
Model Based Testing IOLTS Testing Timed extensions Conclusion

Model Based Testing : principles and applications
in the context of timed systems

Antoine Rollet

Université de Bordeaux - LaBRI (UMR CNRS 5800), France
rollet@labri.fr

http://www.labri.fr/~rollet

A. Rollet - ETR2011 - Brest (France) - August 2011 1/63

http://www.labri.fr/~rollet

Model Based Testing IOLTS Testing Timed extensions Conclusion

Outline

1 Model Based Testing

2 Conformance Testing with IOLTS

3 Testing Timed Systems

4 Conclusion and further work

A. Rollet - ETR2011 - Brest (France) - August 2011 2/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Outline

1 Model Based Testing

2 Conformance Testing with IOLTS

3 Testing Timed Systems

4 Conclusion and further work

A. Rollet - ETR2011 - Brest (France) - August 2011 3/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Introduction on testing

Why testing?
Systems getting more and more complex
→ potentially more bugs
A failure may cost a lot (human and financial)
→ earlier detection implies weaker consequences

Limitations
“Testing can only be used to show the presence of bugs, but
never to show their absence” (Dijkstra)
→ need to make some assumptions
→ Objective : increase the confidence in the system

A. Rollet - ETR2011 - Brest (France) - August 2011 4/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Different kinds of testing

black box / white box

white box : most elements of the system are known, especially
source code (structural testing)
black box : implementation is considered as an unknown black
box; only interfaces are known
→ test generation based on the specification (functional
testing)

What do we intend to test
User testing, performance testing, conformance testing,
interoperability testing, robustness testing, etc...

→ Testing that a black-box implementation (IUT) of a system
behaves correctly wrt. its functional specification Spec.

A. Rollet - ETR2011 - Brest (France) - August 2011 5/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Different kinds of testing

black box / white box

white box : most elements of the system are known, especially
source code (structural testing)
black box : implementation is considered as an unknown black
box; only interfaces are known
→ test generation based on the specification (functional
testing)

What do we intend to test
User testing, performance testing, conformance testing,
interoperability testing, robustness testing, etc...

→ Testing that a black-box implementation (IUT) of a system
behaves correctly wrt. its functional specification Spec.

A. Rollet - ETR2011 - Brest (France) - August 2011 5/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Conformance testing of reactive systems

Reactive system
System which reacts to its environment through its interfaces.

Environment: human, software, hardware
Necessary to think about :

Controllability : “how the tester can lead the test”
Observability : “how the tester can get information”

→ definition of Points of Control and Observation (PCO).
→ definition of a test architecture

A. Rollet - ETR2011 - Brest (France) - August 2011 6/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Model Based Testing

Industrial practice: manual design of test suites from informal
specifications

Model Based Testing

Model Based Testing (MBT) → testing with the ability to detect
faults which do not conform to a model called specification.

Specification
conforms

specifies
Implementation

Under
Test
(IUT)

⇒ possible automation for test generation, test execution, test
evaluation (verdict)
⇒ Formal Methods

A. Rollet - ETR2011 - Brest (France) - August 2011 7/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Model Based Testing (2)

Test cases are generated from the Model
Problems :

need to find a “good” model of the specification
what does specify mean?
what does conform mean?

Implementation is supposed to be equivalent to a formal
model (but Implementation is unknown)
Need to define a conformance relation between the
Specification and the Implementation

A. Rollet - ETR2011 - Brest (France) - August 2011 8/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Model Based Testing (2)

Test cases are generated from the Model
Problems :

need to find a “good” model of the specification
what does specify mean?
what does conform mean?

Implementation is supposed to be equivalent to a formal
model (but Implementation is unknown)
Need to define a conformance relation between the
Specification and the Implementation

At the beginning...
Two main approaches of MBT :

Finite State Machines
Labeled Transition Systems

A. Rollet - ETR2011 - Brest (France) - August 2011 8/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

General schema

S P ?

Property P

Specification S

Implementation I

I conf S ?

A. Rollet - ETR2011 - Brest (France) - August 2011 9/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

General schema

S P ?

Property P

Specification S

Implementation I

I conf S ?

VERIFICATION

A. Rollet - ETR2011 - Brest (France) - August 2011 9/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

General schema

S P ?

Property P

Specification S

Implementation I

I conf S ? TEST

A. Rollet - ETR2011 - Brest (France) - August 2011 9/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

General schema

S P ?

Property P

Specification S

Implementation I

I conf S ?

Test cases

control

observation?

!

Verdict

A. Rollet - ETR2011 - Brest (France) - August 2011 9/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

General schema

S P ?

Property P

Specification S

Implementation I

I conf S ?

Test cases

control

observation?

!

Verdict

Test Generation

A. Rollet - ETR2011 - Brest (France) - August 2011 9/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

General schema

S P ?

Property P

Specification S

Implementation I

I conf S ?

Test cases

control

observation?

!

Verdict

Test Generation

Test Purpose

A. Rollet - ETR2011 - Brest (France) - August 2011 9/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Main ingredients of a testing theory

Specification, implementation and conformance
Specification: model of requested behaviors,
Implementations: model of observable real behavior (unknown)
Conformance relation: formalizes “IUT conforms to Spec”

Tests cases and their executions
Test cases, test suites: model of tests (control/observation)
Test execution: interaction test ↔ IUT, produced observations,

associated verdicts (e.g. pass, fail)
Test suite properties: “IUT passes TS” ↔ “IUT conf S”

Test generation
Algorithms : tests = testgen(Spec (+ TestPurpose))

A. Rollet - ETR2011 - Brest (France) - August 2011 10/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Outline

1 Model Based Testing

2 Conformance Testing with IOLTS

3 Testing Timed Systems

4 Conclusion and further work

A. Rollet - ETR2011 - Brest (France) - August 2011 11/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

References

Part essentially based on :
[Tre96] J. Tretmans, “Test generation with inputs, outputs,
and repetitive quiescence,” Software–Concepts and Tools,
vol. 17, pp. 103–120, 1996.
[JJ04] C. Jard and T. Jéron, “Tgv: theory, principles and
algorithms, a tool for the automatic synthesis of conformance
test cases for non-deterministic reactive systems,” Software
Tools for Technology Transfer (STTT), 10 2004.
[Jer04] T. Jéron, “Contribution à la génération automatique de
tests pour les systèmes réactifs,” 2004, habilitation à Diriger
des Recherches - Université de Rennes 1.

A. Rollet - ETR2011 - Brest (France) - August 2011 12/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Input Output Labelled Transition System (IOLTS)

s0

s1

s2

s3

s4 s5 s6

s7

?digit

?reset

τ1

!beep
?digit

?reset

!open !alarm

τ2

τ3

τ4

M = (QM , AM ,−→M , q
M
0) with :

QM set of states
qM0 ∈ QM initial state
AM action alphabet,

AM
I input alphabet (with ?)

AM
O output alphabet (with !)

IM internal actions (τk)

−→M⊆ QM ×AM ×QM
transition relation

AMV IS = AMI ∪AMO set of visible actions

A. Rollet - ETR2011 - Brest (France) - August 2011 13/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Input Output Labelled Transition System (IOLTS)

s0

s1

s2

s3

s4 s5 s6

s7

?d

?r

τ1

!b
?d

?r

!o !a

τ2

τ3

τ4

M = (Q,A,−→, q0) with :
Q set of states
q0 ∈ Q initial state
A action alphabet,

AI input alphabet (with ?)
AO output alphabet (with !)
I internal actions (τk)

−→⊆ Q×A×Q
transition relation

AV IS = AI ∪AO set of visible actions

A. Rollet - ETR2011 - Brest (France) - August 2011 13/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Runs / Traces

s0

s1

s2

s3

s4 s5 s6

s7

?d

?r

τ1

!b
?d

?r

!o !a

τ2

τ3

τ4

Runs: alternate sequences of states and
actions fireable btw those states

s0
?d→ s1

τ1→ s2
?d→ s3

!o→ s4 ∈ Runs(M)

Traces: projections of Runs
on visible actions:
Traces(M) = {ε, ?d, ?r, ?d.?r, ?r.?d, ?d.!b, ...}

P after σ: set of states reachable from P
after observation σ:
{s2} after ?d.!o = {s0, s4}
{s0} after ?d, !a = ∅
M after σ , {q0} after σ

A. Rollet - ETR2011 - Brest (France) - August 2011 14/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Non-determinism

s1
s2

s3

?x
!a

!a

s1 s2

s3 s4

τ

!a
!b

Not to be confused with uncontrolled choice

s1
s2

s3

?x
!a

!b

M is deterministic if it has no internal action,
and ∀q, q′, q′′ ∈ Q,∀a ∈ AV IS , (q

a−→ q′ ∧ q a−→ q′′)⇒ q′ = q′′

Determinization: det(M) = (2Q, AV IS ,−→det, q0 after ε) with
P

a−→det P
′ ⇔ P, P ′ ∈ 2Q, a ∈ AV IS and P ′ = P after a.

Traces(M) = Traces(det(M))

A. Rollet - ETR2011 - Brest (France) - August 2011 15/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Non-determinism

s1
s2

s3

?x
!a

!a

s1 s2

s3 s4

τ

!a
!b

Not to be confused with uncontrolled choice

s1
s2

s3

?x
!a

!b

M is deterministic if it has no internal action,
and ∀q, q′, q′′ ∈ Q,∀a ∈ AV IS , (q

a−→ q′ ∧ q a−→ q′′)⇒ q′ = q′′

Determinization: det(M) = (2Q, AV IS ,−→det, q0 after ε) with
P

a−→det P
′ ⇔ P, P ′ ∈ 2Q, a ∈ AV IS and P ′ = P after a.

Traces(M) = Traces(det(M))

A. Rollet - ETR2011 - Brest (France) - August 2011 15/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Observation of quiescence

In testing practice, one can observe traces of the IUT , but also its
quiescences with timers.
Only quiescences of IUT unspecified in S should be rejected.

s0

s1

s2

s3

s4 s5 s6

s7

?d

?r

τ1

!b
?d

?r

!o !a

τ2

τ3

τ4

Notation : Γ(q) , {a ∈ A | q a→}
deadlock : no possible evolution :

Γ(q) = ∅.
outputlock : systems waiting for an action :

Γ(q) ⊆ AI .
livelock : internal actions loop :
∃τ1, ...τn : q

τ1...τn−→ q.

quiescent(M) = deadlock(M) ∪ livelock(M) ∪ outputlock(M)

A. Rollet - ETR2011 - Brest (France) - August 2011 16/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Observation of quiescence

In testing practice, one can observe traces of the IUT , but also its
quiescences with timers.
Only quiescences of IUT unspecified in S should be rejected.

s0

s1

s2

s3

s4 s5 s6

s7

?d

?r

τ1

!b
?d

?r

!o !a

τ2

τ3

τ4

Notation : Γ(q) , {a ∈ A | q a→}
deadlock : no possible evolution :

Γ(q) = ∅.
outputlock : systems waiting for an action :

Γ(q) ⊆ AI .
livelock : internal actions loop :
∃τ1, ...τn : q

τ1...τn−→ q.

quiescent(M) = deadlock(M) ∪ livelock(M) ∪ outputlock(M)

A. Rollet - ETR2011 - Brest (France) - August 2011 16/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Observation of quiescence

In testing practice, one can observe traces of the IUT , but also its
quiescences with timers.
Only quiescences of IUT unspecified in S should be rejected.

s0

s1

s2

s3

s4 s5 s6

s7

?d

?r

τ1

!b
?d

?r

!o !a

τ2

τ3

τ4

Notation : Γ(q) , {a ∈ A | q a→}
deadlock : no possible evolution :

Γ(q) = ∅.
outputlock : system waiting for an action :

Γ(q) ⊆ AI .
livelock : internal actions loop :
∃τ1, ...τn : q

τ1...τn−→ q.

quiescent(M) = deadlock(M) ∪ livelock(M) ∪ outputlock(M)

A. Rollet - ETR2011 - Brest (France) - August 2011 16/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Observation of quiescence

In testing practice, one can observe traces of the IUT , but also its
quiescences with timers.
Only quiescences of IUT unspecified in S should be rejected.

s0

s1

s2

s3

s4 s5 s6

s7

?d

?r

τ1

!b
?d

?r

!o !a

τ2

τ3

τ4

Notation : Γ(q) , {a ∈ A | q a→}
deadlock : no possible evolution :

Γ(q) = ∅.
outputlock : system waiting for an action :

Γ(q) ⊆ AI .
livelock : internal actions loop :
∃τ1, ...τn : q

τ1...τn−→ q.

quiescent(M) = deadlock(M) ∪ livelock(M) ∪ outputlock(M)

A. Rollet - ETR2011 - Brest (France) - August 2011 16/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Observation of quiescence

In testing practice, one can observe traces of the IUT , but also its
quiescences with timers.
Only quiescences of IUT unspecified in S should be rejected.

s0

s1

s2

s3

s4 s5 s6

s7

?d

?r

τ1

!b
?d

?r

!o !a

τ2

τ3

τ4

Notation : Γ(q) , {a ∈ A | q a→}
deadlock : no possible evolution :

Γ(q) = ∅.
outputlock : system waiting for an action :

Γ(q) ⊆ AI .
livelock : internal actions loop :
∃τ1, ...τn : q

τ1...τn−→ q.

quiescent(M) = deadlock(M) ∪ livelock(M) ∪ outputlock(M)

A. Rollet - ETR2011 - Brest (France) - August 2011 16/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Suspension automaton

Quiescence : special output δ

The suspension ioLTS of
M = (Q,A,−→, q0) is an ioLTS
∆(M) = (Q,A ∪ {δ},−→∆(M), q0) where
−→∆(M)=−→ ∪{q −→δ q|q ∈
quiescent(M)}.

s0

s1

s2

s3

s4 s5 s6

s7

?d

?r

!δ

τ1

!b
?d

?r

!o !a

τ2

τ3

!δ

τ4

!δ

!δ

A. Rollet - ETR2011 - Brest (France) - August 2011 17/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Suspension traces

s0

s1

s2

s3s4 s5 s6

s7

?d

?r

!δ

τ1
!b

?d

?r

!o !a

τ2

τ3

!δ

τ4

!δ

!δ

s0, s4

s1, s2

s3 s5, s6

s7

?d

?r

!δ

!b

?d

?r

!o

!a

!δ

!δ

∆(S) det(∆(S))

Suspension traces

STraces(M) , Traces(∆(M)) = Traces(det(∆(M)))

STraces(S) and STraces(I) represent visible behaviors of S and I
for testing ⇒ a base for the definition of conformance.
A. Rollet - ETR2011 - Brest (France) - August 2011 18/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Testing framework

Specification : ioLTS S = (QS, AS,−→S, s
S
0)

Implementation : ioLTS IUT = (QIUT, AIUT,−→IUT, s
IUT
0)

Unknown implementation, except for its interface,
identical to S’s
Hyp.: IUT is input-complete : In any state, IUT
accepts any input, possibly after internal actions.

A. Rollet - ETR2011 - Brest (France) - August 2011 19/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Conformance relation

The conformance relation defines the set of implementations IUT
conforming to S.

Conformance

IUT ioco S ,
∀σ ∈ STraces(S),
Out(∆(IUT) after σ) ⊆ Out(∆(S) after σ)

with Out(P) , Γ(P) ∩AδO a: set of outputs ∧ quiescences in P.

a AδO is equivalent notation for AO since δ is an output of ∆(S) and
∆(IUT)

Intuition : IUT conforms to S iff after any suspension trace of S
and IUT , all outputs and quiescences of IUT are specified by S.

A. Rollet - ETR2011 - Brest (France) - August 2011 20/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

ioco: example

s0

s1

s2 s3

?a

!δ

!x !y

!z

!δ

specification ∆(S)

s0

s1

s2

?a

!δ

!x

!z

I1: Implem. choice
s0

s1

s2 s3
s4

?a

!δ

!x !y
!z

!z

!δ

!δ

I3: Unspec. output

s0

s1

s2 s3

s4

s5

?a

!δ

?b

!x !y

!z

!δ !z
!δ

I2: Implem. of
a partial spec.

s0

s1

s2 s3

s4
?a

!δ

?a

!x !y

!z

!δ

!δ

I4 : Unspec. quiescence

A. Rollet - ETR2011 - Brest (France) - August 2011 21/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Canonical Tester

From S (more precisely from det(∆(S)) = (Qd, Ad,−→d, q
d
0)),

build an ioLTS Can(S) = (Qc, Ac,−→c, q
c
0) → the most general

ioLTS permitting to detect non-conformance of implementation
IUT .

Qc = Qd ∪ {Fail} and qc0 = qd0
Ac = AcI ∪AcO where AcI = AdO and AcO = AdI inputs of the
tester are outputs of S and reciprocally.
−→c = −→d ∪ {q

a−→c Fail | q ∈ Qd, a ∈ AcI ∧ ¬(q
a−→d)},

all non-specified outputs lead to Fail.

A. Rollet - ETR2011 - Brest (France) - August 2011 22/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Canonical Tester

From S (more precisely from det(∆(S)) = (Qd, Ad,−→d, q
d
0)),

build an ioLTS Can(S) = (Qc, Ac,−→c, q
c
0) → the most general

ioLTS permitting to detect non-conformance of implementation
IUT .

Qc = Qd ∪ {Fail} and qc0 = qd0
Ac = AcI ∪AcO where AcI = AdO and AcO = AdI input / output
inversion
−→c = −→d ∪ {q

a−→cFail | q ∈ Qd, a ∈ AcI ∧ ¬(q
a−→d)}, all

non-specified outputs lead to Fail.

A. Rollet - ETR2011 - Brest (France) - August 2011 22/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Canonical Tester

From S (more precisely from det(∆(S)) = (Qd, Ad,−→d, q
d
0)),

build an ioLTS Can(S) = (Qc, Ac,−→c, q
c
0) → the most general

ioLTS permitting to detect non-conformance of implementation
IUT .

q0

q1

q2 q3

q4

!d

!r

?δ

?b

!d

!r

?o

?a

?δ

?δ

A. Rollet - ETR2011 - Brest (France) - August 2011 22/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Canonical Tester

From S (more precisely from det(∆(S)) = (Qd, Ad,−→d, q
d
0)),

build an ioLTS Can(S) = (Qc, Ac,−→c, q
c
0) → the most general

ioLTS permitting to detect non-conformance of implementation
IUT .

q0

q1

q2 q3

q4 Fail

!d

!r

?δ

?a, ?o, ?b

?b

!d

!r ?a, ?o, ?δ

?o

?a

?b, ?δ

?δ

?a, ?b, ?o

?δ

?a, ?b, ?o

A. Rollet - ETR2011 - Brest (France) - August 2011 22/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Canonical Tester

From S (more precisely from det(∆(S)) = (Qd, Ad,−→d, q
d
0)),

build an ioLTS Can(S) = (Qc, Ac,−→c, q
c
0) → the most general

ioLTS permitting to detect non-conformance of implementation
IUT .

q0

q1

q2 q3

q4 Fail

!d

!r

?δ

?a, ?o, ?b

?b

!d

!r ?a, ?o, ?δ

?o

?a

?b, ?δ

?δ

?a, ?b, ?o

?δ

?a, ?b, ?o

IUT ioco S ⇐⇒
STraces(IUT) ∩
TracesFail(Can(S)) = ∅

A. Rollet - ETR2011 - Brest (France) - August 2011 22/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Test cases

A test case is a deterministic ioLTS
(QTC, ATC,−→TC, t

TC
0), equipped with

verdict states: Pass, Fail and Inconc s.t.
ATC
O = AS

I and ATC
I = AS

O ∪ {δ} (input
/ output inversion)
TC is controllable, i.e. never have to
choose btw. several outputs or btw.
inputs and outputs :
∀q ∈ QTC, (∃a ∈ ATC

O , q
a−→TC⇒ ∀b ∈

ATC, (b 6= a⇒ q 6 b−→TC))

All states permitting an input, are
input-complete, except verdict states.

t0

t1

t2

t3

t4

Pass

Inconc

Fail

?δ ?othw

!d

!d

?o

?a

?othw

?δ

?othw

A. Rollet - ETR2011 - Brest (France) - August 2011 23/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Test execution

Modelled by the parallel composition TC‖∆(IUT) synchronizing
on common visible actions

t0

t1

t2

t3

t4

Pass

Inconc

Fail

?δ ?othw

!d

!d

?o

?a

?othw

?δ

?othw

s0

s1

s2

s3
s4

s5

s6 s7

?d

?r

!δ

!b
?d

?r

!o τ1
!b

!δ

τ2

!δ

!a
!δ

s0, t0

s0, t1

s1, t2

s2, t3

s4, t4

s0, t4

s6, t3

Pass

Inconc

Fail

?δ

!d

!d

?o

τ1

?b

τ2

?δ

?a

TC1 ∆(IUT) TC1‖∆(IUT)

A. Rollet - ETR2011 - Brest (France) - August 2011 24/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Properties of test suites

TC fails IUT iff an execution of TC‖∆(IUT) reaches Fail

Expresses a possibility for rejection.
Due to non-controllable choices of IUT , a single test case applied
on a single Implementation can produce all different verdicts !

Soundness, Exhaustiveness, Completeness
A set of test cases TS is

Sound ,
∀IUT : (IUT ioco S =⇒ ∀TC ∈ TS : ¬(TC fails IUT)),
i.e. only non-conformant IUT may be rejected by a TC ∈ TS.
Exhaustive ,
∀IUT : (¬(IUT ioco S) =⇒ ∃TC ∈ TS : TC fails IUT),
i.e. any non-conformant IUT may be rejected by a TC ∈ TS.
Complete = Sound and Exhaustive

A. Rollet - ETR2011 - Brest (France) - August 2011 25/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Properties of test suites

TC fails IUT iff an execution of TC‖∆(IUT) reaches Fail

Expresses a possibility for rejection.
Due to non-controllable choices of IUT , a single test case applied
on a single Implementation can produce all different verdicts !

Soundness, Exhaustiveness, Completeness
A set of test cases TS is

Sound ,
∀IUT : (IUT ioco S =⇒ ∀TC ∈ TS : ¬(TC fails IUT)),
i.e. only non-conformant IUT may be rejected by a TC ∈ TS.
Exhaustive ,
∀IUT : (¬(IUT ioco S) =⇒ ∃TC ∈ TS : TC fails IUT),
i.e. any non-conformant IUT may be rejected by a TC ∈ TS.
Complete = Sound and Exhaustive

A. Rollet - ETR2011 - Brest (France) - August 2011 25/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Test selection

Objective : Find an algorithm taking as input a finite state ioLTS
S, and satisfying the following properties:

produces only sound test suites
is limit-exhaustive i.e. the infinite suite of test cases that can
be produced is exhaustive

Two techniques :
1 Non-deterministic selection (à la TorX)
2 Selection guided by a test purpose (à la TGV)

A. Rollet - ETR2011 - Brest (France) - August 2011 26/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Non-deterministic selection

Algorithm: partial unfolding of Can(S)

Start in qc0. After any trace σ in Can(S)

if Can(S) after σ ⊆ Fail, emit a Fail verdict
otherwise make a choice between

produce a Pass verdict and stop,
consider all inputs of Can(S) after σ and continue.
choose one output in those of Can(S) after σ and continue.

Properties
TS = all possible Test cases generated with this algorithm :
TS is sound and limit-exhaustive

A. Rollet - ETR2011 - Brest (France) - August 2011 27/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Non-deterministic selection

Algorithm: partial unfolding of Can(S)

Start in qc0. After any trace σ in Can(S)

if Can(S) after σ ⊆ Fail, emit a Fail verdict
otherwise make a choice between

produce a Pass verdict and stop,
consider all inputs of Can(S) after σ and continue.
choose one output in those of Can(S) after σ and continue.

Properties
TS = all possible Test cases generated with this algorithm :
TS is sound and limit-exhaustive

A. Rollet - ETR2011 - Brest (France) - August 2011 27/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Examples

q0

q1

q2 q3

q4 Fail

!d

!r

?δ

?a, ?o, ?b

?b

!d

!r ?a, ?o, ?δ

?o

?a

?b, ?δ

?δ

?a, ?b, ?o

?δ

?a, ?b, ?o

q0

q0

q0

q1

q4

Fail

Fail

Fail

Pass

!r

?δ

?a, ?b, ?o

!d

?b

?a, ?o, ?δ

?δ

?a, ?o, ?b

Can(S) TC1

A. Rollet - ETR2011 - Brest (France) - August 2011 28/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Examples

q0

q1

q2 q3

q4 Fail

!d

!r

?δ

?a, ?o, ?b

?b

!d

!r ?a, ?o, ?δ

?o

?a

?b, ?δ

?δ

?a, ?b, ?o

?δ

?a, ?b, ?o

q0

q1

q2

q0

q0

Pass

q3

PassFail

Fail

Fail

!d

!d

?o
?a ?b, ?δ

!r

?δ ?a, ?o, ?b

?δ
?a, ?o, ?b

Can(S) TC2

A. Rollet - ETR2011 - Brest (France) - August 2011 28/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Test Purpose generation

Previous algorithm : maybe quite long if we intend to focus on a
specific behavior...

Main characteristics of Test Purpose Generation:
test selection by test purposes describing a set of behaviors to
be tested, targeted by a test case,
off-line selection, a posteriori execution.

A. Rollet - ETR2011 - Brest (France) - August 2011 29/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Test Purpose definition

Test Purpose

Deterministic and complete ioLTS TP = (QTP, ATP,−→TP, q
TP
0)

equipped with two sets AcceptTP and RefuseTP of trap states, s.t.
ATP = ASV IS ∪ {δ}

q0

q1

q2 q3

q4 Fail

!d

!r

?δ

?a, ?o, ?b

?b

!d

!r ?a, ?o, ?δ

?o

?a

?b, ?δ

?δ

?a, ?b, ?o

?δ

?a, ?b, ?o

p0

p1

p2

Accept
p3

Refuse

?r

∗

!o
?r

∗

∗∗

Can(S) TP
A. Rollet - ETR2011 - Brest (France) - August 2011 30/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Selection principle

A. Rollet - ETR2011 - Brest (France) - August 2011 31/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Synchronous Product : definition

Definition of Synchronous Product
The Synchronous Product of two ioLTS
M1 = (QM1, A,−→M1, q

M1
0), and M2 = (QM2, A,−→M2, q

M2
0) is the

ioLTS M1 ×M2 = (QM1 ×QM2, A,−→, qM1
0 × qM2

0) where −→ is
defined by :

(qM1, qM2)
a−→ (q′M1, q

′
M2)⇔ (qM1

a−→M1 q
′
M1) ∧ (qM2

a−→M2 q
′
M2)

A. Rollet - ETR2011 - Brest (France) - August 2011 32/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

The Synchronous Product Can(S)× TP

q0

q1

q2 q3

q4 Fail

!d

!r

?δ

?a, ?o, ?b

?b

!d

!r ?a, ?o, ?δ

?o

?a

?b, ?δ

?δ

?a, ?b, ?o

?δ

?a, ?b, ?o

p0

p1

p2

Accept
p3

Refuse

?r

∗

!o
?r

∗

∗∗

q0,p0

q0,p1 q1,p0

q0,p3 q1,p1 q4,p0 q2,p0

q1,p3 q2,p1 q4,p1 q3,p0

q4,p3 q2,p3 q0,p2 q3,p1

q3,p3 q1,p2

Fail

!r

?δ

!d

!r

?δ
!d

?b !d
!r

!d

?δ, !r
!r

!d
?b

?δ ?a

?o

?b !d

!r

?o ?a
?δ

?δ

?δ
?a

?o

!d

?δ
!r ?δ

?δ
?othw

A. Rollet - ETR2011 - Brest (France) - August 2011 33/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Complete Test Graph (CTG)

Keep the first Accept state
in a path
If q ∈ coreach(Pass) keep q
If q ∈ {Fail} keep q
If q 6∈ coreach(Pass) input
(tester point of view)
successor of a state
q′ ∈ coreach(Pass) then
Inconc

q0, p0

q0, p1 q1, p0

q1, p1 Inconc q2, p0

q2, p1 Inconc Inconc

Pass Inconc

Fail

!r

?δ

!d

?δ
!d

?b !d
!r

!d
?b

?a

?o

?o ?a

?othw

A. Rollet - ETR2011 - Brest (France) - August 2011 34/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Ensuring controlabillity of test cases
q0, p0

q0, p1

q0, p1

q1, p1

q2, p1

Pass Inconc

Fail

!r

?δ

!d

!d

?o ?a

?othw

?othw

Example of Test Case

q0, p0

q0, p1 q1, p0

q1, p1 Inconc q2, p0

q2, p1 Inconc Inconc

Pass Inconc

Fail

!r

?δ

!d

?δ
!d

?b !d
!r

!d
?b

?a

?o

?o ?a

?othw

The test suite composed of the set of test cases that the algorithm
can produce is sound and limit-exhaustive.

A. Rollet - ETR2011 - Brest (France) - August 2011 35/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Conclusion

Testing theory for ioLTS

Test generation for finite ioLTS

Non-deterministic selection: unfolding of Can(S)

Selection by test purpose: for finite ioLTS based on
co-reachability analysis.

Soundness and exhaustiveness.

A. Rollet - ETR2011 - Brest (France) - August 2011 36/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Outline

1 Model Based Testing

2 Conformance Testing with IOLTS

3 Testing Timed Systems

4 Conclusion and further work

A. Rollet - ETR2011 - Brest (France) - August 2011 37/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

References

Part essentially based on :
[HLMNPS08] A. Hessel, K. Larsen, M. Mikucionis, B. Nielsen,
P. Pettersson, and A. Skou, “Testing real-time systems using
uppaal,” in Formal Methods and Testing, LNCS, vol. 4949.
Springer Berlin / Heidelberg, 2008, pp. 77–117.
[MLN04] M. Mikucionis, K. G. Larsen, and B. Nielsen,
“T-uppaal: Online model-based testing of real-time systems,”
in 19th IEEE International Conference on Automated Software
Engineering (ASE 2004), 20-25 September 2004, Linz,
Austria. IEEE Computer Society, 2004, pp. 396–397.
[KT04] M. Krichen and S. Tripakis, “Black-box conformance
testing for real-time systems,” in Model Checking Software,
11th International SPIN Workshop, Barcelona, Spain, April
1-3, 2004, LNCS vol. 2989. Springer, 2004, pp. 109–126.

A. Rollet - ETR2011 - Brest (France) - August 2011 38/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Main lines

Need a “new” model to describe real-time aspects : Timed
Automata with Inputs and Outputs... and semantics.

Need a “new” conformance relation : rtioco

Non-deterministic online test generation

Discussion about offline test generation

A. Rollet - ETR2011 - Brest (France) - August 2011 39/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

“Uppaal-like” approach

Explicit and separate model of the environment

Real Env. IUT

E S

input

output

i

o

+ test generation tool can synthesize only relevant scenario
+ designer can lead the test to specific situations

A. Rollet - ETR2011 - Brest (France) - August 2011 40/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Timed Automaton

l0

l1

l2
x ≤ 3

l3
x ≤ 5

?coin
x := 0

x < 5
?req
x := 0

x ≥ 3
?req
x := 0

x ≥ 1
!wCoffee

x ≥ 1
!sCoffee

Semantics defined in terms of TIOTS.
Possibly non-deterministic

A. Rollet - ETR2011 - Brest (France) - August 2011 41/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Timed Input Output Transition System (TIOTS)

Given a set of actions A, divided in Aout and Ain, and τ 6∈ A.
(Aτ , A ∪ {τ})
if no precision is given, in the following a[k] is an action, d[k] is a delay

TIOTS definition
S = (S, s0, Ain, Aout,−→) where :

S set of states, s0 ∈ S the initial state
−→⊆ S × (Aτ ∪ R≥0)× S transition relation with

time determinism : (s
d−→ s′ ∧ s d−→ s′′)⇒ s′ = s′′

time additivity : (s
d1−→ s′ ∧ s′ d2−→ s′′)⇒ s

d1+d2−→ s′′

zero-delay : ∀s, s 0−→ s

Testing point of view : Timed Traces are considered, e.g.
σ =?coin · 1·?req · 2·!wCoffee · 9·?coin

A. Rollet - ETR2011 - Brest (France) - August 2011 42/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Notations / Definitions

s
a⇒ s′ iff s τ−→

∗ a−→ τ−→
∗
s′

s
d⇒ s′ iff s τ−→

∗ d1−→ τ−→
∗ d2−→ τ−→

∗
...

τ−→
∗ dn−→ τ−→

∗
s′

where d =
∑n

k=1 dk

usually generalized to sequences

Observable Timed Traces TTr(s)

TTr(s) = {σ ∈ (A ∪ R≥0)∗|s σ⇒}
Example : σ =?coin · 1·?req · 2·!wCoffee · 9·?coin

After

s After σ = {s′|s σ⇒ s′}, S′Afterσ =
⋃
s∈S′ s After σ

Out

Out(s) = {a ∈ Aout ∪ R≥0|s
a⇒} Out(S′) =

⋃
s∈S′ Out(s)

A. Rollet - ETR2011 - Brest (France) - August 2011 43/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Notations / Definitions

s
a⇒ s′ iff s τ−→

∗ a−→ τ−→
∗
s′

s
d⇒ s′ iff s τ−→

∗ d1−→ τ−→
∗ d2−→ τ−→

∗
...

τ−→
∗ dn−→ τ−→

∗
s′

where d =
∑n

k=1 dk

usually generalized to sequences

Observable Timed Traces TTr(s)

TTr(s) = {σ ∈ (A ∪ R≥0)∗|s σ⇒}
Example : σ =?coin · 1·?req · 2·!wCoffee · 9·?coin

After

s After σ = {s′|s σ⇒ s′}, S′Afterσ =
⋃
s∈S′ s After σ

Out

Out(s) = {a ∈ Aout ∪ R≥0|s
a⇒} Out(S′) =

⋃
s∈S′ Out(s)

A. Rollet - ETR2011 - Brest (France) - August 2011 43/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Notations / Definitions

s
a⇒ s′ iff s τ−→

∗ a−→ τ−→
∗
s′

s
d⇒ s′ iff s τ−→

∗ d1−→ τ−→
∗ d2−→ τ−→

∗
...

τ−→
∗ dn−→ τ−→

∗
s′

where d =
∑n

k=1 dk

usually generalized to sequences

Observable Timed Traces TTr(s)

TTr(s) = {σ ∈ (A ∪ R≥0)∗|s σ⇒}
Example : σ =?coin · 1·?req · 2·!wCoffee · 9·?coin

After

s After σ = {s′|s σ⇒ s′}, S′Afterσ =
⋃
s∈S′ s After σ

Out

Out(s) = {a ∈ Aout ∪ R≥0|s
a⇒} Out(S′) =

⋃
s∈S′ Out(s)

A. Rollet - ETR2011 - Brest (France) - August 2011 43/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Notations / Definitions

s
a⇒ s′ iff s τ−→

∗ a−→ τ−→
∗
s′

s
d⇒ s′ iff s τ−→

∗ d1−→ τ−→
∗ d2−→ τ−→

∗
...

τ−→
∗ dn−→ τ−→

∗
s′

where d =
∑n

k=1 dk

usually generalized to sequences

Observable Timed Traces TTr(s)

TTr(s) = {σ ∈ (A ∪ R≥0)∗|s σ⇒}
Example : σ =?coin · 1·?req · 2·!wCoffee · 9·?coin

After

s After σ = {s′|s σ⇒ s′}, S′Afterσ =
⋃
s∈S′ s After σ

Out

Out(s) = {a ∈ Aout ∪ R≥0|s
a⇒} Out(S′) =

⋃
s∈S′ Out(s)

A. Rollet - ETR2011 - Brest (France) - August 2011 43/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Timed Automata (with Inputs and Outputs) : definition

l0

l1

l2
x ≤ 3

l3
x ≤ 5

?coin
x := 0

x < 5
?req
x := 0

x ≥ 3
?req
x := 0

x ≥ 1
!wCoffee

x ≥ 1
!sCoffee

Given X set of clock variables, G(X) set
of guards, U(X) set of updates.

Timed Automaton
TA = (L, l0, I, E) where

L set of locations, l0 initial location
I : L→ G(X) assigns invariants to
locations
E ⊆ L× G(X)×Aτ × U(X)× L
set of edges (written l

g,α,u−→ l′)

Observable trace example : σ =?coin · 6·?req · 3...
Out(?coin · 6·?req · 3) = {sCoffee} ∪ [0, 2]

A. Rollet - ETR2011 - Brest (France) - August 2011 44/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Semantics of Timed Automata

Semantics as a TIOTS defined by :
States of the form s = (l, v), s.t.

l is a location
v ∈ RX

≥0 clock valuation satisfying invariant of l

Delay transitions

∀d′ ≤ d.Il(d′)

(l, v)
d−→ (l, v + d)

Discrete transitions

l
g,α,u−→ l′ ∧ g(v) ∧ Il′(v′), v′ = u(v)

(l, v)
α−→ (l′, v′)

most reasoning done on the semantics
A. Rollet - ETR2011 - Brest (France) - August 2011 45/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Relativized timed conformance

S = (SS , sS0 , Ain, Aout,−→S) a weakly input enabled (i.e.
∀s ∈ SS ,∀i ∈ Ain, s

i⇒) TIOTS
IUT = (SIUT , sIUT0 , Ain, Aout,−→IUT) a weakly input
enabled TIOTS
E = (EE , eE0 , Aout, Ain,−→E) (input / output inversion)
weakly input enabled TIOTS.

rtiocoe
Let s ∈ SS , e ∈ EE and iut ∈ SIUT :

iut rtiocoe s
iff

∀σ ∈ TTr(e), Out((iut, e) After σ) ⊆ Out((s, e) After σ)
iff

TTr(iut) ∩ TTr(e) ⊆ TTr(s) ∩ TTr(e)
A. Rollet - ETR2011 - Brest (France) - August 2011 46/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Relativized timed conformance (2)

rtioco ensures Implementation has only the behavior allowed by
Specification :

Implementation not allowed to produce an output at a time
when not allowed by Specification

Implementation not allowed to omit producing an output when
required by the Specification

A. Rollet - ETR2011 - Brest (France) - August 2011 47/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

rtioco examples

!coin

!req

?wCoffe ?sCoffe

l0

l1

l2
x ≤ 3

l3
x ≤ 5

?coin
x := 0

x < 5
?req
x := 0

x ≥ 3
?req
x := 0

x ≥ 1
!wCoffee

x ≥ 1
!sCoffee

l0

l1

l2
x ≤ 2

l3
x ≤ 3

?coin
x := 0

x ≤ 4
?req
x := 0

x > 4
?req
x := 0

x ≥ 2
!wCoffee

x ≥ 3
!sCoffee

Environment Specification s Implementation i1
Trace σ Out(s After σ) Out(i1 After σ)

c · 2 R≥0 R≥0

c · 4 · r · 1 {wCoffee, sCoffee} ∪ [0, 4] [0, 1]
c · 4 · r · 2 {wCoffee, sCoffee} ∪ [0, 3] {wCoffee, 0}
c · 5 · r · 3 {sCoffee} ∪ [0, 2] {sCoffee, 0}
c · 5 · r · 5 {sCoffee, 0} ∅

A. Rollet - ETR2011 - Brest (France) - August 2011 48/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

rtioco examples (2)

!coin

!req

?wCoffe ?sCoffe

l0

l1

l2
x ≤ 3

l3
x ≤ 5

?coin
x := 0

x < 5
?req
x := 0

x ≥ 3
?req
x := 0

x ≥ 1
!wCoffee

x ≥ 1
!sCoffee

l0

l1

l2
x ≤ 3

l3
x ≤ 7

?coin
x := 0

x ≤ 4
?req
x := 0

x > 4
?req
x := 0

x ≥ 2
!wCoffee

x ≥ 6
!sCoffee

Environment Specification s Implementation i2
Trace σ Out(s After σ) Out(i2 After σ)

c · 2 R≥0 R≥0

c · 4 · r · 1 {wCoffee, sCoffee} ∪ [0, 4] [0, 2]
c · 4 · r · 2 {wCoffee, sCoffee} ∪ [0, 3] {wCoffee} ∪ [0, 1]

c · 5 · r · 3 {sCoffee} ∪ [0, 2] [0, 4]
c · 5 · r · 5 {sCoffee, 0} [0, 2]

A. Rollet - ETR2011 - Brest (France) - August 2011 49/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Online testing (à la TorX)

On-the-fly testing : combines test generation and execution
Non-deterministic generation
Symbolic states
Weakly input-enabled and non-blocking TIOTS

Advantages :
reduces state space explosion
handles non-determinism

Drawbacks :
specification must be analyzed online, in real-time
test runs may be long...
coverage criteria can not be guaranteed

A. Rollet - ETR2011 - Brest (France) - August 2011 50/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Non-determinism

Often used :
as means of abstraction
to model optional behavior, permitted but not required

determinism definition
An TIOTS (S) is deterministic if
∀α ∈ (Aτ ∪ R≥0), ∀s ∈ S, (s α−→ s′ ∧ s α−→ s′′)⇒ s′ = s′′.

l0

l1

l2

l3

l4

x ≥ 7
?a

?a

?a
x := 0

l5 l6
x := 0

(l0, x = 3) After a = {(l2, x = 3), (l4, x = 3), (l3, x = 0)}
(l5, x = 0) After 4 = {(l5, x = 4), (l6, 0 ≤ x ≤ 4)}
A. Rollet - ETR2011 - Brest (France) - August 2011 51/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Uppaal TRON algorithm TestGenExe(S, E , IUT, T)

while Z 6= ∅ ∧]iterations ≤ T do
switch randomly choose btw action, delay and restart do

case action /* offer an input */
if EnvOutput(Z) 6= ∅ then

randomly choose i ∈ EnvOutput(Z); send i to IUT ;
Z := Z After i ;

case delay /* wait for an output */
randomly choose d ∈ Delays(Z) ;
sleep for d time units or wake up on output o at d′ ≤ d;
if o occurs then
Z := Z After d′ ;
if o 6∈ ImpOutput(Z) then return FAIL else
Z := Z After o

else
Z := Z After d ;

case restart Z := {(s0, e0)}, reset IUT /* reset and restart */

if Z = ∅ then return FAIL else return PASS
A. Rollet - ETR2011 - Brest (France) - August 2011 52/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Example of test execution

Tester
k0

k1

k2

!coin

!req

?wCoffe ?sCoffe

l0

l1

l2
x ≤ 3

l3
x ≤ 7

?coin
x := 0

x ≤ 5
?req
x := 0

x ≥ 3
?req
x := 0

x ≥ 1
!wCoffee

x ≥ 3
!sCoffee

Symbolic state set:
{(k0l0, x = 0)}
EnvOutput: coin
ImpOutput: ∅

Implementation
l0

l1

l2
x ≤ 2

l3
x ≤ 4

?coin
x := 0

x ≤ 4
?req
x := 0

x > 4
?req
x := 0

x == 2
!wCoffee

x == 4
!sCoffee

x = 0

Wait for ouput
(delay) or offer
input?

A. Rollet - ETR2011 - Brest (France) - August 2011 53/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Example of test execution

Tester
k0

k1

k2

!coin

!req

?wCoffe ?sCoffe

l0

l1

l2
x ≤ 3

l3
x ≤ 7

?coin
x := 0

x ≤ 5
?req
x := 0

x ≥ 3
?req
x := 0

x ≥ 1
!wCoffee

x ≥ 3
!sCoffee

Symbolic state set:
{(k0l0, x = 0)}
EnvOutput: coin
ImpOutput: ∅

Implementation
l0

l1

l2
x ≤ 2

l3
x ≤ 4

?coin
x := 0

x ≤ 4
?req
x := 0

x > 4
?req
x := 0

x == 2
!wCoffee

x == 4
!sCoffee

x = 0

Wait for ouput
(delay) or offer
input?

A. Rollet - ETR2011 - Brest (France) - August 2011 53/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Example of test execution

Tester
k0

k1

k2

!coin

!req

?wCoffe ?sCoffe

l0

l1

l2
x ≤ 3

l3
x ≤ 7

?coin
x := 0

x ≤ 5
?req
x := 0

x ≥ 3
?req
x := 0

x ≥ 1
!wCoffee

x ≥ 3
!sCoffee

Symbolic state set:
{(k0l0, x = 0)}
EnvOutput: coin
ImpOutput: ∅

coin

Implementation
l0

l1

l2
x ≤ 2

l3
x ≤ 4

?coin
x := 0

x ≤ 4
?req
x := 0

x > 4
?req
x := 0

x == 2
!wCoffee

x == 4
!sCoffee

x = 0

Let’s offer an in-
put. Choose (the
only) “coin”

A. Rollet - ETR2011 - Brest (France) - August 2011 53/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Example of test execution

Tester
k0

k1

k2

!coin

!req

?wCoffe ?sCoffe

l0

l1

l2
x ≤ 3

l3
x ≤ 7

?coin
x := 0

x ≤ 5
?req
x := 0

x ≥ 3
?req
x := 0

x ≥ 1
!wCoffee

x ≥ 3
!sCoffee

Symbolic state set:
{(k1l1, x = 0)}
EnvOutput: req
ImpOutput: ∅

Implementation
l0

l1

l2
x ≤ 2

l3
x ≤ 4

?coin
x := 0

x ≤ 4
?req
x := 0

x > 4
?req
x := 0

x == 2
!wCoffee

x == 4
!sCoffee

x = 0

Update the state
set and other vari-
ables

A. Rollet - ETR2011 - Brest (France) - August 2011 53/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Example of test execution

Tester
k0

k1

k2

!coin

!req

?wCoffe ?sCoffe

l0

l1

l2
x ≤ 3

l3
x ≤ 7

?coin
x := 0

x ≤ 5
?req
x := 0

x ≥ 3
?req
x := 0

x ≥ 1
!wCoffee

x ≥ 3
!sCoffee

Symbolic state set:
{(k1l1, x = 0)}
EnvOutput: req
ImpOutput: ∅

Implementation
l0

l1

l2
x ≤ 2

l3
x ≤ 4

?coin
x := 0

x ≤ 4
?req
x := 0

x > 4
?req
x := 0

x == 2
!wCoffee

x == 4
!sCoffee

x = 0

Wait or offer in-
put? Let’s wait for
5 units

A. Rollet - ETR2011 - Brest (France) - August 2011 53/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Example of test execution

Tester
k0

k1

k2

!coin

!req

?wCoffe ?sCoffe

l0

l1

l2
x ≤ 3

l3
x ≤ 7

?coin
x := 0

x ≤ 5
?req
x := 0

x ≥ 3
?req
x := 0

x ≥ 1
!wCoffee

x ≥ 3
!sCoffee

Symbolic state set:
{(k1l1, x = 5)}
EnvOutput: req
ImpOutput: ∅

Implementation
l0

l1

l2
x ≤ 2

l3
x ≤ 4

?coin
x := 0

x ≤ 4
?req
x := 0

x > 4
?req
x := 0

x == 2
!wCoffee

x == 4
!sCoffee

x = 5

... no ouput so
far ... update the
state set

A. Rollet - ETR2011 - Brest (France) - August 2011 53/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Example of test execution

Tester
k0

k1

k2

!coin

!req

?wCoffe ?sCoffe

l0

l1

l2
x ≤ 3

l3
x ≤ 7

?coin
x := 0

x ≤ 5
?req
x := 0

x ≥ 3
?req
x := 0

x ≥ 1
!wCoffee

x ≥ 3
!sCoffee

Symbolic state set:
{(k1l1, x = 5)}
EnvOutput: req
ImpOutput: ∅

req

Implementation
l0

l1

l2
x ≤ 2

l3
x ≤ 4

?coin
x := 0

x ≤ 4
?req
x := 0

x > 4
?req
x := 0

x == 2
!wCoffee

x == 4
!sCoffee

x = 5

Wait or offer in-
put? Let’s offer
“req”

A. Rollet - ETR2011 - Brest (France) - August 2011 53/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Example of test execution

Tester
k0

k1

k2

!coin

!req

?wCoffe ?sCoffe

l0

l1

l2
x ≤ 3

l3
x ≤ 7

?coin
x := 0

x ≤ 5
?req
x := 0

x ≥ 3
?req
x := 0

x ≥ 1
!wCoffee

x ≥ 3
!sCoffee

Symbolic state set:
{(k2l2, x = 0), (k2l3, x = 0)}
EnvOutput: ∅
ImpOutput: ∅

Implementation
l0

l1

l2
x ≤ 2

l3
x ≤ 4

?coin
x := 0

x ≤ 4
?req
x := 0

x > 4
?req
x := 0

x == 2
!wCoffee

x == 4
!sCoffee

x = 0

Update the state
set and other vari-
ables

A. Rollet - ETR2011 - Brest (France) - August 2011 53/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Example of test execution

Tester
k0

k1

k2

!coin

!req

?wCoffe ?sCoffe

l0

l1

l2
x ≤ 3

l3
x ≤ 7

?coin
x := 0

x ≤ 5
?req
x := 0

x ≥ 3
?req
x := 0

x ≥ 1
!wCoffee

x ≥ 3
!sCoffee

Symbolic state set:
{(k2l2, x = 0), (k2l3, x = 0)}
EnvOutput: ∅
ImpOutput: ∅

Implementation
l0

l1

l2
x ≤ 2

l3
x ≤ 4

?coin
x := 0

x ≤ 4
?req
x := 0

x > 4
?req
x := 0

x == 2
!wCoffee

x == 4
!sCoffee

x = 0

Wait or offer in-
put? Let’s wait for
4 units

A. Rollet - ETR2011 - Brest (France) - August 2011 53/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Example of test execution

Tester
k0

k1

k2

!coin

!req

?wCoffe ?sCoffe

l0

l1

l2
x ≤ 3

l3
x ≤ 7

?coin
x := 0

x ≤ 5
?req
x := 0

x ≥ 3
?req
x := 0

x ≥ 1
!wCoffee

x ≥ 3
!sCoffee

Symbolic state set:
(k2l3, x = 4)}
EnvOutput: ∅
ImpOutput: {sCoffee}

Implementation
l0

l1

l2
x ≤ 2

l3
x ≤ 4

?coin
x := 0

x ≤ 4
?req
x := 0

x > 4
?req
x := 0

x == 2
!wCoffee

x == 4
!sCoffee

x = 4

... no output so
far: update the
state set

A. Rollet - ETR2011 - Brest (France) - August 2011 53/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Example of test execution

Tester
k0

k1

k2

!coin

!req

?wCoffe ?sCoffe

l0

l1

l2
x ≤ 3

l3
x ≤ 7

?coin
x := 0

x ≤ 5
?req
x := 0

x ≥ 3
?req
x := 0

x ≥ 1
!wCoffee

x ≥ 3
!sCoffee

Symbolic state set:
{(k2l3, x = 4)}
EnvOutput: ∅
ImpOutput: {sCoffee}

Implementation
l0

l1

l2
x ≤ 2

l3
x ≤ 4

?coin
x := 0

x ≤ 4
?req
x := 0

x > 4
?req
x := 0

x == 2
!wCoffee

x == 4
!sCoffee

x = 4

Wait or offer in-
put? Let’s wait for
2 units

A. Rollet - ETR2011 - Brest (France) - August 2011 53/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Example of test execution

Tester
k0

k1

k2

!coin

!req

?wCoffe ?sCoffe

l0

l1

l2
x ≤ 3

l3
x ≤ 7

?coin
x := 0

x ≤ 5
?req
x := 0

x ≥ 3
?req
x := 0

x ≥ 1
!wCoffee

x ≥ 3
!sCoffee

Symbolic state set:
{(k2l3, x = 4)}
EnvOutput: ∅
ImpOutput: {sCoffee}

sCoffee

Implementation
l0

l1

l2
x ≤ 2

l3
x ≤ 4

?coin
x := 0

x ≤ 4
?req
x := 0

x > 4
?req
x := 0

x == 2
!wCoffee

x == 4
!sCoffee

x = 4

Got output after 0
delay: update the
state set

A. Rollet - ETR2011 - Brest (France) - August 2011 53/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Example of test execution

Tester
k0

k1

k2

!coin

!req

?wCoffe ?sCoffe

l0

l1

l2
x ≤ 3

l3
x ≤ 7

?coin
x := 0

x ≤ 5
?req
x := 0

x ≥ 3
?req
x := 0

x ≥ 1
!wCoffee

x ≥ 3
!sCoffee

Symbolic state set:
{(k2l3, x = 4)}
EnvOutput: ∅
ImpOutput: {sCoffee}

Implementation
l0

l1

l2
x ≤ 2

l3
x ≤ 4

?coin
x := 0

x ≤ 4
?req
x := 0

x > 4
?req
x := 0

x == 2
!wCoffee

x == 4
!wCoffee

x = 4

What if there is a
bug? Let’s wait
back for 2 units

A. Rollet - ETR2011 - Brest (France) - August 2011 53/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Example of test execution

Tester
k0

k1

k2

!coin

!req

?wCoffe ?sCoffe

l0

l1

l2
x ≤ 3

l3
x ≤ 7

?coin
x := 0

x ≤ 5
?req
x := 0

x ≥ 3
?req
x := 0

x ≥ 1
!wCoffee

x ≥ 3
!sCoffee

Symbolic state set:
{(k2l3, x = 4)}
EnvOutput: ∅
ImpOutput: {sCoffee}

wCoffee

Implementation
l0

l1

l2
x ≤ 2

l3
x ≤ 4

?coin
x := 0

x ≤ 4
?req
x := 0

x > 4
?req
x := 0

x == 2
!wCoffee

x == 4
!wCoffee

x = 6

output after 0 de-
lay: wCoffee 6∈
{sCoffee}

A. Rollet - ETR2011 - Brest (France) - August 2011 53/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Properties of test cases

Let a S, E , and IUT three weakly input enabled TIOTS, with
IUT deterministic.

Soundness, Exhaustiveness
Soundness :
TestGenExe(S, E , IUT , T) = Fail⇒ ¬(IUT rtiocoE S)

Exhaustiveness :
¬(IUT rtiocoE S)⇒ Prob(TestGenExe(S, E , IUT , T) =

Fail T→∞−→ 1

If IUT is not deterministic, exhaustiveness is not guaranteed

A. Rollet - ETR2011 - Brest (France) - August 2011 54/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Offline test generation : main ideas

Advantages :
test cases are easier and faster to execute
possibility to guarantee a coverage or a test objective

Drawbacks :
specification has to be analyzed entirely ⇒ state explosion
only deterministic (and impossible to determinize in general
case)

Test Generation with Test Purpose
Synchronous Product btw Spec. and T.P. → need a finite
symbolic representation of TA (Region Graph, Zones, ...)
Test Case Generation with Uppaal
Test Case Generation using Observers

Still immature...
A. Rollet - ETR2011 - Brest (France) - August 2011 55/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Offline test generation : main ideas

Advantages :
test cases are easier and faster to execute
possibility to guarantee a coverage or a test objective

Drawbacks :
specification has to be analyzed entirely ⇒ state explosion
only deterministic (and impossible to determinize in general
case)

Test Generation with Test Purpose
Synchronous Product btw Spec. and T.P. → need a finite
symbolic representation of TA (Region Graph, Zones, ...)
Test Case Generation with Uppaal
Test Case Generation using Observers

Still immature...
A. Rollet - ETR2011 - Brest (France) - August 2011 55/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Offline test generation : main ideas

Advantages :
test cases are easier and faster to execute
possibility to guarantee a coverage or a test objective

Drawbacks :
specification has to be analyzed entirely ⇒ state explosion
only deterministic (and impossible to determinize in general
case)

Test Generation with Test Purpose
Synchronous Product btw Spec. and T.P. → need a finite
symbolic representation of TA (Region Graph, Zones, ...)
Test Case Generation with Uppaal
Test Case Generation using Observers

Still immature...
A. Rollet - ETR2011 - Brest (France) - August 2011 55/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Offline test generation : main ideas

Advantages :
test cases are easier and faster to execute
possibility to guarantee a coverage or a test objective

Drawbacks :
specification has to be analyzed entirely ⇒ state explosion
only deterministic (and impossible to determinize in general
case)

Test Generation with Test Purpose
Synchronous Product btw Spec. and T.P. → need a finite
symbolic representation of TA (Region Graph, Zones, ...)
Test Case Generation with Uppaal
Test Case Generation using Observers

Still immature...
A. Rollet - ETR2011 - Brest (France) - August 2011 55/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Offline test generation : main ideas

Advantages :
test cases are easier and faster to execute
possibility to guarantee a coverage or a test objective

Drawbacks :
specification has to be analyzed entirely ⇒ state explosion
only deterministic (and impossible to determinize in general
case)

Test Generation with Test Purpose
Synchronous Product btw Spec. and T.P. → need a finite
symbolic representation of TA (Region Graph, Zones, ...)
Test Case Generation with Uppaal
Test Case Generation using Observers

Still immature...
A. Rollet - ETR2011 - Brest (France) - August 2011 55/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Offline test generation : main ideas

Advantages :
test cases are easier and faster to execute
possibility to guarantee a coverage or a test objective

Drawbacks :
specification has to be analyzed entirely ⇒ state explosion
only deterministic (and impossible to determinize in general
case)

Test Generation with Test Purpose

Test Case Generation with Uppaal

Still immature...

A. Rollet - ETR2011 - Brest (France) - August 2011 55/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Test Case generation with Test Purpose using Uppaal

Uppaal Tool :
Model checker for temporal properties
Symbolic efficient analysis (using DBM)
Generates diagnostic traces (shortest or fastest)

Assumptions : TIOTS are deterministic, weakly input enabled and
output urgent

Idea
Formulate the problem as safety property (usually solved by a
reachability analysis) → obtain a trace of the form
(s0, e0)

γ0−→ (s1, e1)...
γn−1−→ (sn, en)

Obtain a test sequence by projecting the trace to the
E − component (and summing delays)
Add Verdicts to the test sequence to obtain a test case

Test sequences are guaranteed to be included in the specification
A. Rollet - ETR2011 - Brest (France) - August 2011 56/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Test Case generation with Test Purpose using Uppaal

Uppaal Tool :
Model checker for temporal properties
Symbolic efficient analysis (using DBM)
Generates diagnostic traces (shortest or fastest)

Assumptions : TIOTS are deterministic, weakly input enabled and
output urgent

Idea
Formulate the problem as safety property (usually solved by a
reachability analysis) → obtain a trace of the form
(s0, e0)

γ0−→ (s1, e1)...
γn−1−→ (sn, en)

Obtain a test sequence by projecting the trace to the
E − component (and summing delays)
Add Verdicts to the test sequence to obtain a test case

Test sequences are guaranteed to be included in the specification
A. Rollet - ETR2011 - Brest (France) - August 2011 56/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Example of test case

Sequence :
!in0 · delay·?out0

Fail
z ≤ 0

Fail
z ≤ delay

Pass

Fail

!in0

z := 0

z == delay
?out0
z := 0

z < delay
?out0
z := 0

?out1
...

?outn

A. Rollet - ETR2011 - Brest (France) - August 2011 57/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Examples of Test Purposes (light controller)

TP1 : Check that the light can become bright :
Simple reachability property : eventually the system specification
can enter location BRIGHT

TP2 : Check the light switch off after 3 successive touches
reachability property + specific environment :

goal

!touch
z := 0

z ≥ Treact
!touch
z := 0

?off
?dim

?bright

z ≥ Treact
!touch
z := 0

?off
?dim

?bright

?off

?dim
?bright

A. Rollet - ETR2011 - Brest (France) - August 2011 58/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Examples of Test Purposes (light controller)

TP1 : Check that the light can become bright :
Simple reachability property : eventually the system specification
can enter location BRIGHT

TP2 : Check the light switch off after 3 successive touches
reachability property + specific environment :

goal

!touch
z := 0

z ≥ Treact
!touch
z := 0

?off
?dim

?bright

z ≥ Treact
!touch
z := 0

?off
?dim

?bright

?off

?dim
?bright

A. Rollet - ETR2011 - Brest (France) - August 2011 58/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Examples of Test Purposes (light controller)

TP1 : Check that the light can become bright :
Simple reachability property : eventually the system specification
can enter location BRIGHT

TP2 : Check the light switch off after 3 successive touches
reachability property + specific environment :

goal

!touch
z := 0

z ≥ Treact
!touch
z := 0

?off
?dim

?bright

z ≥ Treact
!touch
z := 0

?off
?dim

?bright

?off

?dim
?bright

A. Rollet - ETR2011 - Brest (France) - August 2011 58/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Examples of Test Purposes (light controller)

TP1 : Check that the light can become bright :
Simple reachability property : eventually the system specification
can enter location BRIGHT

TP2 : Check the light switch off after 3 successive touches
reachability property + specific environment :

goal

!touch
z := 0

z ≥ Treact
!touch
z := 0

?off
?dim

?bright

z ≥ Treact
!touch
z := 0

?off
?dim

?bright

?off

?dim
?bright

A. Rollet - ETR2011 - Brest (France) - August 2011 58/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Examples of coverage criteria

Edge Coverage
Reachability property :

add a boolean variable ei for each edge to be covered, initially
false

add assignment ei := true for each edge to be covered
property to reach :

∧
ei == true

Location (li) Coverage

add a boolean variable bi for each node, initially false (except
initial)

for every edge l′
g,a,u−→ li add assignment bi := true

property to reach :
∧
bi == true

Etc... but not always possible

A. Rollet - ETR2011 - Brest (France) - August 2011 59/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Examples of coverage criteria

Edge Coverage
Reachability property :

add a boolean variable ei for each edge to be covered, initially
false

add assignment ei := true for each edge to be covered
property to reach :

∧
ei == true

Location (li) Coverage

add a boolean variable bi for each node, initially false (except
initial)

for every edge l′
g,a,u−→ li add assignment bi := true

property to reach :
∧
bi == true

Etc... but not always possible

A. Rollet - ETR2011 - Brest (France) - August 2011 59/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Examples of coverage criteria

Edge Coverage
Reachability property :

add a boolean variable ei for each edge to be covered, initially
false

add assignment ei := true for each edge to be covered
property to reach :

∧
ei == true

Location (li) Coverage

add a boolean variable bi for each node, initially false (except
initial)

for every edge l′
g,a,u−→ li add assignment bi := true

property to reach :
∧
bi == true

Etc... but not always possible

A. Rollet - ETR2011 - Brest (France) - August 2011 59/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Examples of coverage criteria

Edge Coverage
Reachability property :

add a boolean variable ei for each edge to be covered, initially
false

add assignment ei := true for each edge to be covered
property to reach :

∧
ei == true

Location (li) Coverage

add a boolean variable bi for each node, initially false (except
initial)

for every edge l′
g,a,u−→ li add assignment bi := true

property to reach :
∧
bi == true

Etc... but not always possible

A. Rollet - ETR2011 - Brest (France) - August 2011 59/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Using observers

Weakness of this offline approach :
time-consuming to find the proper model annotation
model-checking tools not adapted for test cases generation :
may lead to performance problems

→ Possibility to use a language of observers to describe coverage
criteria
→ Adaptation of model-checking algorithms for test generation
based on observers

A. Rollet - ETR2011 - Brest (France) - August 2011 60/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Outline

1 Model Based Testing

2 Conformance Testing with IOLTS

3 Testing Timed Systems

4 Conclusion and further work

A. Rollet - ETR2011 - Brest (France) - August 2011 61/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Conclusion

Testing theory and generation algorithms for finite ioLTS
Extensions for Timed Automata with Inputs and Outputs
Off-line and on-line algorithms

Perspectives

Mature tools (scaling)
“Real-time” coverage criteria
Testing seen as “Game theory”
Add variables with “complex” assignments
Run-time verification / enforcement dans le cadre temporisé

A. Rollet - ETR2011 - Brest (France) - August 2011 62/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Conclusion

Testing theory and generation algorithms for finite ioLTS
Extensions for Timed Automata with Inputs and Outputs
Off-line and on-line algorithms

Perspectives

Mature tools (scaling)
“Real-time” coverage criteria
Testing seen as “Game theory”
Add variables with “complex” assignments
Run-time verification / enforcement dans le cadre temporisé

A. Rollet - ETR2011 - Brest (France) - August 2011 62/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Thank you for your attention

rollet@labri.fr

A. Rollet - ETR2011 - Brest (France) - August 2011 63/63

	Model Based Testing
	Conformance Testing with IOLTS
	Testing Timed Systems
	Conclusion and further work

