas
the BALLISTA tool works on data unexpected modificationsisTidea is ex-
plained in []. These approaches are based on integratioauttsfdirectly in
the software implementation of the system, but do not canetahterpretation
of different behaviors.

Another approach consists in using model-based test gererdhe main
difficulty of such technics is to describe the hazards in teeeh Many works
consider such approach : see for example [16, 5, 13].

In [16], authors propose a first approach based on a refuaphgrsed to
model hazards. Contrary to our method, it only deals witlpputune inputs,
but not with invalid inputs. Moreover, our approach distiigihes between
inputs and outputs in the model.

In [5], authors use a formal fault model in order to build a temt" speci-
fication. They use a fault model in order to add "fault" tréinsis in the spec-
ification. They define a robustness relation based on a nobsstproperty.
Contrary to our approach, they do not permit to integratexpeeted inputs in
the model.

The results in [13] show how to use a degraded specificationagel the
behavior in case of critical situation, and integrate theahnds directly in the
test sequences. A major difference between works describid®] and this
work is in the concept of robustness : we consider here thmistoess implies
conformance; the method described in [13] does not.

3. Preliminaries

In this section, we introduce the models and notations usezlghout the
article.

LaBRI Research Report

4 A. Rollet, F. Saad-Khorchef

3.1. Models of specification

Usually, communicating softwares are specified in a degétltnguage (SDL,
LOTOS, UML, etc...). Such formalisms are based on Labelleh3ition Sys-
tem (LTS) semantics. LTS distinguishes internal and visaéottions. But in
black-box testing, a distinction is often made between tsigund outputs. In
this article we use the IOLTS model (Input Output Labelledniition Sys-
tem).

Definition 1 (IOLTS).

AnIOLTS (see[17]) is a quadrupletS = (Q, 2, —, go) such that :
e () is a nonempty finite set of states,is the initial state,
e Y is the alphabet of actions,
e —~C () x X x Q is the transition relation.

The alphabek is partitioned into three sets = Yo UX; U I, whereXp is the
output alphabet (an output is denoted!by; 3:; is the input alphabet (an input
is denoted by’a) and! is the alphabet of internal actions (an internal action is
denoted byr). Usual notations are:

Notation Meaning
a —a
q— 34’ |g— ¢
H1--Hn g Pl r2 K ’
g — ¢ [390--qnlg9=G90 =g = ... —qn =g
[’ ’ T1---Tn
9=q g=q'orqg —"gq
@ T = T
=4 391,9219=q1 = g2 = ¢

@ a
9 = 4q 3‘10-~~qn|q:<10:;q1:g...a:gqn:q'
qaftero {¢' € Q|q > q'};byextensionS after o =qo after o

Trace(q) {0 € =* | ¢ 3}, by extensionT'race(S) = Trace(qo)
Out(q) {a€Xo|q :a>}
Out(S, o) Out(S after o)
ref(q) {a € i]a £)}

The observable behavior is described-by q after o is the set of reachable
states fromy by . Trace(q) is the set of observable sequences starting from
q. Out(q) is the set of all possible outputs @f ref(q) is the set of inputs not
specified in the state. >* is the language associated4o

Example 3.1. In Figure.1 (right) :

Y = {?a,?b, !z, ly} withX; = {?a,?0} andXp = {lz,ly},
Trace(q) = {?a,?alz,?a.7b,7a.7b.ly, ...},

foroc =7a.7b, qo after o = g3,

Out(qo) = Out(gz) = 0, Out(q1) = {!z} andOut(qz) = {ly},

LaBRI Research Report

Robustness Testing of Communicating Systems : framework amdstasy 5

PROCESS
STATE qo;

I NPUT a;
NEXTSTATE g1 ;
STATE 1;

I NPUT b;
NEXTSTATE g3
QUTPUT z;
NEXTSTATE g3
STATE g3;
OUTPUT y;
NEXTSTATE q0;
END PRCCESS;

Figure 1: From SDL specification to IOLTS model

o foro = ?a.7b, Out(S, o)

e ref(qo) = {7}, Tef(CIl;
{?a, b}

{'y},
= {%a} andref(q2) = ref(qs) =

An IOLTS S is calleddeterministidf no state accepts more than one suc-
cessor with an observable action. It is call@oservablef no transition is
labelled byr. S is calledinput-completef each state accepts all inputs of the
alphabet. In Figure 15 is deterministic, observable but not input-complete.

3.2. Hazards

In robustness testing, leazard denotes any event not expected in the nomi-
nal specification of the system. They may be internal, eglesnbeyond the
system boundaries (the different notions are explained]indr classified ac-
cording to tester controllability or/and formal represdility (as explained in
[15]). In this article, we deal with controllable and repratable hazards re-
lated to communicating software domain. Controllabilitgans the ability of
the tester to control the presence of hazards (e.g. errer@aunexpected in-
puts), and representability means that it is possible toesgmt the hazard in
the IOLTS model (e.g. inputs or outputs). More precisely,identify three
kinds of controllable and representable hazards :

3.2.1. Invalid Inputs

In a hostile environment, exchanged messages may be idfegteccidental or
intentional faults. Formally, we consider as anvalid input' any unspecified
input. i.e,?a’ ¢ ¥;. InFigure.l : let’a’ be a random mutation @f. 7a’ is
considered as an invalid input.

LaBRI Research Report

6 A. Rollet, F. Saad-Khorchef

3.2.2. Inopportune Inputs

In a hostile environment, the communicating software gmtitly receive de-
layed or untidy messages. Formalljndpportune inputscorrespond to ac-
tions which exist in the alphabet of the specification, butexpected in the
given state.ref(q) (see standard notations 60 LT'S) denotes the inoppor-
tune inputs in a state € . In stateq, of Figure.l :7b is considered as an
inopportune input.

3.2.3. Unexpected outputs

Taking into account the hazards can lead the system, in sasescto send
some unexpected outputs. Sometimes, such outputs may belemd as ac-
ceptable. For example, restarting a session, resettinpsing a connection
may be acceptable behaviors. As a consequence, all ackeptaputs must
be added to the specification (e.g. restarting or closingection messages).
Formally, !z’ is an unexpected outputlit’ ¢ Yporla’ € ¥p A 2/ ¢
Out(q).

4. Proposed approach

In this section, we outline our formal approach to generataistness test
cases. Two phases are given : firstly we construct an inatesmecification,
and secondly we generate robustness test cases. Notedhmtrttinal specifi-
cation describes the expected behavior in nominal comdititn the following,
it is modelled by an IOLTS denotetl

4.1. First phase : Increase of specification
This phase consists in integrating the representable tagiawalid inputs, in-

opportune inputs and acceptable outputs) in the model afidh&nal specifi-
cation. The obtained model is callettreased specification

LaBRI Research Report

Robustness Testing of Communicating Systems : framework amdstasy 7

‘ Inopportune inputs computin¢

‘ SO HG®IIG H Suspension traces and determiniz#t

Increased Specification
Sa

Figure 2: Obtaining the increased specification

The aim of thancreased specificatiois to formally describe the acceptable
behaviors in presence of controllable and representakbrtis. Robustness of
an implementation is evaluated with respect to the inckapecification. The
different steps in order to obtain the increased specifinatre summarized in
Figure 2, and are detailed just below.

4.1.1. Quiescence

In practice, the tester observes outputs of a system, botthésabsence of
events (quiescence). Several kinds of quiescence may happestate; € Q :
e outputlock quiescence if the system is blocked on standby input of the
environment Qut(q) = 0),
e deadlock quiescence if there is no more evolution of the systeém ¢
Slg),
e livelock quiescence if = ¢.

To model valid quiescence ihOLT'S model, we use the suspension au-
tomaton defined below :

Definition 2 (Suspension automatanYhe suspension automaton (4&8])
associated t& = (Q, %, —, qo) is an IOLTSS® = (Q, ¥, —, qo) such that:

¥ =Y U {§} with§ € £. —; is obtained from— by adding loops; 2y
for all quiescence states.

Thus, quiescence is seen as an observable output actiorradtice, the
tester identifies such event with a timeout.

Example 4.1. In Figure 3.(b),qo is an outputlock quiescent state agdis a
deadlock quiescent state.

LaBRI Research Report

8 A. Rollet, F. Saad-Khorchef

The first step of our approach consists in obtaining the s\spe automa-
ton S° associated t&.

4.1.2. Acceptable behavior

In order to check the robustness of the system, the acceptaeblavior in the
presence of hazards has to be given by the system desigriegsacteptable
behavior is supposed modelled by a specific graph cafleth-graph

Let S = (@, 0,2, —5) @a nominal specification. A meta-gragh associ-
ated toS, is a graph such that each statetbtorresponds to a set of states of
S having the same behaviors in the presence of the same hazards

Definition 3. A meta-graph associated s a triplet G = (V, E, L) such
as:
e V =V,UV,,is aset of states/,,, C 29 is called the set ofneta-states
andV, is called the set oflegraded statesich thatV; N Q = 0.
e [is an alphabet of actions,
e FCV x L xVisasetof edges.

In the following, we suppose that invalid inputs and acdelgt@utputs are
modelled by one or more meta-graph{$}~ (Hazards Grapl and inoppor-
tune inputs are represented by meta-graph{&j (Inopportune Input Graph
Using two different types of meta-graph permits to firstitegrate invalid in-
puts, provided by the testers, in the specification modeknTithe new input
set (invalid inputs and valid inputs) is used to compute tlepportune inputs.

4.1.3. Integrating hazards

This step consists in the composition of the nominal spextifio S and a haz-
ard graphHG. The composition between an IOLTS and a meta-graph is de-
fined by :

Definition 4 (CompositionfOLT S & G).
LetS = (Q,q, 2, —g) be anIOLTS and G = (V, E, L) a meta-graph
associated t&6. The composition of and G, notedS @ G, is theIOLTS
(Q9%C, q5%¢, 5999, - 506) defined by:Q%%¢ = Q U Vi, ¢5°¢ = qo,
¥99C¢ — »1 U L and the following rules :
1.g5¢q = qSsecd
v,a,v") € Eandv,v' € Vy = v Sgga .
v,a,v") € E,v €V, andv' € Vy <= Yqcu,q¢Ssac .
YeE,veVyandv' €V, < Vqgev,vSseqq.
)

abrwn
e~

LaBRI Research Report

Robustness Testing of Communicating Systems : framework amdstasy 9

6. (v,a,v) € Eandv €V, <= Yq€v,q¢>sac ¢

This composition consists in adding Bthe set of transitions and states of
meta-graph G. Actually, for a state; of S member of a meta-state (i.e. a set
of statesp of HG, we add inS the set of transitions and/or states starting from
V.

Example 4.2. In Figure 3.(c), the compositions’ @& HG is obtained as fol-
lows : , '
Rule 1adds toS° @ HG the whole of transitions a$? (q0 — ¢1, (1 — ¢2,

2 ly 16 PR
@1 — q3, 93 — Q4. Q0 — 0, @2 — q2);

Rule 2adds toS? @ HG the transitiond, SN dy;
Rule 3adds toS‘S ® HG the followmg tran3|t|ons40 ta, dz ¢ ELIN da,

? ?a oz oz ¢ \z
g2 o, da, g3 — da, g0 — d1, @1 — d1, g2 — d1,Q3 = d1)

Rule 4adds toS° @ HG the following transitionsd e, qo, do Za, q);
Rule 6adds toS° @ HG the following transitions ¢ v, qo, q1 SN q1,

20’ 20’
q2 — q2,43 — C]3)
Rule 5is not used because there are no transitions between the stedts.

After the integration of invalid inputs and acceptable aiispn S°, we com-
pute the inopportune inputs (using thef set of each set) dfG @ S°. It has
to be done in a different step, since the increase of the biihia necessary
before the inopportune inputs integration. Then, systesigders give the re-
quired acceptable behavior in this case. The given desmmipg modelled by
I1IG (Figure 3 (d)).

We reuse the definition 4 in order to integrate inopportupets in G @ S°.
The obtained model i# G @& S° @ I1G (Figure 3 (€)).

4.1.4. Determinization

As robustness testing is based on the observation of visédlaviors, test syn-
thesis requires a determinization of the specifications Tintans that two se-
guences of inputs always give the same sequence of outpurtealy,

Definition 5 (Determinization of OLT'S). LetS = (Q%,¢5, %%, —5) be an
IOLTS. The deterministitO LTS obtained fromS is denotedA(.S) such as :
Traces(S) = Traces(A(S)).

A(S) = (Q5°, ¢S after e, 52) - 5 (4)) is defined as follow :

o Q5% C29° e, some states dk(S) are the parts of)S,

LaBRI Research Report

10 A. Rollet, F. Saad-Khorchef

76’

490-91,92, 93

(a).HG (b).59

2a ?a, ?b
-)
o,
?a’, 76,76 72 7a’,7b
(d).11G
?a’, 7b

7,18, 7a, 7b 70/, 7a 7o', ?a, 7b

(e). 8% @ HG @ 1IG

?a’,7b,18

Figure 3: Construction of the increased specification

e The initial state ofA(S) is the state set of reachable fromgs with
internal actions. FormallquA(S) = {q5 after ¢},

o 1205 = ¥15 js the set of observable actions,

LaBRI Research Report

Robustness Testing of Communicating Systems : framework amdstasy 11

o PLa) P < PP e 20° a e A andP’ = P after a.

The deterministic model obtained from the suspension aatmmassoci-
ated toHG @ S° @ IIG is called the increased specification (Figure 3.(f)),
and denoted 4. It will be used as a base for the generation of robustness tes
cases.

4.1.5. Robustness relation

The IUT is a black box interacting with a tester. We apply tisst hypothesis
generally used in testing research, assuming that :

e IUT is modelled by an IOLTSUT = (Q'VT,2IVT — 17, qo'V7)
such that :
5,54 € 2,707 andx, 54 € U7

e IUT isinput-completeon the alphabefs4.

We also assume thdlJ'T" conforms toS with respect to the conformance re-
lationioco (described in [17]). It is justified by the fact that, in our tkpwe
consider that robustness of a system implies its conformanc

Let IUT be an implementation of a specificatiéhand S 4 its increased
specification. The robustness relatirobustis defined by :

IUT Robust Sy =4.f Vo € Trace(SA)\Trace(Sé)
— Out(IUT®,0) C Out(Sy4,0).

Only the increased behaviors (added) are useful for robasttesting because
the nominal behaviors (including valid quiescence) alygaabsed the confor-
mance testing.

Example 4.3. Let us consider Figure 4.

e JUT; Robust S4 because all traces iiUT; are included inS 4
e not(/UT, Robust S,) becausd UT; after 7a’ senddy but S, after 7a’
senddz’.

LaBRI Research Report

12 A. Rollet, F. Saad-Khorchef

IUT

Figure 4: Robustness relation

4.2. Second phase : Robustness test generation

In this section we present a robustness test case genetatiomque. Using
test purpose permits to reduce the test selection domairtcandncentrate
the efforts in order to check some critical functionalitidhis phase may be
summarized as follows :

1. Choice of robustness test purpose,

2. Synchronization between the specification and the tegtoyge in order
to deduce the behaviors which satisfies the test purpose,

3. Constructing theobustness test grapgfhom the mirror image (i.e. inputs
become outputs and outputs become inputs) osyfmehronous product

4. Constructing theeduced robustness test grapi deleting any trace re-
jected by the used robustness test purpose,

5. Extracting theobustness test cases

The general view of this technique is given in Figure 5, andtaited example

is given in Figure 6.
Increased Robustness
Specification @ Test Purpose
Sa i RTP

Synchronous produc$ 4 ® RT P

()
[Robustness Test GraphRT' G, RRTG j
()

Selection

Robustness Test case
RTC

Figure 5: Robustness test cases generation

LaBRI Research Report

Robustness Testing of Communicating Systems : framework amdstasy 13

4.2.1. Robustness test purpose

A robustness test purpos&1' P) permits to select a part of the total specifi-
cation in order to focus on a precise functionality (e.g,usithess property).
Formally,

Definition 6 (RTP). A robustness test purpose is a deterministic and observ-
able IOLTSRTP = (QFTP 2RTP _prp, ¢ffTF) with two sets of trap
states Accept" and "Reject"”, with the same alphabet as the increased spec-
ification (i.e. 2ETFP C ©.94) |

Example 4.4. The RTP given in Figure) aims at seeking any trace of the
increased specification containing a reception of the iidvidput ?«’ followed
by the acceptable outplt’ without considering the transitions labelled by
or ?b.

The label 'bther" is used to describe all actions of the alphabét ®#7P
which are not specified in the current state.

4.2.2. The synchronous productSy @ RT P

In order to obtain a robustness test sequence, we have tosioudltaneously
the RT' P and S4 until we find an adequate sequence satisfyRiGP. The
synchronous product is defined as follows :

Definition 7 (Synchronous product)LetS4 = (QSA,(]E?A,ESA,*)SA) be an
IOLTS of the increased specification, aRf P = (QTTF ¢l TF SETP — prp)
a robustness test purpose wi’” = 354 and with state setsAccept” and
"Reject”. The synchronous product 6f, and RT P, denoted bys4 @ RT P,

is a deterministid OLTS Sy ® RTP = (Q%A®RTP (Sa@RTP $S4@RTP
—s,orrp) defined by :

Logo FTT = (5", ag™""),

* 40
2. QORI — {(qy,q2) |1 € Q%4,q2 € QFTT},
3. ZSA®RTP C ZSA UERTP — ESA,
4.

—s.errp IS defined by :
(¢.4') € QSA@RTP- q i’SA AN i>RTP @<= (¢,9) i>SA®RTP
(q1,41)-

4.2.3. Robustness test graphs

A robustness test graph (RTG) describes all tests correapgpio a given RTP.
Formally, a RTG is a deterministic IOLTETG = (QFT¢, uFTC¢ —prg,

LaBRI Research Report

14 A. Rollet, F. Saad-Khorchef

qf*T), composed by three subsets of sta®CEPT, REJECT and IN-
CONC such that :
° ERTG _ EORTGUE[RTG with E[RTG _ EOSA®RTP andEoRTG _
¥ 54@RTP (mirror image);
o QFTG = ACCEPT UREJECT UINCONC with
1. ACCEPT = {q € Q%®FTP | 35 ¢ RS54@RTP+ ¢ 7, Accept}
ACCEPT consists of states from which the st#eceptis reach-
able,
2. INCONC = {¢' € Q4®ETF | 3¢ € ACCEPT, ¢ ¢ ACCEPT,a €
Lo IA@RTE 0 2, /1. i.e. INCONC is composed of states not in
ACCEPT, but which are direct successors of stateAGCEPT by
an outputinS, ® RTP,
3. REJECT = {q € Q%®FTP | ¢ ¢ ACCEPT A ¢ ¢ INCONC}.
o if goSA®ETP ¢ ACCEPT thengy*T¢ = ¢pS4®ETP otherwise
QFTC is empty.

Since RTG is often voluminous, it is necessary to reduce itdncentrat-
ing only on the behaviors accepted by RTP. Then we keep in Ril¢the
paths leading to an ACCEPT or INCONC states. The obtaineceimsdalled
reduced robustness test graph, and denoted by RRTG.

Example 4.5. Robustness test gragbil’G (Figure 6(d)) describes the mirror
image of the synchronous product (Figuré®). RT'G consists of three states :
INCONC = {(q2,Reject)}, REJECT = {(d,Reject), (qi, Reject),
(qo, Reject)} and ACCEPT = { (g0, ¢), (d1, 1), (q1,40), (0, Accept) }. Re-
duced robustness test graph RRTG (Figuré:).consists of the states and
transitions ofACCEPT andNCONC.

4.2.4. Robustness test case

A robustness test case (RTC) is an elementary test corrdsppio a particular
robustness test purpose. It describes the interactiomgeebata tester and an
implementation. It only contains observable actions.

Definition 8. A robustness test case RTC is BALTS RTC = (QFT¢,
YETC s pre, qFTC) with three sets of trap stateRass, Fail and Inconc
characterizing verdicts. Its alphabet37¢ = SETCYTETC with SETC C
¥4 (RTC emits only inputs o 4) and 2F7¢ C VT (RTC foresees any
output or quiescence of IUT). We make several structuralmgsions on test
cases :
e statesFail andlnconc are directly reachable by inputs. Formally,
Y(q,a,¢) €—rre (g € InconcU Fail = a € ;779

LaBRI Research Report

Robustness Testing of Communicating Systems : framework amdstagy 15

?a,?b,?a’, 70" 7/ ,15,7b

76/ ,15, ?a, ?7b 75, 70, 7a

Accept
(a). Sa (b). RTP

W e

90, 9())L(qo, Reject)
?a

1
7, 7a (P \/ ?a,?a’, 70/
’
q1- 9 B

7 ?a
0]4{41 q Q

(qQ, Reject) (dl, Rejcct) [qo, Accepf]

_~

(c).Sa ® RTP

'

b -
" {qo, Reject]

REJECT
dy, q]
ta, la’, 1’
REJECT o 20!
j A ?
(12 Reject) (L Beject] [t0Accery
Inconc .
INCONC REJECT ACCEPT nconc Accept
(e). RRTG
(d). RTG /
2
A2 -2
Mmher ?other

(f). RTC

Figure 6: Robustness test cases generation

e from each state a verdict must be reachable. Formally,
Vg € QETC 3o € RRTC* 3¢/ € PassU Fail U Inconc, q % ¢/,

e RTC is controllable : no choice is allowed between two owgprtan
input and output. Formally,

Vg € QFTa € ©o¢ ¢ Lpre = Vb # a,q ?‘)RTC,

LaBRI Research Report

16 A. Rollet, F. Saad-Khorchef

e a test case is input complete in all states where an input &sipte.
Formally,

b
Vg € QFTC(3a € £77Y ¢ Lpre = Wb € B9 ¢ Bpre).

4.2.5. Selection of robustness test cases

In order to choose the traces which are considered in thestobss relation
Robust, we use an algorithm based on coloration principle. Two rsoftistin-
guish the transitions of the nominal specification (firsbcphnd those added
during the construction of the increased specificationgisécolor). Then we
choose test cases favoring the second color (focusing @rdi&z and we avoid
any nominal trace (colored with the first color).

Algorithm 1 permits the selection of a random robustnessdase. For all
visited states in RRTG, we choose only one sending or alptenes until the
Acceptstate is reached. Finally, we reject any RTC colored onli e same
color as the nominal specification.

Algorithm 1 Computing of RTC

Require: Reduced Robustness Test GrapRT' G
Ensure: Robustness Test Ca$&l'C

repeat
QRTC

= qo;
for all not visited state; in Q7 do
if ¢ is a reception statthen
Add all started reception frompto RT'C;
Add all successor states ghy reception taQ *7'¢;

other

Add the transitiony ———— Fail to RTC;
end if
if ¢ is sending/reception statieen
Random choice between sending or reception;
if sendingthen
Choice a random sending;
Add the successor state @by the selected sending
else
Add all started reception fromto RT'C';
Add all successor states gy reception taQ #7'¢;

other

Add the transitiony ——— Fail to RT'C,
end if
end if
end for
until the RT'C' and the nominal specification colors are different.

@RTC.

Example 4.6. Robustness test case (RTC) given in Figuf¢ Bis derived from
RRTG (Figure G¢)). RTC consists of two output states (states 2 and 4), and
three reception states (states 1, 3 and 5).

LaBRI Research Report

Robustness Testing of Communicating Systems : framework amdstasy 17

5. Implementation and case study

5.1. RTCG tool

RTCG (Robustness Test Cases Generpisra tool automating the previous
approach. It provides two functionalities :

The first one permits to build the increased specificatiorystesns written
in SDL or directly modelled asOLT'S. In order to achieve this ainRT'CG
implements the composition method given in paragraph 4lic@mputes the
composition of the nominal specificatighwith a meta-grapt{ G. Then, it
computes inopportune inputs from the previous product preghoses a default
(loops labeled with inopportune inputs in all states) iasesor a customized
increase. It also computes the suspension traces and #rendl@zation.

The second one allows to generate robustness test casesdmea&obust-
ness test purpose. More precisely, the user defines $ptAnd RT P files.
RTCG checks theRT P (observability, determinism and accept states). Then,
RTCG computes the synchronous product, the robustness tedt §rajss)
and the reduced robustness test graph (RRTG). Finallyatteh robustness
test case (RTC).

In the currentRT'C'G version, robustness test purposes and specification
files are written in the SDL (specified in [9]) or DOT (see [1driat and
robustness test cases are written using the TTCN-3 (naretsin [7]), XML
or DOT formats.

5.1.1. Case study : SSL protocol

In [6], authors describe SSL as follows : "The SSL protocaldsigned to pro-
vide privacy between two communicating applications (ardliand a server).
Moreover, the protocol is designed to authenticate theeseand optionally
the client". SSL is standardized by the IETF (Internet Eegiimg Task Force).
The full specification of the SSL protocol is written in the ®B246. The SSL
Protocol contains four under-protocoldandshake protocpESL Changes Ci-
pher Spec protocoISSL Alert protocohnd SSL Record protocolThe Hand-
shake protocol is composed of two phases. First step dethisivei selection of
a cipher, the exchange of a master key and the authentiadtiba server. Sec-
ond step handles client authentication if requested anshfesi the handshak-
ing. After the handshake stage is complete, the data tnahsfeveen client
and server begins. All messages during handshaking andhadteent over the
SSL Record protocol Layer.

Here, we deal only with the specification of the handshak&opod which
describes three scenarios of communication as shown irefigur

LaBRI Research Report

18

A. Rollet, F. Saad-Khorchef

PROCESS SSL- Hanshake (1,1);
START NEXTSTATE 1;
STATE 1,
QUTPUT dient-Hello(no-sid);
NEXTSTATE 2;
QUTPUT dient-Hello(sid);
NEXTSTATE 3;
STATE 2;
I NPUT No-Certificate-Error;
NEXTSTATE 4;
I NPUT ?Server-Hello(No-Hit);
NEXTSTATE 5;
STATE 3;
I NPUT Server-Hello(No-Hit);
NEXTSTATE 5;
I NPUT Server-Hello(Hit);
NEXTSTATE 6;
STATE 4;
I NPUT Cl ose- Connecti on;
NEXTSTATE 1;
STATE 5;
QUTPUT Bad- Certificate-Error;
NEXTSATE 7;
QUTPUT No- Ci pher-Error;
NEXTSTATE 7,
QUTPUT Unsupported-Certificate-
Type-FError;
NEXTSTATE 7;
QUTPUT d i ent - Mast er - Key;
NEXTSTATE 6;
STATE 6;
QUTPUT d i ent-Fini shed;
NEXTSTATE 8;
I NPUT Server- Verify;
NEXTSTATE 9;
STATE 7;
QUTPUT C ose- Connecti on;
NEXTSTATE 1;
STATE 8;
I NPUT Server-Verify;
NEXTSTATE 10;
STATE 9;
QUTPUT d i ent - Fi ni shed;
NEXTSTATE 10;
I NPUT Server - Fi ni shed;
NEXTSTATE 11,

I NPUT Server - Request-Certificate;

NEXTSTATE 12;

STATE 10;

I NPUT Ser ver - Fi ni shed;
NEXTSTATE 13;

I NPUT Server - Request - Certificate;

NEXTSTATE 14;

STATE 11;

QUTPUT d i ent - Fi ni shed;
NEXTSTATE 14;

STATE 12;

QUTPUT No-Certificate-Error;
NEXTSTATE 15;

QUTPUT dient-Finished;

NEXTSTATE 13;

QUTPUT Cient-Certificate;
NEXTSTATE 17;
STATE 13;

QUTPUT No-Certificate-Error;
NEXTSTATE 16;

QUTPUT Cient-Certificate;
NEXTSTATE 18;
STATE 14;

| NPUT SSL- Dat a- Record;
NEXTSTATE 14;

QUTPUT SSL- Dat a- Recor d;
NEXTSTATE 14;

I NPUT Cl ose- Connecti on;
NEXTSTATE 1;

QUTPUT O ose- Connecti on;
NEXTSTATE 1;
STATE 15;

QUTPUT C i ent - Fi ni shed,
NEXTSTATE 16;

I NPUT Ser ver - Fi ni shed,
NEXTSTATE 11;

I NPUT Cl ose- Connecti on;
NEXTSTATE 1,
STATE 16;

I NPUT Ser ver - Fi ni shed;
NEXTSTATE 14;

I NPUT O ose- Connecti on;
NEXTSTATE 1,
STATE 17;

I NPUT Ser ver - Fi ni shed;
NEXTSTATE 11;

I NPUT Bad- Certificate-Error;
NEXTSTATE 19;

I NPUT Unsupported-Certificate-

Type-Error;

NEXTSTATE 19;

QUTPUT C i ent - Fi ni shed,
NEXTSTATE 18;

STATE 18;

I NPUT Bad-Certificate-Error;
NEXTSTATE 20;

I NPUT Unsupported-Certificate-

Type-FError;

NEXTSTATE 20;

I NPUT Ser ver - Fi ni shed;
NEXTSTATE 14;

STATE 19;

QUTPUT d i ent - Fi ni shed;
NEXTSTATE 20;

I NPUT Cl ose- Connecti on;
NEXTSTATE 1;

I NPUT Ser ver - Fi ni shed,
NEXTSTATE 11;

STATE 20;

I NPUT Ser ver - Fi ni shed,
NEXTSTATE 14;

I NPUT Cl ose- Connecti on;
NEXTSTATE 1,

END PROCESS SSL- Hanshake;

Figure 7: SDL specification of the SSL Handshake protocol

LaBRI Research Report

Robustness Testing of Communicating Systems : framework amdstasy 19

The standard specification (RFC2246) defines the followngre :

e No-Cipher-Error. This error is returned by the client to the server when
it can not find a cipher or key size. This error is not recovierab

¢ No-Certificate-Error When aRequest-Certificatenessage is sent, this
error may be returned if the client has no certificate to regth. This
error is recoverable (for client authentication only).

e Bad-Certificate-Error This error is returned when a certificate is deemed
bad by the receiving party. Bad means that either the sigaatithe
certificate was bad or that the values in the certificate weappropriate
(e.g. a name in the certificate did not match the expected nafins
error is recoverable (for client authentication only).

e Unsupported-Certificat-Type-Errof his error is returned when a client/
server receives a certificate type that it can not supporis &tror is
recoverable (for client authentication only).

In [3], authors show that two error messages have been ahiittéhe ref-
erence document. The first, &msupported-Authentication-Type-Errares-
sage, is a mistake which would prevent the protocol usirfgrdint methods of
authentication of a client. The second, @nexpected-Message-Erravould
allow an implementation to close the connection cleanhynifraplementation
sent an out-off-order message.

In order to verify the robustness of the Handshake proteeeincrease the
nominal specification by integrating hazardisvélid inputsandinopportune
inputy. Besides, to model the previous hazards, we consider {f@ving
hypothesis :

¢ if the implementation receives an invalid input then it ele$he connec-
tion
e if it receives an inopportune input then it loops in the satages

Formally, the previous hypothesis may be modelled by medghgs. The
IOLTS of the increased specification is obtained from the Specification
given in figure 7 and the previous robustness hypothesis.cibinposed of 20
states and 176 transitions.

5.2. Robustness test generation with RTCG tool

In order to generate robustness test cases, we have defiredofrebust-
ness test purposes aiming at checking the behavior of areimmgitation in
presence of two invalid input®Jpexpected-Message-ErrandUnsupported-

Authentification-Type-Errgrand all inopportune inputs computed in each state :

LaBRI Research Report

20 A. Rollet, F. Saad-Khorchef

1. RTP1 deals with the exchange message suite if no sessotifielr
and no client authentication in the presence of the consilbazards :
(Iclient-hello, ?server-hello, Iclient-master-key, ait-finished, ?server-
verify, ?server-finished"

2. RTP2 deals with the exchange message suite if sessiatifieleand no
client authentication in the presence of hazardslight-hello, ?server-
hello, !client-finished, ?server-verify, ?server-finidhe

3. RTP3 deals with the exchange message suite if sessiotifigieand
client authentication the the presence of the considereartia : (client-
hello, ?server-hello, Iclient-finished, ?server-verl§grver-request
-certificate, ?client-certificate, ?server-finished

These RTPs consider only one occurrence of each hazard. ditioad we
mention that both inopportune inputs and suspension t@eeautomatically
generated by the RTCG tool. A corresponding test case isgivegure 8.

The increased specification is automatically computed ftbennominal
specification and the hazards graph. RTCG also applies flagltiencrease
of inopportune inputs. In figure 9, we give the results olgdimvith RTCG
using these test purposes (WindowsgR Pentium(R)4 CPU 2.80 GHz, RAM
256 Mo). In the figure, the “length” is the number of actionsl &TC means
“Robustness Test Case”. We compare them with the conforentsting tool
TGSE in the same conditions. Test cases obtained with RTEGigmificantly
computed faster and test cases are usually shorter : RTQGdemn transi-
tions with hazards, avoiding pathes not useful for robisstrtesting.

Property | RTC length | CPU Time (ms)
RTCG RTP1 11 1.7
RTP2 14 2.6
RTP3 19 4.4
TGSE RTP1 53 961.8
RTP2 10 359.9
RTP3 20 157.9

Figure 9: Results obtained with RTCG and TGSE

6. Concluding remarks

This article presented a framework and a tool permittingenegate robust-
ness test cases for communicating software. The propogedaah consists
of two phases : the first one deals with the construction ohareased specifi-
cation. The second phase deals with robustness test casaen. The tool

LaBRI Research Report

Robustness Testing of Communicating Systems : framework amdstasy 21

tescase Tester() runs on |UT {
timer ReponseTinmer := 100E-3 ;
Tester.send(No-Certificate-Error);
ReponseTi mer. start
al t
[1 ReponseTi ner.tineout
{ setverdict(fail);
stop
}
[1 Tester.receive(Cient-Hello(no-sid));
{ setverdict(pass);

ReponseTi ner. st op
Tester.send(Bad-Certificate-Error);
Tester.send(Server-Hello(No-Hit));
Tester.send(No-Certificate-Error);
ReponseTi ner. start
alt

[1 ReponseTiner.tineout

{ setverdict(fail);
st op
}

[]1 Tester.receive(dient-Mster-Key);
{ setverdict(pass);
ReponseTi ner . st op
Test er. send(Cl ose- Connecti on);
ReponseTi ner. start
alt
[1 ReponseTi mer.ti nmeout
{ setverdict(fail);
st op

[1 Tester.receive(dient-Finished);
{ setverdict(pass);
ReponseTi nmer . st op
[el se] { setverdict(fail);
stop
}

[el se] { setverdict(fail);
stop

}

[el se] { setverdict(fail);
st op
}
}

control

execute (Tester());

Figure 8: Test case for the SSL Handshake protocol

permits to implement the approach described above using ptification,
and generating TTCN-3 test cases. We also proposed a cageostihe SSL
Handshake protocol.

This work is based on formal technics, and permits to take about spe-
cific hazards when these latter are identified. It extend$ocorance testing
technics to the problem of robustness testing.

LaBRI Research Report

22 A. Rollet, F. Saad-Khorchef

As a future work, we intend to focus on unrepresentable kigzamd on
models with time and data. The main difficulty in this casehit test cases
may become infinite. Then a symbolic approach could solvetbelem.

References

[1] The DOT language. http://www.graphviz.org/doc/iriéarg.html.

[2] J.-H. Barton, E.-W. Czeck, Z.-Z. Segall, and D.-P. Siengk. Fault injection experiments
using FIAT.IEEE Trans. Comput39(4):575-582, 1990.

[3] J. Bradley and N. Davies. Analysis of the SSL protocolchigical Report CSTR-95-021,
Department of Computer Science, University of Bristol, Jud@5L

[4] R. CASTANET and H. WAESELYNK. Techniques avancées dédessystémes complexes:
Test de robustesse. Technical report, Action spécifiquaiZBMRS, 11 2003.

[5] J-C. FERNANDEZ, L. MOUNIER, and C. PACHON. A model-basgupeoach for robust-
ness testing. In LNCS, editcFesting of Communication Systemslume 3502, pages 333—
348. ifip, may/june 2005.

[6] Kipp Hickman. The SSL protocol. Technical report, Nefge&ommunications Corp., Feb 9
1995.

[7] IEEE. Information technology — Open Systems Interconnection afd@@mance testing
methodology and framework — Part 3: The Tree and Tabular GoetbNotation (TTCN)
number 9646 in 2, 2003.

[8] IEEE. International Organization for Standardization, Confante testing methodology
and framework - part 2: abstract test suite specificatid®04.

[9] ITU-T. Specification and description language (sdl)UFT Recommendation no Z.105, In-
ternational Telecommunication Union. Genéve, 1999.

[10] T. JERON. Génération de tests pour les systemes réaatifsurvol des théories et tech-
niques. In IRIT, editorETR2003. Systemes, Réseaux et Applicatipmges 105-122. IRIT,
Septembre 2003.

[11] IEEE Standard Glossary of Software Engineering Termoigy 610.12-1990. Customer and
terminology standards$n IEEE Standards Software Engineering, IEEE Press1999.

[12] J. Regehr. Random testing of interrupt-driven sofewvém EMSOFT '05: Proceedings of the
5th ACM international conference on Embedded softwpegies 290-298, New York, NY,
USA, 2005. ACM Press.

[13] A.Rollet. Testing robustness of real-time embeddedsystin Proceedings of Workshop On
Testing Real-Time and Embedded Systems (WTRTES), 8&eltitishop of Formal Methods
(FM 2003) Symposium, Pisa, Italgeptember 13 2003.

[14] J. Roning, M. Laakso, and A. Takanen. PROTOS - systeraaficoach to eliminate software
vulnerabilities. http://www.ee.oulu.fi/research/ousilaly 2002. 2002.

[15] F. Saad-khorchef, I. Berrada, A. Rollet, and R. Cadtafietomated robustness testing for
reactive systems : Application to communicating protocolsstin International Workshop
on Innovative Internet Community Systems (I12CS 2006), Ngelc SwitzerlandJune 26-28
2006.

[16] F. Saad-Khorchef and X. Delord. Une méthode pour le tesbthustesse adaptée aux pro-
tocoles de communication. ltiléme Colloque Francophone sur I'Ingénierie des Protcgole
CFIP’2005 march 2005.

[17] J. TRETMANS. Conformance testing with labelled traiogitsystems: Implementation rela-
tions and test generatioBomputer Networks and ISDN Syste2&:49-79, 1996.

LaBRI Research Report

Robustness Testing of Communicating Systems : framework amdstasy 23

[18] J. TRETMANS. Test generation with inputs, outputs, auescence. In T. Margaria and
B. Steffen, editorsSecond Int. Workshop on Tools and Algorithms for the Constm and

Analysis of Systems (TACAS’'96dlume 1055 of_ecture Notes in Computer Scienpages
127-146. Springer-Verlag, 1996.

[19] ITU-T Recommendations Z.140-142. The testing and testrobnotation”, version 3 (ttcn-
3), rec. z.140: Ttcn-3 core language, rec. z.141: Tabulksentation format for ttcn-3 (tft),
rec. z.142: Graphical presentation format for ttcn-3 (¢iftl-T, Geneva (Switzerland), 2002.

Authors addresses:

LABRI - CNRS UMR 5800
Université Bordeaux 1/ ENSEIRB
351, cours de la Libération
F-33405 Talence

{rollet, saad-kho}@Iabri.fr

LaBRI Research Report

