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Abstract. Symbolic execution is widely used to detect vulnerabilities
in software. The idea is to symbolically execute the program in order to
find an executable path to a target instruction. For the analysis to be
fully accurate, it must be performed on the binary code, which makes
the well-known issue of state explosion even more critical. In this paper,
we introduce a novel exploration strategy for symbolic execution aiming
to limit the number of explored paths. Our strategy is inspired from the
A∗ algorithm and steered towards least explored parts of the program.
We compare our approach, using the Binsec tool, to three other classi-
cal strategies: depth-first (DFS), breadth-first (BFS) and non-uniform
random (NURS). Our experiments on real-size programs show that our
approach is promising.

Keywords: Symbolic execution · Program analysis · Binary code anal-
ysis · A∗ algorithm.

1 Introduction

Context. Software verification is a crucial step during the development of pro-
grams permitting to discover potential failures. It consists not only in assessing
the correct behavior of the program but also in checking if vulnerabilities ex-
ist. Software verification techniques include (automatic) formal proofs [15], test-
ing [5], fuzzing [16], code review and program analysis [3, 6–8, 14]. This paper
deals with program analysis of binary code, more precisely with the problem
of efficiently finding an executable path to a target instruction (aka the line
reachability problem). The number of inputs of a program is usually very big,
inducing a huge number of possible paths. A popular technique used to handle
this problem is symbolic execution [14]. It is an exploration technique aiming to
find inputs of a program, with the help of a constraint solver, corresponding to
a target path of the program. More precisely, considering a target path π of the
program, a corresponding path predicate formula representing the constraints
over the input variables along π is sent to a constraint solver. If the formula is
satisfiable, then the path is executable, and a solution of the constraint system
corresponds to a possible input set of the program activating π. A major problem
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of this approach is that it generally does not scale well on real-size programs. The
order of exploration is crucial and decided by the exploration strategy, which can
be for instance depth-first (DFS), breadth-first (BFS) or non-uniform random
(NURS). In this work, we consider binary code. Directly analyzing the binary
code is necessary to verify that the compilation did not introduce new behaviors
or vulnerabilities, but it is challenging. This stems from the fact that a lot of
information is lost after the compilation and that binary code contains a lot
more instructions than source code.

Contributions. In this paper, we introduce two novel exploration strategies
for symbolic execution, inspired by the well-known A∗ algorithm [13]. A∗ is an
efficient single-pair shortest path algorithm, therefore using it in order to quickly
reach a target during symbolic execution makes sense. This key insight is at the
core of Blondin et al.’s efficient explicit reachability analysis tool for Petri nets [4].
We first adapt the A∗ algorithm to symbolic execution of binary code, using a
precomputed distance heuristic, which has never been done previously to our
knowledge. We then improve this basic A∗-like strategy to steer the exploration
towards least explored parts of the program. The total number of explored paths
is reduced, implying better performance.

We provide a formal description of our approach on transition systems, which
makes it generic and then applicable in various contexts. Our strategies have been
implemented in the binary code analysis tool Binsec, although dynamic jumps
are not currently handled. We present an experimental evaluation of our two
A∗-like exploration strategies on seven programs, two of them being of real-size
(Wookey’s bootloader [1] and the NetBSD leave command). Our experiments
show that our approach is promising. A replication package is available at Zen-
odo [10].

Related Work. Symbolic execution [14] is a powerful technique to analyze
programs. It is used in many program analysis tools, for instance KLEE [5], MI-
ASM [19], ANGR [24] and Binsec [11]. KLEE is a dynamic symbolic execution
engine that is used on source code (translated to LLVM). MIASM and ANGR
are binary analysis platforms that combine both static and dynamic symbolic
execution. Binsec is a framework for binary code analysis based on formal ap-
proaches such as symbolic execution, abstract interpretation [8], SMT solving [9]
and fuzzing [16]. The exploration strategies provided by Binsec are BFS, DFS
and NURS. Common uses of symbolic execution include test case generation [5],
input generation for fuzzing [25] or even vulnerability detection [12,23].

In 2021, Blondin et al. proposed an approach based on the A∗ algorithm [13]
to perform reachability analysis on Petri nets [4]. Their results showed that using
this approach outperforms existing state-of-the-art Petri nets tools. The idea is
to use distance oracles to guide the exploration of Petri nets. Our approach
generalizes this concept to any labeled transition system. We also propose some
enhancements in order to reach targets more efficiently in real programs. Many
strategies aiming to guide the exploration towards more promising paths have
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1 #de f i n e MAX_SIZE 10000000
2 #de f i n e EXPECTED_SIZE 100
3 void va l i d ( i n t y ) {
4 i n t x ;
5 f o r ( x = 0 ; x < MAX_SIZE; x++) {
6 i f ( ! c o r r e c t ( y ) ) break ;
7 y−−;
8 }
9 i f ( x != EXPECTED_SIZE) trap ( ) ;

10 c r i t i c a l ( ) ;
11 }

Listing 1.1: C-style running example.

(a) DFS (b) BFS (c) NURS (d) A∗ guided

Fig. 1: Illustration of different symbolic execution strategies.

been proposed in the literature. Some of them prioritize paths that are closer
to the target [2, 18] while others prioritize paths that explore new parts of the
program [17, 26]. In both cases, only partial aspects of the A∗ algorithm are
implemented. To our knowledge, none of them apply both strategies, and they
are applied on source code. Our proposal combines both of these concepts into
a novel exploration strategy, and applies it directly on binary code.

2 Running Example

The code given in Listing 1.1 is a simplified version of a security-critical code
inspired from a real-life application. The parameter y of the function valid is a
secret value that an attacker is not supposed to know. This value must satisfy a
certain condition, namely that correct(n) returns true for all integers n with
y−99 ≤ n ≤ y, and correct(y−100) returns false. Note that the corresponding
loop (lines 5–8) may, in fact, be traversed up to 107 times. If the above-mentioned
condition on y is satisfied then the critical function is executed, otherwise a
counter-measure, here trap, is triggered. For our discussion, the contents of these
two functions does not matter, except that the trap function is an infinite loop
whose body contains two small paths (corresponding to security measures). Our
goal is to use symbolic execution to (efficiently) find an executable path from
the start of the valid function to the target critical function.
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Let us look qualitatively at the behavior of symbolic execution on this ex-
ample regarding different exploration strategies. A depth-first (DFS) strategy
either exits the loop early and ends up in the trap function, or executes the
loop entirely and still ends up in the trap function. In both cases, it is highly
inefficient, as a huge number of branches are explored in the trap function before
the loop exits with the expected value of 100 for x. This behavior is illustrated
in Figure 1a, where the red branch is the only one leading to the target, and
the gray zone represents the branches already explored. A breadth-first (BFS)
strategy is also highly inefficient as it generates all branches of length lesser than
the length of the branch reaching the target, including the ones that are stuck in
the trap function. Its behavior is exhibited in Figure 1b where a large part of the
reachability tree is explored. A non-uniform random (NURS) strategy chooses
randomly which branch to explore further (see Figure 1c). Again, because of
the trap function, a huge number of branches are generated on average before
reaching the target. The approach proposed in this paper is inspired from the A∗

algorithm and aims to explore a limited amount of branches. The resulting ex-
ploration strategy is illustrated in Figure 1d, where only a very small portion of
the whole tree is explored. A more precise comparison of these four exploration
strategies on this example will be given at the end of the next section.

3 A∗ Guided Symbolic Execution

Many verification questions, including vulnerability detection, can be phrased as
reachability queries over a labeled transition system providing the operational
semantics of the system under analysis. We start by recalling a few preliminary
notions on reachability in labeled transition systems. The remainder of the sec-
tion focuses on symbolic execution and discusses various exploration strategies.

Reachability in Labeled Transition Systems. A (non-deterministic) labeled
transition system is a 5-tuple S = (C,Σ,→, I, F ) where C is a possibly infinite
set of configurations, Σ is a finite set of actions, → ⊆ C×Σ×C is a labeled tran-
sition relation, I ⊆ C is a set of initial configurations, and F ⊆ C is a set of final
configurations. A run in S is an alternating sequence ρ = (c0, a1, c1, . . . , an, cn)

of configurations ci ∈ C and actions ai ∈ Σ such that ci−1
ai−→ ci for all i. We

say that ρ is a run from c0 to cn and we write ρ = c0
a1−→ c1 · · ·

an−−→ cn. The word
a1 · · · an is called the trace of ρ. Given two configurations c, c′ ∈ C and a word
w ∈ Σ∗, the notation c

w−→ c′ means that there exists3 a run from c to c′ with
trace w. The length of w is denoted by |w|. We say that c′ is reachable from c,
written c

∗−→ c′, when c
w−→ c′ for some w ∈ Σ∗.

Our main objective is to determine whether there exists a run from an initial
configuration to a final configuration. Formally, the reachability problem asks,
given a LTS S = (C,Σ,→, I, F ), whether there exists c ∈ I and c′ ∈ F such

3 Due to non-determinism, there may be several runs from c to c′ with trace w.
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(a) States and transitions of the counter machine.

location h(location)
A 3

B 2

C 2

D 3

E 1

F 0

G +∞

(b) Estimated distances
to the final location F (so-
called h values).

Fig. 2: Counter machine corresponding to the inlined code given in Listing 1.1,
assuming that the correct function simply checks that its argument is nonzero.

that c
∗−→ c′. In theory, the reachability problem is only a decision problem.

But, in practice, a trace w ∈ Σ∗ witnessing reachability c
w−→ c′ should also be

provided when the answer is positive.

Example 1. Consider the counter machine given in Figure 2a. This machine is a
translation of our running example where the correct function simply performs
a nonzero test on its argument. All functions are inlined. The location F corre-
sponds to the call to the critical function. The trap function is modeled in
location G by two loops that are chosen non-deterministically (non-determinism
typically comes in practice from inputs to the program).

Formally, this counter machine operates on two counters, namely x and y,
that range over Z. Its locations are A, B, . . . , G and its edges are the arrows de-
picted in Figure 2a. Each edge is labeled with an action over the counters. These
actions are either guards or assignments. Let Σ denote the set of all counter ac-
tions appearing in Figure 2a. The semantics JaK of an action a ∈ Σ is defined, as
expected, as a binary relation JaK ⊆ Z{x,y} ×Z{x,y} over valuations of the coun-
ters. The operational semantics of the counter machine is given by the labeled
transition system S = (C,Σ,→, I, F ) defined as follows. The set of configura-
tions C is the set of pairs (ℓ, v) where ℓ is a location and v ∈ Z{x,y} is a valuation
of the counters. The sets of initial and final configurations are I = A×Z{x,y} and
F = F×Z{x,y}. The labeled transition relation is the set of triples (ℓ, v) a−→ (ℓ′, v′)

such that ℓ a−→ ℓ′ is an edge depicted in Figure 2a and (v, v′) ∈ JaK. Our goal can
now be formally phrased as the reachability question for S. ◁

We present an algorithm for the reachability problem that is based on sym-
bolic execution. Some additional notations are needed first. A region in a LTS
S = (C,Σ,→, I, F ) is a subset φ ⊆ C of configurations. Regions are often called
symbolic states in the context of symbolic execution. We define the region trans-
former post : 2C ×Σ → 2C as usual, by post(φ, a) = {c′ ∈ C | ∃c ∈ φ : c

a−→ c′}.
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Symbolic Execution for Reachability Analysis. Symbolic execution has
originally been proposed for program testing [14], but the technique can also
be used for reachability analysis. Our main contribution concerns exploration
strategies for symbolic execution. In order to present and compare these strate-
gies, we first recall some elements about symbolic execution.

An algorithm for reachability analysis based on symbolic execution is given
in Algorithm 1. This algorithm takes as input a labeled transition system S =
(C,Σ,→, I, F ) and computes a symbolic reachability tree where each node is
labeled with a region (i.e., a subset of C). The set of unprocessed nodes, called
the worklist, is maintained in the variable W . Initially, the algorithm creates the
root of the tree, labeled with the set I of initial configurations, and puts it in
the worklist. Then, as long as the worklist is non-empty, the algorithm selects
a node from the worklist (more details are given below) and processes it. If the
node’s region intersects the set F of final configurations then there exists a run
from an initial configuration to a final configuration, so the answer “Reachable”
is returned. Note that a witnessing trace w can be obtained by collecting the
actions along the branch (from the root to the node). Otherwise, the node is
expanded, meaning that for each action a ∈ Σ, a child is created and labeled
with the appropriate region according to the post transformer. This expansion
is omitted if the node’s region is empty. If the worklist becomes empty then all
configurations reachable from an initial configuration have been explored, and
none of them is final, so the algorithm returns “Unreachable”.

Algorithm 1 SymbolicExecution(S, Prio)
Input: A LTS S = (C,Σ,→, I, F ), a priority function Prio : (· · · )→ R ∪ {+∞}
Output: Either “Reachable” or “Unreachable”
1: r ← createRoot()
2: (r.region, r.priority)← (I, Prio(S, r, ∅))
3: W ← {r}
4: while W ̸= ∅ do
5: n← argmin{n.priority | n ∈W}
6: W ←W \ {n}
7: φ← n.region
8: if φ ∩ F ̸= ∅ then
9: return “Reachable” ▷ the branch provides a witnessing trace

10: else if φ ̸= ∅ then
11: for all a ∈ Σ do
12: u← createChild(n, a)
13: (u.region, u.priority)← (post(φ, a), Prio(S, u,W ))
14: W ←W ∪ {u}
15: end for
16: end if
17: end while
18: return “Unreachable”
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Remark 1. Algorithm 1 is correct in the sense that it either returns the correct
answer to the reachability problem for the input LTS S = (C,Σ,→, I, F ), or
loops forever. The proof is pretty standard. Let post∗ : 2C → 2C be defined as
usual, by post∗(φ) = {c′ ∈ C | ∃c ∈ φ : c

∗−→ c′}. We introduce in Algorithm 1
a “ghost” variable N that maintains the set of constructed nodes. The correct-
ness of the algorithm follows from the two following properties at line 4. First,
n.region is disjoint from F for every node n ∈ (N \W ). Second, post∗(I) is the
union of the set

⋃
n∈(N\W ) n.region and the set

⋃
n∈W post∗(n.region). These

two properties are routinely shown to be loop invariants at line 4.

In practice, symbolic execution implicitly assumes a maximum exploration
depth. The potentially infinite symbolic reachability tree computed by Algo-
rithm 1 is truncated at this maximum exploration depth (and the answer “Un-
reachable” is replaced by “Unknown” if the tree was truncated).

The order of exploration in Algorithm 1 can be customized via the prior-
ity function Prio. This function takes three arguments, a LTS, a node and a
worklist, and returns a priority in R ∪ {+∞}. Each node is assigned a priority
upon creation (lines 2 and 13) and this priority remains unchanged afterwards.
When the algorithm picks an unprocessed node from the worklist, it picks one
of minimal priority (see line 5).

Naturally, the classical search exploration strategies DFS, BFS and NURS
can be encoded as priorities. The corresponding priority functions are given by:

PrioDFS(S, u,W ) =

{
0 if W = ∅
min{n.priority | n ∈ W} − 1 otherwise

PrioBFS(S, u,W ) =

{
0 if W = ∅
max{n.priority | n ∈ W}+ 1 otherwise

PrioNURS(S, u,W ) = random(0, 1)

The depth-first (DFS) strategy is classically implemented with a last-in-first-out
worklist. This strategy is encoded with priorities by ensuring that the last node
added to the worklist receives a smaller priority than all other nodes in the
worklist (see the PrioDFS function). Similarly, the breadth-first (BFS) strategy,
which is classically implemented with a first-in-first-out worklist, is equivalent
to using the PrioBFS function in Algorithm 1. Finally, the PrioNURS function
provides a random priority for every node added to the worklist, which does
correspond to a non-uniform random (NURS) exploration of the tree.

Remark 2. To implement Algorithm 1 in practice, regions have to be finitely
representable, emptiness of a region and emptiness of the intersection of two
regions have to be decidable, and the post transformer must be computable. In
practice, regions are often encoded as SMT formulas.

Remark 3. As in classical symbolic execution, Algorithm 1 blindly expands a
node regardless of whether its region has already been processed before. A
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computationally cheap inclusion test (i.e., a relation ⪯ on regions such that
r ⪯ r′ =⇒ r ⊆ r′) could be used to partially truncate the exploration.

Exploration Strategy Inspired from A∗. In addition to the classical strate-
gies DFS, BFS and NURS, we provide a new exploration strategy for symbolic
execution, inspired from the A∗ algorithm.

Recall that A∗ is a single-pair shortest path algorithm for nonnegatively
weighted directed graphs. Assume that we are given such a graph together with
a source vertex and a target vertex. Let V denote the set of vertices of the graph.
The main idea of the A∗ algorithm is to guide the exploration using a heuristic
function h : V → N ∪ {+∞} that underestimates the (minimal) distance from
any vertex to the target vertex. Note that h(v) may be +∞ if there is no path
from v to the target vertex. When A∗ picks a vertex to process from its worklist,
it chooses a vertex v that minimizes the sum g(v) + h(v), where g(v) is the
weight of the shortest path seen so far from the source vertex to v. Let us see
how to adapt this exploration strategy in our symbolic execution algorithm. In
our context, edges are not weighted (they correspond to symbolic transitions
φ

a−→ φ′ where φ′ = post(φ, a)), so we assume a uniform weight of one. We first
need to extend the notion of distance underapproximation to regions.

Definition 1. A distance underapproximation for a LTS S = (C,Σ,→, I, F )
is a function hS : 2C → N ∪ {+∞} such that for every i, c, f ∈ C and w ∈ Σ∗,

i ∈ I ∧ i
∗−→ c ∧ c ∈ φ ∧ c

w−→ f ∧ f ∈ F =⇒ hS(φ) ≤ |w|

Informally, hS(φ) returns an underapproximation of the distance between a given
region φ ⊆ C and the set of final configurations F . However, to facilitate the
design of distance underapproximations, this condition on hS(φ) is only required
for the configurations c ∈ φ that are reachable from an initial configuration.

To adapt the exploration strategy of A∗ in Algorithm 1, we assume that we
are given a (computable) distance underapproximation hS for the LTS S under
analysis, and we use the priority function PrioASTAR defined as follows:

PrioASTAR(S, u,W, hS) = depth(u) + hS(u.region)

where depth(u) denotes the depth of the node u in the symbolic reachability
tree that is generated by Algorithm 1. Note that this is slightly different from
A∗ since depth(u) only upper-bounds4 the distance seen so far from the set of
initial configurations to the region of u. This is not an issue as our primary goal
is to quickly find an executable path, regardless of its length.

Example 2. We illustrate this approach on our running example (see Exam-
ple 1) by applying it on the LTS giving the semantics of the counter machine
4 To faithfully mimic A∗, depth(u) should be compared with the depths of all processed

nodes having the same region as u. But this would require checking equality between
regions, which is computationally costly in general.
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A (3)
⊤

B (3)
x = 0

E (3)
⊥

C (4)
x = 0

E (4)
x = 0 ∧ y = 0

F (4)
⊥

G (+∞)
x = 0 ∧ y = 0

D (6)
x = 0 ∧ y ̸= 0

B (6)
x = 1 ∧ y ̸= −1

E (6)
⊥

B (303)
x = 100 ∧ y ̸∈ [−100,−1]

E (303)
⊥

C (304)
x = 100 ∧ y ̸∈ [−100,−1]

E (304)
x = 100 ∧ y = 0

F (304)
x = 100 ∧ y = 0

G (+∞)
⊥

D (306)
x = 100 ∧ y ̸∈ [−100, 0]

Fig. 3: Symbolic execution with PrioASTAR of the counter machine in Figure 2.

of Figure 2a. The symbolic reachability tree generated by Algorithm 1 with the
PrioASTAR function is (partially) depicted in Figure 3. We use the distance un-
derapproximation obtained by ignoring the counters, given in Figure 2b. Each
node in Figure 3 is labeled with its region and its priority (in parentheses).
The region is given by a location of the counter machine and a formula over its
counters x, y. Recall that the priority of a node is the sum of its depth and of
the h value of its location (given in Figure 2b). The order of exploration is not
explicitly shown but dotted/gray nodes have not yet been explored and are still
in the worklist at the end of the exploration. Our approach explores about 600
nodes before reaching the final location.

In comparison, with a maximum exploration depth of 10000 nodes, at least
10270 nodes are explored with PrioDFS, assuming that actions are always taken
in the same order at line 11 of Algorithm 1. About 1030 nodes are explored with
PrioBFS, most of them stuck in location G (this location corresponds to the trap
function). At least 10100 nodes are explored on average with PrioNURS. ◁

4 Guiding the Exploration Towards the Unknown

This section presents an improvement of the A∗-like exploration strategy pre-
sented in the previous section. We first exhibit some weaknesses of this explo-
ration strategy and we then show how to tackle these weaknesses. In short,
our improved A∗-like exploration strategy steers the exploration towards least
explored parts of the system under analysis.
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A

B C D

E F

G H I

J K

x := 0;
y := 0

x++

x−−

y++

x ̸= 10 ∨ y ̸= 10

x = 10 ∧ y = 10 true

true

x++ y++

x < 100

x ≥ 100

x ≤ 0

x > 0

loc. h(loc.)
A 27

B 26

C 25

D 24

E 23

F 2

G 3

H 2

I 1

J 1

K 0

Fig. 4: Counter machine that illustrates some limitations of our basic A∗-like
exploration strategy induced by the priority function PrioASTAR. The distance
underapproximation is shown on the right-hand side.

Limitations of our Basic A∗-like Exploration Strategy. In the symbolic
reachability tree generated by Algorithm 1 with PrioASTAR, the priority of a node
u is the sum depth(u)+hS(u.region). When the non-infinite hS values are small
compared to the depth of the nodes, the resulting exploration roughly amounts to
a breadth-first (BFS) exploration (except that nodes u with hS(u.region) = +∞
are explored last). This is bad news as symbolic execution with BFS is known
to perform poorly in practice. Let us illustrate this issue with a small example
inspired by our experimentations on Wookey’s bootloader (see Section 6).

Example 3. Consider the counter machine given in Figure 4. The two edges
B

x++−−−→ C and B
x−−−−−→ C model a non-deterministic choice from the location B.

Similarly, the two edges originating from F are chosen non-deterministically. The
dashed edge from E to F stands for 20 intermediate locations between E and F.
This is reflected in the distance underapproximation values given in the table on
the right hand-side of the figure. As before, this distance underapproximation is
obtained by simply ignoring the counters.

The only run reaching the final location K takes the loop B–C–D exactly 10

times, each time choosing the B
x++−−−→ C edge so that x and y remain equal, and

exits the loop in E with x = y = 10. It then moves to F and takes the edge
F

true−−→ G since K is not reachable from J with x = 10. Finally, the loop G–H–I is
taken exactly 90 times before moving to K.

Symbolic execution with PrioASTAR first constructs all nodes obtained by
taking the loop B–C–D exactly 9 times, so we end up with 29 copies of B in the
worklist, each with the same depth 1 + 9 · 3, hence, the same priority 54. Then,
the loop B–C–D is taken once more, and exactly one branch exits the loop. This
branch reaches F, forks into G and J, and takes the loop on J twice. At this
point, the worklist contains 210 − 1 copies of B with priority 57, one copy of G
with priority 56, and one copy of J with priority 56. In order to reach the final
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location K, the exploration now needs to iterate the loop G–H–I exactly 90 times.
But for each iteration of this loop, an additional iteration of the B–C–D loop is
performed from each copy of B in the worklist, leading each time to twice as
many copies of B in the worklist. This dramatically slows down the construction
of the only branch leading to the final location K. ◁

An Improved A∗-like Exploration Strategy. As mentioned previously, the
issue at hand arises when the sum depth(u) + hS(u.region) is dominated by
depth(u), which is very common in real-size programs. To fix this issue, we
propose to replace depth(u) by another measure that still accounts for the length
of the branch from the root of the tree to u, but prioritizes nodes corresponding
to parts of the system that have rarely been visited.

Remark 4. A tempting solution to the above-mentioned issue may be to simply
replace depth(u) by zero, i.e., to let the priority of each node u be hS(u.region).
The resulting symbolic execution of the counter machine given in Figure 4 is
similar, at first, to the one detailed in Example 3. However, when the branch
reaching F forks into G and J, the copy of G now has priority 3 and the copy of
J now has priority 1. So the copy of G remains in the worklist and the loop on J

is taken forever (or until the maximum exploration depth is reached).

Let us now define the priority function PrioASTAR-2 inducing our improved
A∗-like exploration strategy. We first introduce the notion that we use to identify
“parts of the system”. An observable for a LTS S = (C,Σ,→, I, F ) is any subset
of C. Given a finite set P of observables, we define the region observation function
obs : 2C → 2P by obs(φ) = {p ∈ P | (φ ∩ p) ̸= ∅}. Given a sequence of
regions r0, . . . , rn, we let obs¬∅(r0, . . . , rn) denote the sequence obtained from
obs(r0), . . . , obs(rn) by removing all occurrences of ∅.

Observables will be used to focus the exploration on specific properties of
the system under analysis. On a given branch of the symbolic reachability tree,
instead of looking at the sequence of regions r0, . . . , rn that have been visited
along the branch, we will look at the sequence of observations obs¬∅(r0, . . . , rn).
Typically, for counter machines and binary programs (see Section 5), we con-
sider observables induced by specific locations. But we could use observables
expressing properties on counters or registers.

Example 4. In the counter machine of Figure 4, we focus on locations that are
targets of branching instructions, i.e., locations in the set T = {B, C, E, G, J, K}.
For each location t ∈ T , we define the observable pt = {t} × Z{x,y}. ◁

The PrioASTAR-2 function is defined in Algorithm 2. To simplify the pre-
sentation, we assume that the set I of initial configurations has a nonempty
observation. This guarantees that the sequence obs0, . . . , obsk defined at line 2
is nonempty. The priority returned by PrioASTAR-2 is g · λ(µ) + hS(u.region)
where g and µ depend on the sequence obs0, . . . , obsk of nonempty observations
seen along the branch. In words, g is the “elementary” length of this sequence,
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Algorithm 2 PrioASTAR-2(S, u,W, hS , P, λ)
Input: A LTS S = (C,Σ,→, I, F ), a node u, a worklist, a distance underapproxima-

tion hS for S, a finite set P of observables for S, a function λ : N→ R≥0

1: Let u0, . . . , un denote the branch from the root r = u0 to the node u = un

2: Let obs0, . . . , obsk = obs¬∅(u0.region, . . . , un.region) ▷ k ≥ 0
3: Let g = Card{obs0, . . . , obsm} where m = min{i ∈ [0, k] | obsi = obsk}
4: Let µ = Card{i ∈ [0, n] | obsi = obsk}
5: return g · λ(µ) + hS(u.region)

i.e., the number of distinct elements in the sequence obs0, . . . , obsm where obsm
is the first occurrence of obsk, and µ is the number of times that obsk occurs in
the sequence obs0, . . . , obsk. Intuitively, obsk indicates which part of the system
corresponds to the node u, so µ tells us how many times this part of the system
has been visited along the branch. Observe that g only depends on the first oc-
currence of each observation in obs0, . . . , obsk. We call g the elementary depth of
the node u.

The function λ : N → R≥0 allows us to adjust the priority depending on the
value of µ. The choice of a good λ function is crucial to guide the exploration
properly. In order to steer the exploration towards least explored parts of the
system, λ should be non-decreasing, and λ(µ) should be small when µ is small.
According to our experiments, a λ function of the form

λθ(µ) =

{
0 if µ < θ

log10(µ− θ + 1) otherwise

performs well in practice. Here, the parameter θ ∈ N acts as a threshold (in
our experiments, we use θ = 3, see Section 6). The idea behind λθ is to give
precedence to nodes that are in a part of the system that has rarely been visited
(less than θ times) along the branch. Note that this function always returns zero
or a small value. As mentioned before, we do this to prevent the elementary
depth g from dominating hS . Note that this is just an example of a possible
λ function that we designed during our experimentations. Different λ functions
may also work, and even outperform this one.

Example 5. Consider again the counter machine given in Figure 4. We take the
same set of observables as in Example 4, and we use the function λθ defined
above with θ = 3. As with PrioASTAR, symbolic execution with PrioASTAR-2
first constructs all nodes obtained by taking the loop B–C–D exactly 9 times.
When the branch that exits the loop forks into G and J, the worklist contains
210 − 1 copies of B with priority 26 + 1 · log10(8), one copy of G with priority
3, and one copy of J with priority 1. So the loop on J is iterated first, and the
priority of the J copy in the worklist slowly increases. When this priority becomes
larger than 3, the loop G–H–I is also iterated. The exploration then interleaves the
construction of the two corresponding branches. After 90 iterations of the loop G–
H–I, the worklist contains a copy of K with priority 0. This copy is then processed
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immediately, and the algorithm returns “Reachable”. Let us estimate the number
of iterations of the loop on J. Just before completion of the G–H–I loop, the last
copy of G in the worklist has priority 3+4·log10(90−1) < 3+4·2 = 11. Similarly,
the last copies of H and I have priorities less than 8 and 7, respectively. After
k ≥ 3 iterations of the loop on J, the priority of the J copy is 1+4 · log10(k− 1).
Observe that (1+4 · log10(k−1) > 11) ⇔ k > 317. So the loop on J is iterated at
most 318 times. Note also that the 210 − 1 copies of B have not left the worklist
since their priority is larger than 26, hence, larger than 11. ◁

5 Application to Binary Programs

We show in this section how to apply our approach to binary programs. Recall
that our new A∗-like exploration strategies require a distance underapproxima-
tion for the LTS under analysis. The main purpose of this section is to provide an
efficiently computable distance underapproximation for binary programs. Before
that, we need to define5 the syntax and semantics of binary programs.

Syntax and Semantics. Consider a fixed set Reg of registers and a fixed set
Addr of addresses. To account for instructions that do not impact the control-flow
of the program, such as memory accesses and arithmetic operations on registers,
we assume an a priori given set Op of operations. Each operation op ∈ Op comes
with its semantics JopK, given as a function from ZReg ×ZAddr to itself. A binary
program is a finite sequence of instructions (I1, . . . , In), where each instruction
Ik is in the following set:

Op ∪ {BR r ℓ | r ∈ Reg ∧ ℓ ∈ [1, n]} ∪ {CALL ℓ | ℓ ∈ [1, n]} ∪ {RET}

Here, BR stands for conditional branching, and CALL and RET stand for procedures
call and return. A location of the binary program is any integer in [1, n+ 1].

The operational semantics of a binary program (I1, . . . , In), equipped with
a final location f ∈ [1, n + 1], is given by the labeled transition system S =
(C,Σ,→, I, F ) defined as follows. The set of actions Σ is the set of instructions
of the programs, i.e., Σ = {I1, . . . , In}. The set of configurations C is the set of
quadruples (ℓ, R,M, s) where ℓ ∈ [1, n+1] is a location, R ∈ ZReg and M ∈ ZAddr

are register and memory contents, and s ∈ [1, n + 1]∗ is a stack contents. The
sets of initial and final configurations are I = {(ℓ, R,M, s) ∈ C | ℓ = 1 ∧ s = ε}
and F = {(ℓ, R,M, s) ∈ C | ℓ = f}. The labeled transition relation → is defined
by the rules given in Figure 5. Note that each of these rules implicitly requires
that ℓ ∈ [1, n] since Iℓ must be defined.

Distance Underapproximation. Following the approach of Blondin et al. for
Petri nets [4], we propose a distance underapproximation for binary programs
5 Similar definitions of the syntax and semantics of binary programs can be found in

the literature. Our definition is intentionally simple and tailored to our purposes.
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Iℓ = op ∈ Op (R′,M ′) = JopK(R,M)

(ℓ, R,M, s)
Iℓ−→ (ℓ+ 1, R′,M ′, s)

Iℓ = BR r ℓ′ R(r) = 0

(ℓ, R,M, s)
Iℓ−→ (ℓ+ 1, R,M, s)

Iℓ = BR r ℓ′ R(r) ̸= 0

(ℓ, R,M, s)
Iℓ−→ (ℓ′, R,M, s)

Iℓ = CALL ℓ′

(ℓ, R,M, s)
Iℓ−→ (ℓ′, R,M, (ℓ+ 1) · s)

Iℓ = RET

(ℓ, R,M, ℓ′ · s) Iℓ−→ (ℓ′, R,M, s)

Fig. 5: Operational semantics of binary programs.

Iℓ = op ∈ Op

(ℓ, s)
Iℓ−→♯ (ℓ+ 1, s)

Iℓ = BR r ℓ′

(ℓ, s)
Iℓ−→♯ (ℓ+ 1, s)

Iℓ = BR r ℓ′

(ℓ, s)
Iℓ−→♯ (ℓ′, s)

Iℓ = CALL ℓ′

(ℓ, s)
Iℓ−→♯ (ℓ′, (ℓ+ 1) · s)

Iℓ = RET

(ℓ, ℓ′ · s) Iℓ−→♯ (ℓ′, s)

Fig. 6: Abstract semantics of binary programs.

that is based on an abstraction of the operational semantics defined above. This
abstraction merely consists of ignoring the register and memory contents.

Formally, the abstract semantics of a binary program (I1, . . . , In), equipped
with a final location f ∈ [1, n + 1], is given by the labeled transition system
S♯ = (C♯, Σ,→♯, I♯, F ♯) defined as follows. The set of actions Σ is the same as
before, i.e., Σ = {I1, . . . , In}. The set of abstract configurations C♯ is the set
of pairs (ℓ, s) where ℓ ∈ [1, n + 1] is a location and s ∈ [1, n + 1]∗ is a stack
contents. The sets of initial and final abstract configurations are I♯ = {(1, ε)}
and F ♯ = {f}× [1, n+1]∗. The labeled abstract transition relation →♯ is defined
by the rules given in Figure 6. Again, each of these rules implicitly requires that
ℓ ∈ [1, n]. Obviously, every run in S can be mimicked in S♯ by ignoring the
register and memory contents. Formally, it holds that (ℓ, s)

w−→♯ (ℓ′, s′) in S♯

when (ℓ, R,M, s)
w−→ (ℓ′, R′,M ′, s′) in S. So we can use S♯ to underestimate the

distance in S between two (sets of) configurations.

For efficiency reasons, our distance underapproximation is based on the pre-
computation of the distance in S♯ between pairs of locations ℓ, ℓ′ ∈ [1, n + 1].
However, if we start in ℓ with an arbitrary stack contents, then a RET instruction
may directly lead to ℓ′. This would yield an extremely coarse distance underap-
proximation. So we restrict the stack contents to “legitimate” ones, in the sense
that the stack starts with a valid return location. Formally, we say that an ab-
stract configuration (ℓ, s) is coherent if s is empty or of the form s = ℓ′ · s′ with
ℓ′ ∈ [1, n+1] such that (ℓ′′, ε) ∗−→♯ (ℓ, ℓ′) for some ℓ′′ ∈ [1, n+1]. Note that every
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abstract configuration (ℓ, s) reachable in S♯ from (1, ε) is coherent. A run in S♯ is
called coherent when all abstract configurations visited by the run (including the
first and last ones) are coherent. We write (ℓ, s)

w−→♯
co (ℓ′, s′) when there exists a

coherent run from (ℓ, s) to (ℓ′, s′) with trace w. Let d♯ : [1, n+1]× [1, n+1] → N
be defined6 by:

d♯(ℓ, ℓ′) = inf{|w| | ∃s, s′ ∈ [1, n+ 1]∗ : (ℓ, s)
w−→♯

co (ℓ′, s′)}

The distance underapproximation hS that we propose is defined as follows:

hS(φ) = inf{d♯(ℓ, f) | (ℓ, R,M, s) ∈ φ}

Intuitively, hS(φ) is the minimal distance from the locations of φ to f in the
abstract semantics S♯ restricted to coherent abstract configurations. It is readily
seen that the function hS satisfies the condition of Definition 1.

Remark 5. Our notion of coherence for abstract configurations only accounts for
the top-most return location on the stack. The remainder of the stack may be
arbitrary. However, for every coherent run (ℓ, ℓ1 · · · ℓk · s) ∗−→♯

co (ℓ′, s), the prefix
ℓ1 · · · ℓk of the stack that is popped in the run is “legitimate” in the sense that
each ℓi is a valid return location for ℓi−1 (formally, the abstract configurations
(ℓi−1, ℓi) are coherent).

To compute hS(φ), we need to compute d♯(ℓ, f) for every location ℓ. First,
we compute, for each instruction CALL ℓ appearing in the binary program, the
ℓ-summary inf{|w| | ∃ℓ′ : (ℓ, ε)

w−→♯ (ℓ′, ε) ∧ Iℓ′ = RET}. Second, we compute
the values d♯(ℓ, f) by applying a single-source shortest path algorithm on S♯

augmented with summaries, starting from f and moving backwards on edges.
The resulting algorithm is similar to the one described in [2].

Wrap Up. We now have the necessary ingredients to perform symbolic execu-
tion (see Algorithm 1) with our new A∗-like exploration strategies. Regions use
SMT formulas for register and memory contents, and an explicit representation
for locations and stack contents. The post transformer is computed by following
the operational semantics given in Figure 6. The distance underapproximation
provided to PrioASTAR and PrioASTAR-2 is the one presented in the previous
subsection. Finally, the finite set P of observables given to PrioASTAR-2 is in-
duced by the locations that are targets of control-flow instructions. Let T de-
note these locations, i.e., T is the set of all t ∈ [1, n + 1] such that there exists
ℓ, ℓ′ ∈ [1, n] and r ∈ Reg verifying Iℓ ∈ {BR r ℓ′, CALL ℓ′} and t ∈ {ℓ′, ℓ + 1}.
Formally, P is the set of all subsets pt = {t} × ZReg × ZAddr × [1, n+ 1]∗ where
t ranges over T .

6 Experimental results

We evaluate our new approach on seven programs: the two running examples of
the paper (Figures 2 and 4), three “crackme” challenges [20–22] which are rel-
6 Recall that infX = minX for every non-empty subset X ⊆ N and that inf ∅ = +∞.
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Fig. 7: Experimental results obtained with Binsec: bars represent the number of
unrolled instructions in a logarithmic scale and dots represent the SSE duration
in seconds.

atively easy to solve and with a reasonable size (around 200 instructions), and
two “real-size” programs namely the Wookey bootloader [1] which is a popular
software designed by the ANSSI7 meant to be robust against various type of at-
tacks (∼10K locations), and the leave command of NetBSD (∼100K locations).
The programs are cross-compiled to pure THUMB-2 with target CPU cortex-m3
and armv7-m architectures.

We use the symbolic execution tool Binsec (version 0.6), in which we have
implemented our new strategies. The targets for the study are chosen arbitrarily
but meant to be deep in the execution flow or difficult to reach. A time limit of
100 seconds is allowed for each experiment, beyond which we stop it and report
a timeout (t.o.). In the Wookey bootloader and the leave programs, we have
stubbed some parts of the code to accelerate the process. All benchmarks were
ran on a AMD64 Oracle Linux Server (release 8.8) machine with an Intel(R)
Xeon(R) Gold 6244 CPU (3.60 GHz) and with 256GiB of RAM. A replication
package for our experiments (including the source code and the seven programs)
is available at Zenodo [10].

We compare the approach based on PrioASTAR-2 (named astar-2 in the
benchmarks) with the usual exploration strategies (dfs, bfs and nurs), and
also with our basic A∗-like approach, i.e., based on PrioASTAR (named astar in
the benchmarks). In Figure 7, we compare the number of unrolled instructions
and the symbolic execution time for each exploration strategy on the different
programs. The results of the three crackmes are summed up and displayed as
one "program" named crackmes. In the case of NURS, the experiments are

7 French National Cybersecurity Agency.
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ran 10 times and the average for both metrics are displayed. The exploration
strategies are on the X-axis, the number of unrolled instructions is on the left
Y-axis and represented by the bars. Finally, the symbolic execution time is on
the right Y-axis and displayed by green dots. For readability reasons, we use a
logarithmic scale for the number of unrolled instructions. Clearly, our new explo-
ration strategy astar-2 always outperforms the classical strategies. Moreover,
it also always outperforms the strategy solely based on astar, as expected. The
astar exploration strategy is generally not powerful enough to reach the tar-
get on real programs (leave, Wookey’s bootloader). Regarding the duration of
the symbolic execution, the strategy astar-2 also always outperforms the other
strategies. Note that the number of unrolled instructions is not directly corre-
lated to the execution time of symbolic execution. In fact, what really slows it
down are satisfiability queries, which are made at conditional branching points.

The efficiency of the exploration depends on the maximum exploration depth.
The perfect bound is not definable beforehand so we set it to 107 instructions for
all programs. Finally, the results of our exploration strategy astar-2 depend on
the function λ (see Section 4). The best λ function is specific to each situation,
nevertheless we chose to systematically use λθ with θ = 3 in our experiments.
Using a smaller parameter θ tends to steer the exploration towards a BFS, while
a larger parameter θ steers the exploration towards a DFS. The best in-between
value we found was θ = 3.

7 Conclusion

In this paper, we have introduced a novel exploration strategy for symbolic exe-
cution inspired from the A∗ algorithm permitting to find efficiently an executable
path to a target instruction. This approach orders the exploration of symbolic
states by using heuristics permitting to visit in priority states that have been
less explored. Consequently the number of paths to explore is smaller than in
usual approaches such as DFS, BFS and NURS, implying better performance.
Although some faulty execution may still remain difficult to catch, this approach
shows promising results. Our key insight while designing this algorithm is to cre-
ate a balanced mix between a DFS and a BFS. The strategy has been designed
on generic transition systems, making it applicable in various situations. We have
described how to apply it on binary code, and provided an experimental evalu-
ation showing that our strategy outperforms the classical exploration strategies
DFS, BFS and NURS and scales well on real-size programs. As future work, we
intend to apply this technique to the detection of hardware vulnerabilities (i.e.,
vulnerabilities to fault injection attacks).
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