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ROBUSTNESS TESTING OF COMMUNICATING
SYSTEMS : FRAMEWORK AND CASE STUDY

A. ROLLET, F. SAAD-KHORCHEF

Abstract. A system is considered as robust if it is able to adopt an acceptable behavior under un-
expected running conditions. Nowadays, robustness testing is an important aspect of the validation
process of complex software. The aim of such testing is to leadthe system into unexpected condi-
tions and to check the behavior. In this article, we propose aframework and a tool for robustness
test cases generation. Our framework consists of two main phases. The first one constructs an
increased specificationby integrating hazards in the nominal specification model. Therule of the
increased specification is to specify the acceptable behavior in presence of hazards. This phase
uses a robustness relation permitting to check robustness ofan IUT (Implementation Under Test)
compared to the increased specification. The second phase provides a specific method to generate
robustness test cases from the increased specification and arobustness test purpose. Our tool per-
mits to increase the specification, and to generate automatically robustness test cases (in TTNC-3
format) from system specifications written in SDL. We also give some experimental results on the
SSL handshake protocol.

Keywords: Robustness testing, Formal testing, Robustness relation, IOLTS, RTCG Tool, Com-
municating systems, SSL protocol

1. Introduction

In recent software or hardware development, formal validation is highly needed
in order to reduce development cost and to avoid catastrophic errors. The com-
plexity of present systems becomes higher and higher. Then,a proper valida-
tion is highly needed in order to increase the quality and theconfidence of the
system. Testing is an important part of the validation process consisting in a
direct execution of the system implementation (IUT forImplementation Under
Test) using a tester. Resulting outputs are observed and compared to the ex-
pected behavior of the system or component. Testing may focus on different
topics such as conformance, reliability, interoperability and robustness. Exist-
ing generation techniques usually deal with conformance testing : the principle
is to use a formal specification of the system in order to generate automatically
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2 A. Rollet, F. Saad-Khorchef

sequences. These sequences are applied on the IUT using the tester, and results
are observed and compared with the specification.

In this article, we deal with robustness testing of communicating systems
(e.g. communicating protocols). Although a precise definition of robustness is
somewhat elusive, functionally the meaning is clear : "the ability of a system to
function correctly in presence of faults or stressful environmental conditions"
[IEEE std 610.12-1990] described in [11]. The term "hazards" will be used to
gather faults and stressful conditions. Robustness is an important aspect of a
software : many bugs are caused by a situation not expected inthe specifica-
tion : indeed system specifications usually do not take care about unexpected
conditions. Note that it is never possible to have a completespecification of the
system directly, but it is possible to specify a behavior facing a specific hazard
when this latter is identified. Then the major problem of robustness testing is
to find a way to lead the system into unexpected situations.

In the hardware domain robustness testing has been well studied, contrary to
the software domain in which less contributions are available up to our knowl-
edge. One contribution of our work is to provide a framework permitting to
take into account robustness aspects. This aim is achieved by integrating rep-
resentable hazards in the nominal specification of the system. The obtained
model is called theincreased specification. Because of its possibly important
size, we propose a specific method to generate robustness test cases using a
test purpose. We propose a generation method inspired by conformance test-
ing technics.

We present the RTCG tool which implements the previous approach. Firstly,
RTCG provides some help to obtain an increased specification. Then RTCG
permits to extract robustness test cases (in the TTCN-3 format described in
[19]) based on a given robustness test purpose and on the increased specifica-
tion (written in the SDL format specified in [9]).

The article is organized as follows. We give a state of the artin section 2.
Section 3 recalls the models used in our study. Section 4 presents our frame-
work for robustness testing. Section 5 describes the RTCG tool and provides a
case study on the SSL handshake protocol and we finally conclude in section
6.

2. Related work

Many research have been done in the domain of protocol testing . The majority
of these works deals with conformance testing, normalized in [8]. An overview
may be found in [10]. In this section, we focus particularly on robustness
testing works.
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In [4], authors proposes a study on robustness testing, focusing on hazard
classification and some possible directions to handle the problem. Authors
define the robustness notion as "the ability of a system to function acceptably
in the presence of faults or stressful environmental conditions" and provide a
state of the contributions in this domain.

In [14], authors present the PROTOS project in which they describe the
system with a high level of abstraction and then to simulate abnormal inputs in
the specification. It is mainly focused on the detection of vulnerabilities of a
network software system. In this case, robustness is restricted to the notion of
network security.

Some approaches are based on software fault injection :
The FIAT tool exposed in [2] modifies a processus binary imagein memory.
In [12], authors propose to apply randomly interruptions inthe IUT, whereas
the BALLISTA tool works on data unexpected modifications. This idea is ex-
plained in []. These approaches are based on integration of faults directly in
the software implementation of the system, but do not care about interpretation
of different behaviors.

Another approach consists in using model-based test generation. The main
difficulty of such technics is to describe the hazards in the model. Many works
consider such approach : see for example [16, 5, 13].

In [16], authors propose a first approach based on a refusal graph used to
model hazards. Contrary to our method, it only deals with inopportune inputs,
but not with invalid inputs. Moreover, our approach distinguishes between
inputs and outputs in the model.

In [5], authors use a formal fault model in order to build a "mutant" speci-
fication. They use a fault model in order to add "fault" transitions in the spec-
ification. They define a robustness relation based on a robustness property.
Contrary to our approach, they do not permit to integrate unexpected inputs in
the model.

The results in [13] show how to use a degraded specification tomodel the
behavior in case of critical situation, and integrate the hazards directly in the
test sequences. A major difference between works describedin [13] and this
work is in the concept of robustness : we consider here that robustness implies
conformance; the method described in [13] does not.

3. Preliminaries

In this section, we introduce the models and notations used throughout the
article.
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3.1. Models of specification

Usually, communicating softwares are specified in a dedicated language (SDL,
LOTOS, UML, etc...). Such formalisms are based on Labelled Transition Sys-
tem (LTS) semantics. LTS distinguishes internal and visible actions. But in
black-box testing, a distinction is often made between inputs and outputs. In
this article we use the IOLTS model (Input Output Labelled Transition Sys-
tem).

Definition 1 (IOLTS).
An IOLTS (see[17]) is a quadrupletS = (Q,Σ,→, q0) such that :

• Q is a nonempty finite set of states,q0 is the initial state,
• Σ is the alphabet of actions,
• →⊆ Q × Σ × Q is the transition relation.

The alphabetΣ is partitioned into three setsΣ = ΣO ∪ΣI ∪I, whereΣO is the
output alphabet (an output is denoted by!a), ΣI is the input alphabet (an input
is denoted by?a) andI is the alphabet of internal actions (an internal action is
denoted byτ ). Usual notations are:

Notation Meaning

q
a
→ ∃ q′ | q

a
→ q′

q
µ1...µn

→ q′ ∃ q0...qn | q = q0
µ1→ q1

µ2→ ...
µn→ qn = q′

q
ε
⇒ q′ q = q′ or q

τ1...τn
→ q′

q
a
⇒ q′ ∃ q1, q2 | q

ε
⇒ q1

a
→ q2

ε
⇒ q′

q
a1...an

⇒ q′ ∃ q0...qn | q = q0
a1⇒ q1

a2⇒ ...
an⇒ qn = q′

q after σ {q′ ∈ Q | q
σ
⇒ q′}; by extension,S after σ = q0 after σ

Trace(q) {σ ∈ Σ∗ | q
σ
⇒}; by extension,Trace(S) = Trace(q0)

Out(q) {a ∈ ΣO | q
a
⇒}

Out(S, σ) Out(S after σ)

ref(q) {a ∈ ΣI |a 6
a
−→)}

The observable behavior is described by⇒. q after σ is the set of reachable
states fromq by σ. Trace(q) is the set of observable sequences starting from
q. Out(q) is the set of all possible outputs ofq. ref(q) is the set of inputs not
specified in the stateq. Σ∗ is the language associated toS.

Example 3.1. In Figure.1 (right) :

• Σ = {?a, ?b, !x, !y} with ΣI = {?a, ?b} andΣO = {!x, !y},
• Trace(q) = {?a, ?a.!x, ?a.?b, ?a.?b.!y, ...},
• for σ = ?a.?b, q0 after σ = q3,
• Out(q0) = Out(q2) = ∅, Out(q1) = {!x} andOut(q3) = {!y},
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PROCESS
STATE q0;
INPUT a;
NEXTSTATE q1;
STATE q1;
INPUT b;
NEXTSTATE q3;
OUTPUT x;
NEXTSTATE q3;
STATE q3;
OUTPUT y;
NEXTSTATE q0;
END PROCESS;

q3

?a

!x ?b

!y

q1

q0

q2

Figure 1: From SDL specification to IOLTS model

• for σ = ?a.?b, Out(S, σ) = {!y},
• ref(q0) = {?b}, ref(q1) = {?a} and ref(q2) = ref(q3) =
{?a, ?b}

An IOLTS S is calleddeterministicif no state accepts more than one suc-
cessor with an observable action. It is calledobservableif no transition is
labelled byτ . S is calledinput-completeif each state accepts all inputs of the
alphabet. In Figure 1,S is deterministic, observable but not input-complete.

3.2. Hazards

In robustness testing, ahazarddenotes any event not expected in the nomi-
nal specification of the system. They may be internal, external or beyond the
system boundaries (the different notions are explained in [4]) or classified ac-
cording to tester controllability or/and formal representability (as explained in
[15]). In this article, we deal with controllable and representable hazards re-
lated to communicating software domain. Controllability means the ability of
the tester to control the presence of hazards (e.g. erroneous or unexpected in-
puts), and representability means that it is possible to represent the hazard in
the IOLTS model (e.g. inputs or outputs). More precisely, weidentify three
kinds of controllable and representable hazards :

3.2.1. Invalid Inputs

In a hostile environment, exchanged messages may be infected by accidental or
intentional faults. Formally, we consider as an "invalid input" any unspecified
input. i.e,?a′ 6∈ ΣI . In Figure.1 : let?a′ be a random mutation of?a. ?a′ is
considered as an invalid input.
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3.2.2. Inopportune Inputs

In a hostile environment, the communicating software entity may receive de-
layed or untidy messages. Formally, "inopportune inputs" correspond to ac-
tions which exist in the alphabet of the specification, but not expected in the
given state.ref(q) (see standard notations ofIOLTS) denotes the inoppor-
tune inputs in a stateq ∈ Q. In stateq0 of Figure.1 :?b is considered as an
inopportune input.

3.2.3. Unexpected outputs

Taking into account the hazards can lead the system, in some cases, to send
some unexpected outputs. Sometimes, such outputs may be considered as ac-
ceptable. For example, restarting a session, resetting or closing a connection
may be acceptable behaviors. As a consequence, all acceptable outputs must
be added to the specification (e.g. restarting or closing connection messages).
Formally, !x′ is an unexpected output if!x′ 6∈ ΣO or !x′ ∈ ΣO ∧ !x′ 6∈
Out(q).

4. Proposed approach

In this section, we outline our formal approach to generate robustness test
cases. Two phases are given : firstly we construct an increased specification,
and secondly we generate robustness test cases. Note that the nominal specifi-
cation describes the expected behavior in nominal conditions. In the following,
it is modelled by an IOLTS denotedS.

4.1. First phase : Increase of specification

This phase consists in integrating the representable hazards (invalid inputs, in-
opportune inputs and acceptable outputs) in the model of thenominal specifi-
cation. The obtained model is calledincreased specification.

LaBRI Research Report



Robustness Testing of Communicating Systems : framework and case study 7

Specification

Hazard Graph Suspension automaton

Inopportune inputs
Graph 

Suspension traces and determinization

Increased Specification

Inopportune inputs computing

Sδ ⊕ HG ⊕ IIG

S

HG

Sδ ⊕ HG

Sδ

IIG

SA

Figure 2: Obtaining the increased specification

The aim of theincreased specificationis to formally describe the acceptable
behaviors in presence of controllable and representable hazards. Robustness of
an implementation is evaluated with respect to the increased specification. The
different steps in order to obtain the increased specification are summarized in
Figure 2, and are detailed just below.

4.1.1. Quiescence

In practice, the tester observes outputs of a system, but also the absence of
events (quiescence). Several kinds of quiescence may happen in a stateq ∈ Q :

• outputlock quiescence if the system is blocked on standby input of the
environment (Out(q) = ∅),

• deadlock quiescence if there is no more evolution of the system (∀a ∈

Σ|q 6
a
−→),

• livelock quiescence ifq
ε
⇒ q.

To model valid quiescence inIOLTS model, we use the suspension au-
tomaton defined below :

Definition 2 (Suspension automaton). The suspension automaton (see[18])
associated toS = (Q,Σ,→, q0) is an IOLTSSδ = (Q,Σδ,→δ, q0) such that:

Σδ = Σ ∪ {δ} with δ ∈ Σδ
O. →δ is obtained from→ by adding loopsq

δ
−→ q

for all quiescence states.

Thus, quiescence is seen as an observable output action. In practice, the
tester identifies such event with a timeout.

Example 4.1. In Figure 3.(b),q0 is an outputlock quiescent state andq2 is a
deadlock quiescent state.
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8 A. Rollet, F. Saad-Khorchef

The first step of our approach consists in obtaining the suspension automa-
tonSδ associated toS.

4.1.2. Acceptable behavior

In order to check the robustness of the system, the acceptable behavior in the
presence of hazards has to be given by the system designers. The acceptable
behavior is supposed modelled by a specific graph calledmeta-graph.

Let S = (Q, q0,Σ,→S) a nominal specification. A meta-graphG, associ-
ated toS, is a graph such that each state ofG corresponds to a set of states of
S having the same behaviors in the presence of the same hazards.

Definition 3. A meta-graph associated toS is a triplet G = (V,E,L) such
as :

• V = Vd ∪ Vm is a set of states.Vm ⊆ 2Q is called the set ofmeta-states
andVd is called the set ofdegraded statessuch thatVd ∩ Q = ∅.

• L is an alphabet of actions,
• E ⊆ V × L × V is a set of edges.

In the following, we suppose that invalid inputs and acceptable outputs are
modelled by one or more meta-graph(s)HG (Hazards Graph), and inoppor-
tune inputs are represented by meta-graph(s)IIG (Inopportune Input Graph).
Using two different types of meta-graph permits to firstly integrate invalid in-
puts, provided by the testers, in the specification model. Then, the new input
set (invalid inputs and valid inputs) is used to compute the inopportune inputs.

4.1.3. Integrating hazards

This step consists in the composition of the nominal specificationS and a haz-
ard graphHG. The composition between an IOLTS and a meta-graph is de-
fined by :

Definition 4 (CompositionIOLTS ⊕ G).
Let S = (Q, q0,Σ,→S) be anIOLTS and G = (V,E,L) a meta-graph
associated toS. The composition ofS and G, notedS ⊕ G, is theIOLTS

(QS⊕G, qS⊕G
0 ,ΣS⊕G,→S⊕G) defined by:QS⊕G = Q ∪ Vd, qS⊕G

0 = q0,
ΣS⊕G = Σ ∪ L and the following rules :

1. q
a
−→ q′ ⇐⇒ q

a
−→S⊕G q′

2. (v, a, v′) ∈ E andv, v′ ∈ Vd ⇐⇒ v
a
−→S⊕G v′.

3. (v, a, v′) ∈ E , v ∈ Vm andv′ ∈ Vd ⇐⇒ ∀ q ∈ v, q
a
−→S⊕G v′.

4. (v, a, v′) ∈ E , v ∈ Vd andv′ ∈ Vm ⇐⇒ ∀ q ∈ v′, v
a
−→S⊕G q.

5. (v, a, v′) ∈ E andv, v′ ∈ Vm ⇐⇒ ∀ q ∈ v, q′ ∈ v′ , q
a
−→S⊕G q′.
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6. (v, a, v) ∈ E andv ∈ Vm ⇐⇒ ∀ q ∈ v, q
a
−→S⊕G q.

This composition consists in adding inS the set of transitions and states of
meta-graphHG. Actually, for a stateq of S member of a meta-state (i.e. a set
of states)v of HG, we add inS the set of transitions and/or states starting from
v.

Example 4.2. In Figure 3.(c), the compositionsSδ ⊕ HG is obtained as fol-
lows :
Rule 1adds toSδ ⊕ HG the whole of transitions ofSδ (q0

?a
−→ q1, q1

!x
−→ q2,

q1
?b
−→ q3, q3

!y
−→ q4, q0

!δ
−→ q0, q2

!δ
−→ q2);

Rule 2adds toSδ ⊕ HG the transitiond2
?b′

−−→ d1;

Rule 3adds toSδ ⊕ HG the following transitions (q0
?a′

−−→ d2, q1
?a′

−−→ d2,

q2
?a′

−−→ d2, q3
?a′

−−→ d2, q0
!x′

−−→ d1, q1
!x′

−−→ d1, q2
!x′

−−→ d1, q3
!x′

−−→ d1);

Rule 4adds toSδ ⊕ HG the following transitions (d1
?a
−→ q0, d2

?a
−→ q0);

Rule 6adds toSδ ⊕ HG the following transitions (q0
?b′

−−→ q0, q1
?b′

−−→ q1,

q2
?b′

−−→ q2, q3
?b′

−−→ q3).
Rule 5is not used because there are no transitions between the meta-states.

After the integration of invalid inputs and acceptable outputs inSδ, we com-
pute the inopportune inputs (using theref set of each set) ofHG ⊕ Sδ. It has
to be done in a different step, since the increase of the alphabet is necessary
before the inopportune inputs integration. Then, system designers give the re-
quired acceptable behavior in this case. The given description is modelled by
IIG (Figure 3 (d)).
We reuse the definition 4 in order to integrate inopportune inputs inHG⊕ Sδ.
The obtained model isHG ⊕ Sδ ⊕ IIG (Figure 3 (e)).

4.1.4. Determinization

As robustness testing is based on the observation of visiblebehaviors, test syn-
thesis requires a determinization of the specification. This means that two se-
quences of inputs always give the same sequence of outputs. Formally,

Definition 5 (Determinization ofIOLTS). LetS = (QS , qS
0 ,ΣS ,→S) be an

IOLTS. The deterministicIOLTS obtained fromS is denoted∆(S) such as :
Traces(S) = Traces(∆(S)).
∆(S) = (QS∆

, qS
0 after ε,Σ∆(S),→∆(S)) is defined as follow :

• QS∆

⊆ 2QS

, i.e, some states of∆(S) are the parts ofQS ,
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q0, q1, q2, q3
?a′

?a ?a

?b′

?b′
!x′

(a).HG

?a

!x ?b

!δ

!δ

!y

(b).Sδ

d2

q0

d1

q2

q1

q3

q0

?b′, ?a, ?b

!y

?a

?a

?a′

?a′

!x′

!x′

?b′

!x ?b

?a′

?b′, !δ

(c). Sδ ⊕ HG

?b′ ?b′

!x′

?a!x′

?a′

!y

?a

?a

?a

!x′

?a′

?a′

!x′

!x′

?a′

?b′

?a′, ?b

!x ?b

!x′

?a′

(e). Sδ ⊕ HG ⊕ IIG

d1

q2 q1

q0 d2

q3

?b

(d). IIG

?a

q1

d1 q0 d2

?a′, ?b, ?b′

d1 q0 d2

q3q1q2

q2, q3

?a′, ?b, ?b′

?b′, !δ

?b′, !δ, ?b

?a′, ?b

?a, ?b

?b′, !δ, ?a, ?b ?b′, ?a

?b′, ?a, ?b

!y

?a

?a

?a

!x′

?a′

?a′

!x′

!x′

?a′

?b′

?a′, ?b, !δ

!x ?b

?a′

!x′

(f).SA

!δ, ?a′, ?b, ?b′

d1 q0 d2

q3q1q2

?b′, !δ, ?b

?b′, !δ, ?a, ?b ?b′, ?a

Figure 3: Construction of the increased specification

• The initial state of∆(S) is the state set ofS reachable fromqS
0 with

internal actions. Formally,q∆(S)
0 = {qS

0 after ε},
• Σ∆(S) = ΣS is the set of observable actions,
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• P
a
−→∆(S) P ′ ⇐⇒ P, P ′ ∈ 2QS

, a ∈ Σ∆(S) andP ′ = P after a.

The deterministic model obtained from the suspension automaton associ-
ated toHG ⊕ Sδ ⊕ IIG is called the increased specification (Figure 3.(f)),
and denotedSA. It will be used as a base for the generation of robustness test
cases.

4.1.5. Robustness relation

The IUT is a black box interacting with a tester. We apply thetest hypothesis
generally used in testing research, assuming that :

• IUT is modelled by an IOLTSIUT = (QIUT ,ΣIUT ,→IUT , q0
IUT )

such that :
ΣI

SA ⊆ ΣI
IUT andΣO

SA ⊆ ΣO
IUT ;

• IUT is input-completeon the alphabetΣSA .

We also assume thatIUT conforms toS with respect to the conformance re-
lation ioco (described in [17]). It is justified by the fact that, in our work, we
consider that robustness of a system implies its conformance.

Let IUT be an implementation of a specificationS andSA its increased
specification. The robustness relationRobust is defined by :

IUT Robust SA ≡def ∀σ ∈ Trace(SA)\Trace(Sδ)

⇐⇒ Out(IUT δ, σ) ⊆ Out(SA, σ).

Only the increased behaviors (added) are useful for robustness testing because
the nominal behaviors (including valid quiescence) already passed the confor-
mance testing.

Example 4.3. Let us consider Figure 4.

• IUT1 Robust SA because all traces inIUT1 are included inSA

• not(IUT2 Robust SA) becauseIUT2 after?a′ sends!y butSA after?a′

sends!x′.
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IUT2

?b, !δ

?a

?a

!x

?a, ?b, !δ

x′

?b

a′

?a, ?b

!y

?a, ?b

SA

?b, !δ

?a, ?b

?a

?b

!y

?a, ?b, !δ

a′

!y

?a

!x ?a, ?b

?b, !δ

!y

?a, ?b, !δ ?a, ?b

a′

?a

?b!x

x′
?a, ?b

τ

?a

IUT1

Figure 4: Robustness relation

4.2. Second phase : Robustness test generation

In this section we present a robustness test case generationtechnique. Using
test purpose permits to reduce the test selection domain andto concentrate
the efforts in order to check some critical functionalities. This phase may be
summarized as follows :

1. Choice of robustness test purpose,
2. Synchronization between the specification and the test purpose in order

to deduce the behaviors which satisfies the test purpose,
3. Constructing therobustness test graphfrom the mirror image (i.e. inputs

become outputs and outputs become inputs) of thesynchronous product
4. Constructing thereduced robustness test graphby deleting any trace re-

jected by the used robustness test purpose,
5. Extracting therobustness test cases.

The general view of this technique is given in Figure 5, and a detailed example
is given in Figure 6.

Specification
Increased Robustness

Test Purpose

Synchronous product

Robustness Test Graphs

Robustness Test case
RTC

SA

SA ⊗ RTP

Selection

RTG, RRTG

RTP

Figure 5: Robustness test cases generation
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4.2.1. Robustness test purpose

A robustness test purpose (RTP ) permits to select a part of the total specifi-
cation in order to focus on a precise functionality (e.g, robustness property).
Formally,

Definition 6 (RTP). A robustness test purpose is a deterministic and observ-
able IOLTSRTP = (QRTP ,ΣRTP ,→RTP , qRTP

0 ) with two sets of trap
states "Accept" and "Reject", with the same alphabet as the increased spec-
ification (i.e.ΣRTP ⊆ ΣSA) .

Example 4.4. The RTP given in Figure 6.(b) aims at seeking any trace of the
increased specification containing a reception of the invalid input?a′ followed
by the acceptable output!x′ without considering the transitions labelled by!x
or ?b.

The label "other" is used to describe all actions of the alphabetΣSA⊗RTP

which are not specified in the current state.

4.2.2. The synchronous productSA ⊗ RTP

In order to obtain a robustness test sequence, we have to cover simultaneously
the RTP andSA until we find an adequate sequence satisfyingRTP . The
synchronous product is defined as follows :

Definition 7 (Synchronous product). LetSA = (QSA , qSA

0 ,ΣSA ,→SA
) be an

IOLTS of the increased specification, andRTP = (QRTP , qRTP
0 , ΣRTP ,→RTP )

a robustness test purpose withΣRTP = ΣSA and with state sets "Accept" and
"Reject". The synchronous product ofSA andRTP , denoted bySA ⊗ RTP ,
is a deterministicIOLTS SA ⊗ RTP = (QSA⊗RTP , qSA⊗RTP

0 ,ΣSA⊗RTP ,

→SA⊗RTP ) defined by :

1. qSA⊗RTP
0 = (qSA

0 , qRTP
0 ),

2. QSA⊗RTP = {(q1, q2) | q1 ∈ QSA , q2 ∈ QRTP },
3. ΣSA⊗RTP ⊂ ΣSA ∪ ΣRTP = ΣSA ,
4. →SA⊗RTP is defined by :

(q, q′) ∈ QSA⊗RTP , q
a
−→SA

q1 ∧ q′
a
−→RTP q′1 ⇐⇒ (q, q′)

a
−→SA⊗RTP

(q1, q
′
1).

4.2.3. Robustness test graphs

A robustness test graph (RTG) describes all tests corresponding to a given RTP.
Formally, a RTG is a deterministic IOLTSRTG = (QRTG, ΣRTG,→RTG,
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qRTG
0 ), composed by three subsets of statesACCEPT, REJECT and IN-

CONC such that :

• ΣRTG = ΣO
RTG∪ΣI

RTG with ΣI
RTG = ΣO

SA⊗RTP andΣO
RTG =

ΣI
SA⊗RTP (mirror image);

• QRTG = ACCEPT ∪ REJECT ∪ INCONC with
1. ACCEPT = {q ∈ QSA⊗RTP | ∃σ ∈ ΣSA⊗RTP∗ , q

σ
−→ Accept}

ACCEPT consists of states from which the stateAccept is reach-
able,

2. INCONC = {q′ ∈ QSA⊗RTP | ∃q ∈ ACCEPT, q′ 6∈ ACCEPT, a ∈

ΣO
SA⊗RTP , q

a
−→ q′}. i.e. INCONC is composed of states not in

ACCEPT, but which are direct successors of states inACCEPT by
an output inSA ⊗ RTP ,

3. REJECT = {q ∈ QSA⊗RTP | q 6∈ ACCEPT ∧ q 6∈ INCONC}.
• if q0

SA⊗RTP ∈ ACCEPT then q0
RTG = q0

SA⊗RTP , otherwise
QRTG is empty.

Since RTG is often voluminous, it is necessary to reduce it byconcentrat-
ing only on the behaviors accepted by RTP. Then we keep in RTG only the
paths leading to an ACCEPT or INCONC states. The obtained model is called
reduced robustness test graph, and denoted by RRTG.

Example 4.5. Robustness test graphRTG (Figure 6.(d)) describes the mirror
image of the synchronous product (Figure 6.(c)). RTG consists of three states :
INCONC = {(q2, Reject)}, REJECT = {(d1, Reject), (q1, Reject),
(q0, Reject)} andACCEPT = { (q0, q

′
0), (d1, q

′
1), (q1, q

′
0), (q0, Accept) }. Re-

duced robustness test graph RRTG (Figure 6.(e)) consists of the states and
transitions ofACCEPT andINCONC.

4.2.4. Robustness test case

A robustness test case (RTC) is an elementary test corresponding to a particular
robustness test purpose. It describes the interactions between a tester and an
implementation. It only contains observable actions.

Definition 8. A robustness test case RTC is anIOLTS RTC = (QRTC ,

ΣRTC ,→RTC , qRTC
0 ) with three sets of trap statesPass, Fail and Inconc

characterizing verdicts. Its alphabet isΣRTC = ΣRTC
I ∪ΣRTC

O with ΣRTC
O ⊆

ΣSA

I (RTC emits only inputs ofSA) and ΣRTC
I ⊆ ΣIUT

O (RTC foresees any
output or quiescence of IUT). We make several structural assumptions on test
cases :

• statesFail andInconc are directly reachable by inputs. Formally,
∀(q, a, q′) ∈→RTC (q ∈ Inconc ∪ Fail =⇒ a ∈ ΣI

RTC),
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Figure 6: Robustness test cases generation

• from each state a verdict must be reachable. Formally,
∀q ∈ QRTC ,∃σ ∈ ΣRTC∗,∃q′ ∈ Pass ∪ Fail ∪ Inconc, q σ

−→ q′,
• RTC is controllable : no choice is allowed between two outputs or an

input and output. Formally,

∀q ∈ QRTC∀a ∈ ΣO
RTC , q

a
−→RTC =⇒ ∀b 6= a, q 6

b
−→RTC ,
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• a test case is input complete in all states where an input is possible.
Formally,

∀q ∈ QRTC(∃a ∈ ΣI
RTC , q

a
−→RTC =⇒ ∀b ∈ ΣI

RTC , q
b
−→RTC).

4.2.5. Selection of robustness test cases

In order to choose the traces which are considered in the robustness relation
Robust, we use an algorithm based on coloration principle. Two colors distin-
guish the transitions of the nominal specification (first color) and those added
during the construction of the increased specification (second color). Then we
choose test cases favoring the second color (focusing on hazards), and we avoid
any nominal trace (colored with the first color).
Algorithm 1 permits the selection of a random robustness test case. For all
visited states in RRTG, we choose only one sending or all receptions until the
Acceptstate is reached. Finally, we reject any RTC colored only with the same
color as the nominal specification.

Algorithm 1 Computing of RTC
Require: Reduced Robustness Test GraphRRTG
Ensure: Robustness Test CaseRTC

repeat
QRT C := q0;
for all not visited stateq in QRT C do

if q is a reception statethen
Add all started reception fromq to RTC;
Add all successor states ofq by reception toQRT C ;

Add the transitionq
other
−−−−→ Fail to RTC;

end if
if q is sending/reception statethen

Random choice between sending or reception;
if sendingthen

Choice a random sending;
Add the successor state ofq by the selected sending toQRT C ;

else
Add all started reception fromq to RTC;
Add all successor states ofq by reception toQRT C ;

Add the transitionq
other
−−−−→ Fail to RTC;

end if
end if

end for
until theRTC and the nominal specification colors are different.

Example 4.6. Robustness test case (RTC) given in Figure 6.(f) is derived from
RRTG (Figure 6.(e)). RTC consists of two output states (states 2 and 4), and
three reception states (states 1, 3 and 5).
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5. Implementation and case study

5.1. RTCG tool

RTCG (Robustness Test Cases Generator) is a tool automating the previous
approach. It provides two functionalities :

The first one permits to build the increased specification of systems written
in SDL or directly modelled asIOLTS. In order to achieve this aim,RTCG

implements the composition method given in paragraph 4.1.3. It computes the
composition of the nominal specificationS with a meta-graphHG. Then, it
computes inopportune inputs from the previous product and,proposes a default
(loops labeled with inopportune inputs in all states) increase or a customized
increase. It also computes the suspension traces and the determinization.

The second one allows to generate robustness test cases based on a robust-
ness test purpose. More precisely, the user defines bothSA andRTP files.
RTCG checks theRTP (observability, determinism and accept states). Then,
RTCG computes the synchronous product, the robustness test graph (RTG)
and the reduced robustness test graph (RRTG). Finally it selects a robustness
test case (RTC).

In the currentRTCG version, robustness test purposes and specification
files are written in the SDL (specified in [9]) or DOT (see [1]) format and
robustness test cases are written using the TTCN-3 (normalized in [7]), XML
or DOT formats.

5.1.1. Case study : SSL protocol

In [6], authors describe SSL as follows : "The SSL protocol isdesigned to pro-
vide privacy between two communicating applications (a client and a server).
Moreover, the protocol is designed to authenticate the server, and optionally
the client". SSL is standardized by the IETF (Internet Engineering Task Force).
The full specification of the SSL protocol is written in the RFC 2246. The SSL
Protocol contains four under-protocols:Handshake protocol, SSL Changes Ci-
pher Spec protocol, SSL Alert protocolandSSL Record protocol. The Hand-
shake protocol is composed of two phases. First step deals with the selection of
a cipher, the exchange of a master key and the authenticationof the server. Sec-
ond step handles client authentication if requested and finishes the handshak-
ing. After the handshake stage is complete, the data transfer between client
and server begins. All messages during handshaking and after are sent over the
SSL Record protocol Layer.

Here, we deal only with the specification of the handshake protocol which
describes three scenarios of communication as shown in figure 7.
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PROCESS SSL-Hanshake (1,1);
START NEXTSTATE 1;
STATE 1;
OUTPUT Client-Hello(no-sid);
NEXTSTATE 2;
OUTPUT Client-Hello(sid);
NEXTSTATE 3;
STATE 2;
INPUT No-Certificate-Error;
NEXTSTATE 4;
INPUT ?Server-Hello(No-Hit);
NEXTSTATE 5;
STATE 3;
INPUT Server-Hello(No-Hit);
NEXTSTATE 5;
INPUT Server-Hello(Hit);
NEXTSTATE 6;
STATE 4;
INPUT Close-Connection;
NEXTSTATE 1;
STATE 5;
OUTPUT Bad-Certificate-Error;
NEXTSATE 7;
OUTPUT No-Cipher-Error;
NEXTSTATE 7;
OUTPUT Unsupported-Certificate-

Type-Error;
NEXTSTATE 7;
OUTPUT Client-Master-Key;
NEXTSTATE 6;
STATE 6;
OUTPUT Client-Finished;
NEXTSTATE 8;
INPUT Server-Verify;
NEXTSTATE 9;
STATE 7;
OUTPUT Close-Connection;
NEXTSTATE 1;
STATE 8;
INPUT Server-Verify;
NEXTSTATE 10;
STATE 9;
OUTPUT Client-Finished;
NEXTSTATE 10;
INPUT Server-Finished;
NEXTSTATE 11;
INPUT Server-Request-Certificate;
NEXTSTATE 12;
STATE 10;
INPUT Server-Finished;
NEXTSTATE 13;
INPUT Server-Request-Certificate;
NEXTSTATE 14;
STATE 11;
OUTPUT Client-Finished;
NEXTSTATE 14;
STATE 12;
OUTPUT No-Certificate-Error;
NEXTSTATE 15;
OUTPUT Client-Finished;

NEXTSTATE 13;
OUTPUT Client-Certificate;
NEXTSTATE 17;
STATE 13;
OUTPUT No-Certificate-Error;
NEXTSTATE 16;
OUTPUT Client-Certificate;
NEXTSTATE 18;
STATE 14;
INPUT SSL-Data-Record;
NEXTSTATE 14;
OUTPUT SSL-Data-Record;
NEXTSTATE 14;
INPUT Close-Connection;
NEXTSTATE 1;
OUTPUT Close-Connection;
NEXTSTATE 1;
STATE 15;
OUTPUT Client-Finished;
NEXTSTATE 16;
INPUT Server-Finished;
NEXTSTATE 11;
INPUT Close-Connection;
NEXTSTATE 1;
STATE 16;
INPUT Server-Finished;
NEXTSTATE 14;
INPUT Close-Connection;
NEXTSTATE 1;
STATE 17;
INPUT Server-Finished;
NEXTSTATE 11;
INPUT Bad-Certificate-Error;
NEXTSTATE 19;
INPUT Unsupported-Certificate-

Type-Error;
NEXTSTATE 19;
OUTPUT Client-Finished;
NEXTSTATE 18;
STATE 18;
INPUT Bad-Certificate-Error;
NEXTSTATE 20;
INPUT Unsupported-Certificate-

Type-Error;
NEXTSTATE 20;
INPUT Server-Finished;
NEXTSTATE 14;
STATE 19;
OUTPUT Client-Finished;
NEXTSTATE 20;
INPUT Close-Connection;
NEXTSTATE 1;
INPUT Server-Finished;
NEXTSTATE 11;
STATE 20;
INPUT Server-Finished;
NEXTSTATE 14;
INPUT Close-Connection;
NEXTSTATE 1;
END PROCESS SSL-Hanshake;

Figure 7: SDL specification of the SSL Handshake protocol
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The standard specification (RFC2246) defines the following errors :

• No-Cipher-Error. This error is returned by the client to the server when
it can not find a cipher or key size. This error is not recoverable.

• No-Certificate-Error. When aRequest-Certificatemessage is sent, this
error may be returned if the client has no certificate to replywith. This
error is recoverable (for client authentication only).

• Bad-Certificate-Error. This error is returned when a certificate is deemed
bad by the receiving party. Bad means that either the signature of the
certificate was bad or that the values in the certificate were inappropriate
(e.g. a name in the certificate did not match the expected name). This
error is recoverable (for client authentication only).

• Unsupported-Certificat-Type-Error. This error is returned when a client/
server receives a certificate type that it can not support. This error is
recoverable (for client authentication only).

In [3], authors show that two error messages have been omitted in the ref-
erence document. The first, anUnsupported-Authentication-Type-Errormes-
sage, is a mistake which would prevent the protocol using different methods of
authentication of a client. The second, anUnexpected-Message-Errorwould
allow an implementation to close the connection cleanly if an implementation
sent an out-off-order message.

In order to verify the robustness of the Handshake protocol,we increase the
nominal specification by integrating hazards (invalid inputsand inopportune
inputs). Besides, to model the previous hazards, we consider the following
hypothesis :

• if the implementation receives an invalid input then it closes the connec-
tion

• if it receives an inopportune input then it loops in the same state.

Formally, the previous hypothesis may be modelled by meta-graphs. The
IOLTS of the increased specification is obtained from the SDLspecification
given in figure 7 and the previous robustness hypothesis. It is composed of 20
states and 176 transitions.

5.2. Robustness test generation with RTCG tool

In order to generate robustness test cases, we have defined a set of robust-
ness test purposes aiming at checking the behavior of an implementation in
presence of two invalid inputs (Unexpected-Message-ErrorandUnsupported-
Authentification-Type-Error) and all inopportune inputs computed in each state :
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1. RTP1 deals with the exchange message suite if no session identifier
and no client authentication in the presence of the considered hazards :
(!client-hello, ?server-hello, !client-master-key, !client-finished, ?server-
verify, ?server-finished") ;

2. RTP2 deals with the exchange message suite if session identifier and no
client authentication in the presence of hazards : (!client-hello, ?server-
hello, !client-finished, ?server-verify, ?server-finished);

3. RTP3 deals with the exchange message suite if session identifier and
client authentication the the presence of the considered hazards : (!client-
hello, ?server-hello, !client-finished, ?server-verify,!server-request
-certificate, ?client-certificate, ?server-finished) ;

These RTPs consider only one occurrence of each hazard. In addition, we
mention that both inopportune inputs and suspension tracesare automatically
generated by the RTCG tool. A corresponding test case is given in figure 8.

The increased specification is automatically computed fromthe nominal
specification and the hazards graph. RTCG also applies the default increase
of inopportune inputs. In figure 9, we give the results obtained with RTCG
using these test purposes (WindowsXPc©, Pentium(R)4 CPU 2.80 GHz, RAM
256 Mo). In the figure, the “length” is the number of actions and RTC means
“Robustness Test Case”. We compare them with the conformance testing tool
TGSE in the same conditions. Test cases obtained with RTCG are significantly
computed faster and test cases are usually shorter : RTCG focuses on transi-
tions with hazards, avoiding pathes not useful for robustness testing.

Property RTC length CPU Time (ms)
RTCG RTP1 11 1.7

RTP2 14 2.6
RTP3 19 4.4

TGSE RTP1 53 961.8
RTP2 10 359.9
RTP3 20 157.9

Figure 9: Results obtained with RTCG and TGSE

6. Concluding remarks

This article presented a framework and a tool permitting to generate robust-
ness test cases for communicating software. The proposed approach consists
of two phases : the first one deals with the construction of an increased specifi-
cation. The second phase deals with robustness test cases generation. The tool
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tescase Tester() runs on IUT {
timer ReponseTimer := 100E-3 ;

Tester.send(No-Certificate-Error);
ReponseTimer.start
alt

[] ReponseTimer.timeout
{ setverdict(fail);

stop
}

[] Tester.receive(Client-Hello(no-sid));
{ setverdict(pass);

ReponseTimer.stop
Tester.send(Bad-Certificate-Error);
Tester.send(Server-Hello(No-Hit));
Tester.send(No-Certificate-Error);
ReponseTimer.start
alt

[] ReponseTimer.timeout
{ setverdict(fail);

stop
}

[] Tester.receive(Client-Master-Key);
{ setverdict(pass);

ReponseTimer.stop
Tester.send(Close-Connection);
ReponseTimer.start
alt

[] ReponseTimer.timeout
{ setverdict(fail);

stop
}

[] Tester.receive(Client-Finished);
{ setverdict(pass);

ReponseTimer.stop
[else] { setverdict(fail);

stop
}

}
[else] { setverdict(fail);

stop
}

}
[else] { setverdict(fail);

stop
}

}
control

{
execute (Tester());

}
}

Figure 8: Test case for the SSL Handshake protocol

permits to implement the approach described above using SDLspecification,
and generating TTCN-3 test cases. We also proposed a case study on the SSL
Handshake protocol.

This work is based on formal technics, and permits to take care about spe-
cific hazards when these latter are identified. It extends conformance testing
technics to the problem of robustness testing.
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As a future work, we intend to focus on unrepresentable hazards, and on
models with time and data. The main difficulty in this case, isthat test cases
may become infinite. Then a symbolic approach could solve theproblem.
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