Model Based Testing : principles and applications
in the context of timed systems

Antoine Rollet

Université de Bordeaux - LaBRI (UMR CNRS 5800), France
rollet@labri.fr
http://www.labri.fr/"rollet

A. Rollet - ETR2011 - Brest (France) - August 2011 1/63

http://www.labri.fr/~rollet

Outline

@ Model Based Testing
© Conformance Testing with IOLTS
© Testing Timed Systems

@ Conclusion and further work

A. Rollet - ETR2011 - Brest (France) - August 2011 2/63

Model Based Testing

Outline

@ Model Based Testing

A. Rollet - ETR2011 - Brest (France) - August 2011 3/63

Model Based Testing

Introduction on testing

Why testing?

@ Systems getting more and more complex
— potentially more bugs

o A failure may cost a lot (human and financial)
— earlier detection implies weaker consequences

@ “Testing can only be used to show the presence of bugs, but
never to show their absence” (Dijkstra)
— need to make some assumptions
— Objective : increase the confidence in the system

A. Rollet - ETR2011 - Brest (France) - August 2011 4/63

Different kinds of testing

black box / white box

@ white box : most elements of the system are known, especially
source code (structural testing)

@ black box : implementation is considered as an unknown black
box; only interfaces are known
— test generation based on the specification (functional
testing)

What do we intend to test

User testing, performance testing, conformance testing,
interoperability testing, robustness testing, etc...

A. Rollet - ETR2011 - Brest (France) - August 2011 5/63

Model Based Testing

Different kinds of testing

black box / white box

@ black box : implementation is considered as an unknown black
box; only interfaces are known
— test generation based on the specification (functional
testing)

What do we intend to test

conformance testing,

— Testing that a black-box implementation (IUT) of a system
behaves correctly wrt. its functional specification Spec.

A. Rollet - ETR2011 - Brest (France) - August 2011 5/63

Model Based Testing

Conformance testing of reactive systems

Reactive system

System which reacts to its environment through its interfaces.

@ Environment: human, software, hardware

@ Necessary to think about :
o Controllability : "how the tester can lead the test”
e Observability : “how the tester can get information”
— definition of Points of Control and Observation (PCO).
— definition of a test architecture

Specification

PCO
conforms to ?

-

- .
. observation

control

A. Rollet - ETR2011 - Brest (France) - August 2011 6/63

Model Based Testing

Model Based Testing

Industrial practice: manual design of test suites from informal
specifications

Model Based Testing

Model Based Testing (MBT) — testing with the ability to detect
faults which do not conform to a model called specification.

Lifies» Implementation
Under
Test

conforms (IUT)

Specification

= possible automation for test generation, test execution, test
evaluation (verdict)
= Formal Methods

A. Rollet - ETR2011 - Brest (France) - August 2011 7/63

Model Based Testing

Model Based Testing (2)

@ Test cases are generated from the Model
@ Problems :
e need to find a “good” model of the specification
o what does specify mean?
e what does conform mean?
@ Implementation is supposed to be equivalent to a formal

model (but Implementation is unknown)

@ Need to define a conformance relation between the
Specification and the Implementation

A. Rollet - ETR2011 - Brest (France) - August 2011 8/63

Model Based Testing

Model Based Testing (2)

Test cases are generated from the Model
Problems :

e need to find a “good” model of the specification
e what does specify mean?
e what does conform mean?

Implementation is supposed to be equivalent to a formal
model (but Implementation is unknown)

Need to define a conformance relation between the
Specification and the Implementation

At the beginning...

Two main approaches of MBT :
@ Finite State Machines

@ Labeled Transition Systems

A. Rollet - ETR2011 - Brest (France) - August 2011 8/63

Model Based Testing

General schema

Property P

SEP?

Y

Specification S

IconfS?

Implementation I

A. Rollet - ETR2011 - Brest (France) - August 2011 9/63

Model Based Testing

General schema

Property P

9
S F P2 VERIFICATION

Y

Specification S

IconfS?

Y

Implementation I

A. Rollet - ETR2011 - Brest (France) - August 2011 9/63

Model Based Testing

General schema

Property P

SEP?

Specification S

IconfS? TEST

Implementation I

A. Rollet - ETR2011 - Brest (France) - August 2011 9/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

General schema

Property P

SEP?

Y

Specification S

IconfS?

9 observation

Implementation I Test cases —— Verdict
-————————————————————

! control

Model Based Testing IOLTS Testing Timed extensions

Conclusion

General schema

Property P

SEP?

Y

Specification S | ——— > Test Generation

IconfS?
9 observation Y
Implementation I Test cases
| -————————

— Verdict

! control

Model Based Testing

General schema

Property P e

Test Purpose

SEP?

Y

Y

Specification S | ——— >

Test Generation

IconfS?

Y

9 observation

Implementation I

~———————|

Test cases

—— Verdict

! control

A. Rollet - ETR2011 - Brest (France) - August 2011

9/63

Model Based Testing

Main ingredients of a testing theory

Specification, implementation and conformance
Specification: model of requested behaviors,
Implementations: model of observable real behavior (unknown)

Conformance relation: formalizes “IUT conforms to Spec”

Tests cases and their executions
Test cases, test suites: model of tests (control /observation)

Test execution: interaction test <> IUT, produced observations,
associated verdicts (e.g. pass, fail)

Test suite properties: “IUT passes TS" <+ “IUT conf S”

Test generation

Algorithms : tests = testgen(Spec (+ TestPurpose))

A. Rollet - ETR2011 - Brest (France) - August 2011 10/63

IOLTS Testing

Outline

© Conformance Testing with IOLTS

A. Rollet - ETR2011 - Brest (France) - August 2011 11/63

IOLTS Testing

References

Part essentially based on :

o [Tre96] J. Tretmans, “Test generation with inputs, outputs,
and repetitive quiescence,” Software—Concepts and Tools,
vol. 17, pp. 103-120, 1996.

e [JJ04] C. Jard and T. Jéron, “Tgv: theory, principles and
algorithms, a tool for the automatic synthesis of conformance

test cases for non-deterministic reactive systems,” Software
Tools for Technology Transfer (STTT), 10 2004.

o [Jer04] T. Jéron, “Contribution a la génération automatique de
tests pour les systémes réactifs,” 2004, habilitation a Diriger
des Recherches - Université de Rennes 1.

A. Rollet - ETR2011 - Brest (France) - August 2011 12/63

IOLTS Testing

Input Output Labelled Transition System (IOLTS)

M = (QM, AM 1/, gM) with :

—>’;) Preset o QM set of states
l?digit o ¢)! € QM initial state
@ e AM action alphabet,
T2[Treset lﬁ o AM input alphabet (with ?)
@ beep o A(‘)[output alphabet (with !)
?digitl \@ o M internal actions (7%)
!opev al’&g{m - o —yC QAM X AM X QM
. transition relation

A%S = AI\[U Agj set of visible actions

A. Rollet - ETR2011 - Brest (France) - August 2011 13/63

IOLTS Testing

Input Output Labelled Transition System (IOLTS)

M = (Q, A, —,qo) with :

— oo @ () set of states
l7d @ ¢y € (initial state
Q) @ A action alphabet,
m2f T lﬁ o Aj input alphabet (with ?)
b e Ao output alphabet (with !)
?dl \@ o [internal actions (7)
O e —CQxAXQ
“/ N transition relation

Ayrs = ArU Ap set of visible actions

A. Rollet - ETR2011 - Brest (France) - August 2011 13/63

IOLTS Testing

Runs / Traces

Runs: alternate sequences of states and
actions fireable btw those states

7d T 7d lo
—>Q?r S0 — 51— S2 — S3 — S4 € Runs(M)
V2a o
@) Traces: projections of Runs

wl o lTl on visible actions:
& , Traces(M) = {e, 7d, ?r, 2d.7r, 7r.2d, 2d.1b, ...}
?dl \@ P after o: set of states reachable from P
!g_/@\!a - after observation o
®_® {so} after 7d.lo = {s0, s4}
74 {so} after ?d,!la = ()
M after o £ {qo} after o

A. Rollet - ETR2011 - Brest (France) - August 2011 14/63

IOLTS Testing

Non-determinism

Not to be confused with uncontrolled choice

Tz 'a/Y@
o%@w@

/

M is deterministic if it has no internal action,
and Vq,¢,¢" € Q,Va € Avrs, (g ——= ¢ Ng—=¢") = ¢ ="

A. Rollet - ETR2011 - Brest (France) - August 2011 15/63

IOLTS Testing

Non-determinism

7z la @ @—>T @ b
o—=> —7
) }‘@\‘

Not to be confused with uncontrolled choice

Tz 'a/Y@
o%@w@

M is deterministic if it has no internal action,
and Vq,¢,q" € Q,Va € Ayrs, (¢ — d Ng—¢") = ¢ =¢"

Determinization: det(M) = (29, Ay s, —det, Qo after €) with
P-%, Pe PP c29 ac Ayrs and P/ = P after a.

Traces(M) = Traces(det(M))

A. Rollet - ETR2011 - Brest (France) - August 2011 15/63

IOLTS Testing

Observation of quiescence

In testing practice, one can observe traces of the IUT, but also its
quiescences with timers.
Only quiescences of TUT unspecified in S should be rejected.

— G
e Notation : T'(q) £ {a € A | ¢ 5}

@)

T r lTl

o
o D
ClRCwT =0

A. Rollet - ETR2011 - Brest (France) - August 2011 16/63

IOLTS Testing

Observation of quiescence

In testing practice, one can observe traces of the IUT, but also its
quiescences with timers.
Only quiescences of TUT unspecified in S should be rejected.

— G
e Notation : T'(q) £ {a € A | ¢ 5}
Qy deadlock : no possible evolution :
mf @gl T'(q) = 0.
7d) N
8
® @&_ O

A. Rollet - ETR2011 - Brest (France) - August 2011 16/63

IOLTS Testing

Observation of quiescence

In testing practice, one can observe traces of the IUT, but also its
quiescences with timers.
Only quiescences of TUT unspecified in S should be rejected.

—@o
e Notation : T'(q) £ {a € A | ¢ 5}
Qy deadlock : no possible evolution :
nf w\In I'(q) = 0.

@ b outputlock : system waiting for an action :
2af I(g) C Ar.
O

YN

& @00

A. Rollet - ETR2011 - Brest (France) - August 2011 16/63

IOLTS Testing

Observation of quiescence

In testing practice, one can observe traces of the IUT, but also its
quiescences with timers.
Only quiescences of TUT unspecified in S should be rejected.

— G
e Notation : T'(q) £ {a € A | ¢ 5}
Qy deadlock : no possible evolution :
nf w\In I'(q) = 0.
@\!b outputlock : system waiting for an action :
) T(q) C Ar.
" o : livelock : internal actions loop :
“‘/ *‘ S ‘ I, cn i g =N g

A. Rollet - ETR2011 - Brest (France) - August 2011 16/63

IOLTS Testing

Observation of quiescence

In testing practice, one can observe traces of the IUT, but also its

quiescences with timers.

Only quiescences of TUT unspecified in S should be rejected.

—@o
V2a
©

T r lTl

o

!o‘/@\{!a. T
()

Notation : T'(q) £ {a € A | ¢ 5}
deadlock : no possible evolution :
I'(q) = 0.
outputlock : system waiting for an action :
['(q) C Ar.
livelock : internal actions loop :

T1...Tn

I, Tt q = q.

quiescent(M) = deadlock(M) U livelock(M) U outputlock(M)

A. Rollet - ETR2011 - Brest (France) - August 2011 16/63

IOLTS Testing

Suspension automaton

15
(v
Quiescence : special output § —>©?r
V2a
The suspension ioL TS of D)
M = (Q,A,—,qo) is an ioL TS mf A\
A(M) = (Q, AU{8}, —>a(a1), d0) where JoNT
—raan=— U{g —sqlg € rd} o
quiescent(M)}. !a/@\!a .
A
OO
(URERY

A. Rollet - ETR2011 - Brest (France) - August 2011 17/63

IOLTS Testing

Suspension traces

15 15

(v (O
@ — @D
l?d
7d

n/ @

r

r .
1b
T I
?dl ol ?dl 16
OLOLE_O CENTD
T
R t

A(S) det(A(S))

Suspension traces

$Traces(M) £ Traces(A(M)) = Traces(det(A(M)))

STraces(S) and STraces(I) represent visible behaviors of S and I

for testing = a base for the definition of conformance.
A. Rollet - ETR2011 - Brest (France) - August 2011 18/63

IOLTS Testing

Testing framework

Specification : ioLTS S = (Q®, A%, —s,)

Implementation : iolL TS IUT = (Q"7", AT, — 1, sp")
Unknown implementation, except for its interface,
identical to S's
Hyp.: TUT is input-complete : In any state, [UT
accepts any input, possibly after internal actions.

A. Rollet - ETR2011 - Brest (France) - August 2011 19/63

IOLTS Testing

Conformance relation

The conformance relation defines the set of implementations IUT

conforming to S.

Conformance

Vo € STraces(S),
Out(A(IUT) after o) C Out(A(S) after o)

>

IUT ioco S

with Out(P) £ T'(P) N A% 2: set of outputs A quiescences in P.

? A% is equivalent notation for Ao since § is an output of A(S) and
A(IUT)

Intuition : TUT conforms to S iff after any suspension trace of S
and TUT, all outputs and quiescences of IUT are specified by S.

A. Rollet - ETR2011 - Brest (France) - August 2011 20/63

— G

Ta
1z

O
! Wiy
@1/ \y@

specification A(S)

I: Implem. choice
— o

Ta

O
0
Gee ©

I5: Unspec. output

1z

A. Rollet - ETR2011 - Brest (France) - August 2011

IOLTS Testing

ioco: example

— Gl
e,
f/ \v

‘Q.ImpMm.of
a partial spec

— Gl

Iz l?a\}:p 15

@

& %

1, : Unspec. quiescence

21/63

IOLTS Testing

Canonical Tester

From S (more precisely from det(A(S)) = (Q?, A?, —4, ¢f)),
build an ioLTS Can(S) = (Q°, A, —.,¢5) — the most general
ioLTS permitting to detect non-conformance of implementation
1UT.

A. Rollet - ETR2011 - Brest (France) - August 2011 22/63

IOLTS Testing

Canonical Tester

From S (more precisely from det(A(S)) = (Q?, A?, —4, ¢f)),
build an ioLTS Can(S) = (Q°, A, —.,¢5) — the most general

ioLTS permitting to detect non-conformance of implementation
1UT.

o Q°= QYU {Fail} and ¢§ = ¢
o A° = ASU AS, where A = A and A% = A¢ input / output
inversion

o —.=—43U{q 25 Fail lgeQ?ac A N—(q i>d)}, all
non-specified outputs lead to Fail.

A. Rollet - ETR2011 - Brest (France) - August 2011 22/63

IOLTS Testing

Canonical Tester

From S (more precisely from det(A(S)) = (Q9, AY, —4, ¢f)),
build an ioLTS Can(S) = (Q°, A, —.,¢5) — the most general
ioLTS permitting to detect non-conformance of implementation

IUT.
79
(v
—>(00) D lr
d
Iy

v
d J

A. Rollet - ETR2011 - Brest (France) - August 2011 22/63

IOLTS Testing

Canonical Tester

From S (more precisely from det(A(S)) = (Q9, AY, —4, ¢f)),
build an ioLTS Can(S) = (Q°, A, —.,¢5) — the most general
ioLTS permitting to detect non-conformance of implementation
IUT.

?a,?b, 70

——®
8

76

A. Rollet - ETR2011 - Brest (France) - August 2011 22/63

IOLTS Testing

Canonical Tester

From S (more precisely from det(A(S)) = (Q9, AY, —4, ¢f)),
build an ioLTS Can(S) = (Q°, A, —.,¢5) — the most general
ioLTS permitting to detect non-conformance of implementation

1UT.
70

IUT ioco S —
STraces(IUT) N
Tracese, (Can(S)) =0

70

A. Rollet - ETR2011 - Brest (France) - August 2011 22/63

IOLTS Testing

Test cases

A test case is a deterministic ioL TS
(QTC, AT, —1c, 1), equipped with
verdict states: Pass, Fail and Inconc s.t.

e Alf = A3 and A} = A, U {4} (input

/ output inversion)

@ T'C is controllable, i.e. never have to
choose btw. several outputs or btw.
inputs and outputs :

Vge Q™ (Jaec A, q L= Vb e

b
AT (b # a= q /=c))
o All states permitting an input, are
input-complete, except verdict states.

A. Rollet - ETR2011 - Brest (France) - August 2011

o
@<

?othw

@O+
k. 7

<

?othw

<
)
8}

Inconc

-~
=2}
<@

R
%)
n
%)

23/63

Test execution

Modelled by the parallel composition T'C||A(IUT') synchronizing
on common visible actions

— @0
76

%) Zothw 19

| Fail l?d !dl
,6%22% ’ICt@ b 7’1‘/"[Fail

fo

W8) | G @er EBnElgg

v/ -]

N
@g @@=
76

2]
Y

TC1 A(IUT) TC1|A(IUT)

A. Rollet - ETR2011 - Brest (France) - August 2011 24/63

Properties of test suites

TC fails IUT iff an execution of T'C||A(IUT) reaches Fail |

Expresses a possibility for rejection.

Due to non-controllable choices of TUT, a single test case applied
on a single Implementation can produce all different verdicts !

A. Rollet - ETR2011 - Brest (France) - August 2011 25/63

IOLTS Testing

Properties of test suites

TC fails IUT iff an execution of T'C||A(IUT) reaches Fail |

Expresses a possibility for rejection.
Due to non-controllable choices of TUT, a single test case applied
on a single Implementation can produce all different verdicts !

Soundness, Exhaustiveness, Completeness
A set of test cases T'S is
e Sound &
VIUT : (IUT ioco S => YT'C € TS : ~(TC fails IUT)),
i.e. only non-conformant IUT may be rejected by a TC € T'S.
@ Exhaustive &
VIUT : (=(IUT ioco S) = ITC € TS :TC fails IUT),
i.e. any non-conformant IUT may be rejected by a TC € T'S.
@ Complete = Sound and Exhaustive

A. Rollet - ETR2011 - Brest (France) - August 2011 25/63

IOLTS Testing

Test selection

Objective : Find an algorithm taking as input a finite state ioLTS
S, and satisfying the following properties:

@ produces only sound test suites

@ is limit-exhaustive i.e. the infinite suite of test cases that can
be produced is exhaustive

Two techniques :
@ Non-deterministic selection (a la TorX)
@ Selection guided by a test purpose (a la TGV)

A. Rollet - ETR2011 - Brest (France) - August 2011 26/63

IOLTS Testing

Non-deterministic selection

Algorithm: partial unfolding of C'an(S)

Start in gf. After any trace o in Can(S)

e if Can(S) after o C Fail, emit a Fail verdict
@ otherwise make a choice between

e produce a Pass verdict and stop,
o consider all inputs of Can(S) after o and continue.
e choose one output in those of Can(S) after o and continue.

A. Rollet - ETR2011 - Brest (France) - August 2011 27/63

IOLTS Testing

Non-deterministic selection

Algorithm: partial unfolding of C'an(S)

Start in gf. After any trace o in Can(S)
e if Can(S) after o C Fail, emit a Fail verdict

@ otherwise make a choice between

e produce a Pass verdict and stop,
o consider all inputs of Can(S) after o and continue.
e choose one output in those of Can(S) after o and continue.

Properties

TS = all possible Test cases generated with this algorithm :
TS is sound and limit-exhaustive

A. Rollet - ETR2011 - Brest (France) - August 2011 27/63

IOLTS Testing

Examples

—@®
!rl
?a,?b, 70 =
?§l
J
% —»A‘)"" 0" @i

-~
o
®=

?a,70,7b
—>|Fail

~
(=2}
)
Q'F S
o€
wn

Can(S) TC1

A. Rollet - ETR2011 - Brest (France) - August 2011 28/63

IOLTS Testing

Examples
—@®
2)
g ®
ld

, 70,78

: 7a 7a 7Ol N{b 70
7o ql/ ?b @3(1,, b, 70 Fail

?a,?b, 70

)
Q
)
Q
\V’
SN
a—
)
<
=
®<-6

Can(S) TC?2

A. Rollet - ETR2011 - Brest (France) - August 2011 28/63

IOLTS Testing

Test Purpose generation

Previous algorithm : maybe quite long if we intend to focus on a
specific behavior...

Main characteristics of Test Purpose Generation:

@ test selection by test purposes describing a set of behaviors to
be tested, targeted by a test case,

o off-line selection, a posteriori execution.

A. Rollet - ETR2011 - Brest (France) - August 2011 29/63

IOLTS Testing

Test Purpose definition

Test Purpose

Deterministic and complete ioLTS TP = (Q™, A™, —+p, ¢")
equipped with two sets Accept™ and Refuse™ of trap states, s.t.
ATE = A7 U {5}

78

?0

-
o l!"
p3 D2
Refuse || Accept
U0

TP
A. Rollet - ETR2011 - Brest (Freee3 R ugust 2011 30/63

70

IOLTS Testing

Selection principle

Can(S) ’ T \ - T
C C)
dei(AS)) (
\e o N J

4
2
v’ othw -

*\/

Can(S) x TP o) TC

? othw /
@ |

A. Rollet - ETR2011 - Brest (France) - August 2011 31/63

IOLTS Testing

Synchronous Product : definition

Definition of Synchronous Product

The Synchronous Product of two ioLTS

My = (QMY, A, —y1, g¥"), and My = (Q™2, A, —wa, gi?) is the
ioLTS M; x My = (Q" x Q"2 A, —, q" X ¢*) where — is
defined by :

(QMIJ QMz) R (q'/vm q'/vm) A (QMl i>M1 QI/vu) N (QMz i>M2 qﬁ,.g)

A. Rollet - ETR2011 - Brest (France) - August 2011 32/63

IOLTS Testing

The Synchronous Product Can(S) x TP

26D
J, N N
MC@%@ @ @n
NN o
7 tl g)

U 4’/ \\A

79

¢?(}Ul,’tl,‘

r

p3 p2

Refuse || Accept

*

A. Rollet - ETR2011 - Brest (France) - August 2011 33/63

IOLTS Testing

Complete Test Graph (CTG)

o Keep the first Accept state
in a path §C (a0, p1
e

e If g € coreach(Pass) keep q
o If g € {Fail} keep ¢

o If ¢ & coreach(Pass) input
(tester point of view) m @
successor of a state

q € coreach(Pass) then @ (incong

woth w

A. Rollet - ETR2011 - Brest (France) - August 2011 34/63

Inconc

IOLTS Testing

Ensuring controlabillity of test cases

@

l!r

?othw l?(s g C '
\d

@D

Fa/l l'd

1 1
Tothw l'd \QQ{

70 ?a
/ \ Wuthu.

Example of Test Case

The test suite composed of the set of test cases that the algorithm
can produce is sound and limit-exhaustive.

A. Rollet - ETR2011 - Brest (France) - August 2011 35/63

IOLTS Testing

Conclusion

@ Testing theory for ioLTS
@ Test generation for finite ioL TS

o Non-deterministic selection: unfolding of Can(S)

e Selection by test purpose: for finite ioLTS based on
co-reachability analysis.

e Soundness and exhaustiveness.

A. Rollet - ETR2011 - Brest (France) - August 2011 36/63

Timed extensions

Outline

© Testing Timed Systems

A. Rollet - ETR2011 - Brest (France) - August 2011 37/63

Timed extensions

References

Part essentially based on :

e [HLMNPSO08] A. Hessel, K. Larsen, M. Mikucionis, B. Nielsen,
P. Pettersson, and A. Skou, “Testing real-time systems using
uppaal,” in Formal Methods and Testing, LNCS, vol. 4949.
Springer Berlin / Heidelberg, 2008, pp. 77-117.

e [MLNO4] M. Mikucionis, K. G. Larsen, and B. Nielsen,
“T-uppaal: Online model-based testing of real-time systems,”
in 19th IEEE International Conference on Automated Software
Engineering (ASE 2004), 20-25 September 2004, Linz,
Austria. |EEE Computer Society, 2004, pp. 396-397.

e [KTO04] M. Krichen and S. Tripakis, “Black-box conformance
testing for real-time systems,” in Model Checking Software,
11th International SPIN Workshop, Barcelona, Spain, April
1-3, 2004, LNCS vol. 2989. Springer, 2004, pp. 109-126.

A. Rollet - ETR2011 - Brest (France) - August 2011 38/63

Timed extensions

Main lines

@ Need a “new” model to describe real-time aspects : Timed
Automata with Inputs and Outputs... and semantics.

@ Need a “new” conformance relation : rtioco

Non-deterministic online test generation

@ Discussion about offline test generation

A. Rollet - ETR2011 - Brest (France) - August 2011 39/63

Timed extensions

“Uppaal-like” approach

Explicit and separate model of the environment

input

T

+ test generation tool can synthesize only relevant scenario

+ designer can lead the test to specific situations

A. Rollet - ETR2011 - Brest (France) - August 2011 40/63

Timed extensions

Timed Automaton

Semantics defined in terms of TIOTS.
Possibly non-deterministic

A. Rollet - ETR2011 - Brest (France) - August 2011 41/63

Timed extensions

Timed Input Output Transition System (TIOTS)

Given a set of actions A, divided in A,y and A;,, and 7 € A.
(4,2 AU{r})

if no precision is given, in the following afg] is an action, d[k-,] is a delay

S = (S, 50, Ain, Aout, —>) where :
@ S set of states, sy € S the initial state
o —C S x (A UR>g) x S transition relation with

. . d d
o time determinism : (s — s'As — §") = s’ = 5"

: o d d di+d
o time additivity : (5 — §' A5’ 25 §) = 5 LT ¢

0
o zero-delay : Vs, s — s

Testing point of view : Timed Traces are considered, e.g.
o =7coin - 1-7req - 2-\wCof fee - 9-7coin

A. Rollet - ETR2011 - Brest (France) - August 2011 42/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Notations / Definitions

a . T * a T *y
0 s=¢iffs— — — s

d ;. T * d T * dg 7 T % dp T *,
0o s=s5iffs— — — =S — . — B 33

where d = >~} _, dy

@ usually generalized to sequences

Timed extensions

Notations / Definitions

a . T * a T *y
0 s=¢iffs— — — s

d ;. T * d T * dg T T * dy T *
0o s=s5iffs— — — =S — . — B 33

where d = >~} _, dy

@ usually generalized to sequences

Observable Timed Traces T7Tr(s)

TTr(s) = {o € (AUR>q)*|s =}
Example : 0 =7coin - 1-7req - 2-lwCof fee - 9-7coin

A. Rollet - ETR2011 - Brest (France) - August 2011 43/63

Timed extensions

Notations / Definitions

a . T * a T *y
0 s=¢iffs— — — s

d ;. T * d T * dg T T * dy T *
e s=>siffs— — — — — . — 5 s

where d = >~} _, dy

@ usually generalized to sequences

Observable Timed Traces T7Tr(s)
TTr(s) = {o € (AUR>q)*|s =}

Example : 0 =7coin - 1-7req - 2-lwCof fee - 9-7coin

s After o = {s'|s = s'}, S'Afterc = J,cq s After o

A. Rollet - ETR2011 - Brest (France) - August 2011 43/63

Timed extensions

Notations / Definitions

a . T * a T *y
0 s=¢iffs— — — s
d . T * d T * da 7 T @y T *
e s=>siffs— — — — — . — 5 s
n
where d =) ") di

@ usually generalized to sequences

Observable Timed Traces T7Tr(s)

TTr(s) = {o € (AUR>q)*|s =}
Example : 0 =7coin - 1-7req - 2-lwCof fee - 9-7coin

After
s After o = {s'|s = s'}, S'Afterc = J,cq s After o

Out
Out(s) = {a € Aot UR>q|s =} Out(S') = U,y q Out(s)

A. Rollet - ETR2011 - Brest (France) - August 2011 43763

Timed extensions

Timed Automata (with Inputs and Outputs) : definition

Given X set of clock variables, G(X) set
of guards, U(X) set of updates.

Timed Automaton
TA=(L,ly,I,E) where

@ L set of locations, [y initial location

=0 1500 fee

e I: L — G(X) assigns invariants to

‘req o locations
, e ECLXGX)x A xUX)x L
2<5 set of edges (written [225 1)

Observable trace example : o0 =7coin - 6-7req - 3...
Out(?coin - 6-7req - 3) = {sCof fee} U [0, 2]

A. Rollet - ETR2011 - Brest (France) - August 2011 44/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Semantics of Timed Automata

Semantics as a TIOTS defined by :
@ States of the form s = (1,7), s.t.

e [is a location
o ¥ € R¥ clock valuation satisfying invariant of /

@ Delay transitions

Vd < d.I(d)

(1,7) % (1,5 + d)

@ Discrete transitions

u(v)

122817 A g(@) A I (V) 0
7

(L,7) = (¥,)

most reasoning done on the semantics

Timed extensions

Relativized timed conformance

e S= (Ss,sg,Am,Aout, —s) a weakly input enabled (i.e.
Vs € S5.Vi € Ay, s =) TIOTS

o TUT = (STUT sTUT A, Apus, —rzur) a weakly input
enabled TIOTS

o &= (E¢, €5, Aput, Ain, —¢) (input / output inversion)
weakly input enabled TIOTS.

rtioco,
Let s € SS, e € E€ and iut € STUT .

tut rtioco, s
iff
Vo € TTr(e), Out((iut, e) After o) C Out((s,e) After o)
iff
TTr(iut) NTTr(e) CTTr(s) NTTr(e)

A. Rollet - ETR2011 - Brest (France) - August 2011 46/63

Timed extensions

Relativized timed conformance (2)

rtioco ensures Implementation has only the behavior allowed by
Specification :

@ Implementation not allowed to produce an output at a time
when not allowed by Specification

@ Implementation not allowed to omit producing an output when
required by the Specification

A. Rollet - ETR2011 - Brest (France) - August 2011 47/63

Timed extensions

rtioco examples
—0

rwCof fe O ?sCof fe

rkq
@)

Environment Specification s Implementation i

Trace o Out(s After o) Out(iy After o)
c-2 Rzo Rzo

c-4-r-1 | {wCof fee,sCof fee} U|0,4] [0, 1]
c-4-1-2 | {wCof fee,sCof fee} U[0,3] | {wCof fee,0}
c-5-r-3 {sCof fee} U|0,2] {sCof fee,0}
c-5-1r-5 {sCof fee,0} 0

A. Rollet - ETR2011 - Brest (France) - August 2011 48/63

Timed extensions

rtioco examples (2)
—0

leqin

rwCof fe O ?sCof fe

rkq
@)
Environment Specification s Implementation i
Trace o Out(s After o) Out(ip After o)

c-2 Rzo Rzo

c-4-r-1 | {wCof fee,sCof fee} U|0,4] [0, 2]

c-4-1-2 | {wCof fee,sCof fee} U[0,3] | {wCof fee} U[0,1]

c-5-r-3 {sCof fee} U|0,2] [0, 4]

c-5-1r-5 {sCof fee,0} [0, 2]

A. Rollet - ETR2011 - Brest (France) - August 2011 49/63

Timed extensions

Online testing (a la TorX)

On-the-fly testing : combines test generation and execution
Non-deterministic generation

Symbolic states

Weakly input-enabled and non-blocking TIOTS

Advantages :

e reduces state space explosion
e handles non-determinism

@ Drawbacks :

e specification must be analyzed online, in real-time
e test runs may be long...
e coverage criteria can not be guaranteed

A. Rollet - ETR2011 - Brest (France) - August 2011 50/63

Timed extensions

Non-determinism

Often used :
@ as means of abstraction

@ to model optional behavior, permitted but not required

determinism definition

An TIOTS (.5) is deterministic if
Va € (A, UR>p),Vs € 8, (s = s’ As - ") = & = 5.

®

x>T7
?a

—@——®——® —®-==%@®)
?a
z:=0 @

(lp, x = 3) After a = {(l2, =z = 3), (l4,z = 3), (13,2 = 0)}
(Is,x = 0) After 4 = {(l5,2 =4), (5,0 < x < 4)}

A. Rollet - ETR2011 - Brest (France) - August 2011 51/63

Timed extensions

Uppaal TRON algorithm TestGenExe(S,E, IUT,T)

while Z # () A titerations < T do
switch randomly choose btw action, delay and restart do
case action /* offer an input */
if EnvOutput(Z) # 0 then
‘ randomly choose ¢ € EnvOutput(Z); send i to IUT ;
Z = Z After ¢ ;

case delay /* wait for an output */
randomly choose d € Delays(Z) ;

sleep for d time units or wake up on output o at d’ < d;

if o occurs then

Z = Z After d’ ;
if o & ImpOutput(Z) then return FAIL else
Z = Z After o
else
| Z:=Z After d ;

case restart Z := {(so,e0)}, reset IUT /* reset and restart */

if Z =0 then return FAIL else return PASS

A. Rollet - ETR2011 - Brest (France) - August 2011 52/63

Model Based Testing IOLTS Testing

Timed extensions

Example of test execution

Tester

— (ko

Implementation

x >/1

?wCof fe ?sCof fe !wc ffee

Symbolic state set:
{(k‘olo? Tr = 0)}
EnvOutput: coin
ImpOutput: ()

Model Based Testing IOLTS Testing Timed extensions Conclusion

Example of test execution

Tester

~®

Implementation

x >/1

?wCof fe ?sCof fe !wc ffee

Symbolic state set: Wart

for ouput
{(kolo,z = 0)} (delay) or offer

EnvOutput: coin

input?
ImpOutput: ()

Timed extensions

Example of test execution

Tester

~®

Implementation

x >/1

?wCof fe ?sCof fe !wc ffee

Symbolic state set:
{(k‘olo? Tr = 0)}
EnvOutput: coin
ImpQOutput: ()

Let's offer an in-
put. Choose (the
only) “coin”

A. Rollet - ETR2011 - Brest (France) - August 2011 53/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Example of test execution

Tester

~®

Implementation

x >/1

?wCof fe ?sCof fe !wc ffee

Symbolic state set:
{(k1ly,z =0)}
EnvOutput: req
ImpOutput:

Update the state
set and other vari-
ables

Model Based Testing IOLTS Testing Timed extensions Conclusion

Example of test execution

Tester

~®

Implementation

x >/1

?wCof fe ?sCof fe !wc ffee

Symbolic state set:
{(k1ly,z =0)}
EnvOutput: req
ImpOutput:

Wait or offer in-
put? Let's wait for
5 units

Model Based Testing IOLTS Testing

Timed extensions

Example of test execution

Tester

—> (ko

Implementation

x >/1

?wCof fe ?sCof fe !wc ffee

Symbolic state set: ... no ouput so
{(kily,z =5)} far ... update the
EnvOutput: req state set
ImpOutput:

Model Based Testing IOLTS Testing

Timed extensions Conclusion

Example of test execution

Tester

—> (ko

x >/1

?wCof fe ?sCof fe !wc ffee

Symbolic state set:
{(k1ly,z =5)}
EnvOutput: req
ImpOutput: ()

Implementation

Tedin

Wait or offer in-
put? Let's offer
“req

Model Based Testing IOLTS Testing Timed extensions Conclusion

Example of test execution

Tester

~®

Implementation

x >/1

?wCof fe ?sCof fe !wc ffee

x =0
l3
<7

x <3
Sy T bO“C state set:

{(k‘glg./ r = 0), (kzlg, T = 0)}
EnvOutput: ()
ImpOutput:

Update the state
set and other vari-
ables

Model Based Testing IOLTS Testing Timed extensions Conclusion

Example of test execution

Tester

~®

Implementation

x >/1

?wCof fe ?sCof fe !wc ffee

x =0
l3
<7

x <3
Sy T bO“C state set:

{(k‘glg./ r = 0), (kzlg, T = 0)}
EnvOutput: ()
ImpOutput:

Wait or offer in-
put? Let's wait for
4 units

Model Based Testing IOLTS Testing Timed extensions Conclusion

Example of test execution

Tester

~®

Implementation

x >/1

?wCof fe ?sCof fe !wc ffee

Symbolic state set:
(k‘glg,[l? = 4)}
EnvOutput: ()
ImpOutput: {sCof fee}

no output so
far: update the
state set

Model Based Testing IOLTS Testing Timed extensions Conclusion

Example of test execution

Tester

~®

Implementation

x >/1

?wCof fe ?sCof fe !wc ffee

Symbolic state set:
{(kols,x =4)}
EnvOutput: ()
ImpOutput: {sCof fee}

Wait or offer in-
put? Let's wait for
2 units

Timed extensions

Example of test execution

Tester

~®

Implementation

x >/1

2wCof fe 25Cof fe WwCHf fee

Symbolic state set:
{(kols,x =4)}
EnvOutput: ()
ImpOutput: {sCof fee}

Got output after 0
delay: update the
state set

A. Rollet - ETR2011 - Brest (France) - August 2011 53/63

Model Based Testing IOLTS Testing Timed extensions Conclusion

Example of test execution

Tester

~®

Implementation

x >/1

?wCof fe ?sCof fe !wc ffee

Symbolic state set:

What if there is a
{(kols,z = 4)} bug?
EnvOutput: ()

ImpOutput: {sCof fee}

Let's wait
back for 2 units

Model Based Testing IOLTS Testing

Timed extensions Conclusion

Example of test execution

Tester

~®

x >/1

?wCof fe ?sCof fe !wc ffee

Symbolic state set:
{(kols,x =4)}
EnvOutput: ()
ImpOutput: {sCof fee}

Implementation

output after 0 de-
lay: wCof fee &
{sCof fee}

Timed extensions

Properties of test cases

Let a S, &, and ZUT three weakly input enabled TIOTS, with
TUT deterministic.

Soundness, Exhaustiveness

@ Soundness :
TestGenExe(S,E,ZUT,T) = Fail = =(ZUT rtiocog S)
@ Exhaustiveness :

—(ZUT rtiocog S) = Prob(TestGenExe(S,E,ZUT,T) =

Fail =% 1

If ZUT is not deterministic, exhaustiveness is not guaranteed

A. Rollet - ETR2011 - Brest (France) - August 2011 54/63

Timed extensions

Offline test generation : main ideas

@ Advantages :

e test cases are easier and faster to execute
e possibility to guarantee a coverage or a test objective

@ Drawbacks :

e specification has to be analyzed entirely = state explosion
e only deterministic (and impossible to determinize in general
case)

A. Rollet - ETR2011 - Brest (France) - August 2011 55/63

Timed extensions

Offline test generation : main ideas

@ Advantages :

e test cases are easier and faster to execute
e possibility to guarantee a coverage or a test objective

@ Drawbacks :

e specification has to be analyzed entirely = state explosion
e only deterministic (and impossible to determinize in general
case)

Test Generation with Test Purpose

A. Rollet - ETR2011 - Brest (France) - August 2011 55/63

Timed extensions

Offline test generation : main ideas

@ Advantages :

e test cases are easier and faster to execute

e possibility to guarantee a coverage or a test objective
@ Drawbacks :

e specification has to be analyzed entirely = state explosion
e only deterministic (and impossible to determinize in general
case)

Test Generation with Test Purpose

@ Synchronous Product btw Spec. and T.P. — need a finite
symbolic representation of TA (Region Graph, Zones, ...)

A. Rollet - ETR2011 - Brest (France) - August 2011 55/63

Timed extensions

Offline test generation : main ideas

@ Advantages :

e test cases are easier and faster to execute

e possibility to guarantee a coverage or a test objective
@ Drawbacks :

e specification has to be analyzed entirely = state explosion
e only deterministic (and impossible to determinize in general
case)

Test Generation with Test Purpose

@ Synchronous Product btw Spec. and T.P. — need a finite
symbolic representation of TA (Region Graph, Zones, ...)

@ Test Case Generation with Uppaal

A. Rollet - ETR2011 - Brest (France) - August 2011 55/63

Timed extensions

Offline test generation : main ideas

@ Advantages :
o test cases are easier and faster to execute
e possibility to guarantee a coverage or a test objective
@ Drawbacks :
e specification has to be analyzed entirely = state explosion

e only deterministic (and impossible to determinize in general
case)

Test Generation with Test Purpose

@ Synchronous Product btw Spec. and T.P. — need a finite
symbolic representation of TA (Region Graph, Zones, ...)

@ Test Case Generation with Uppaal

o Test Case Generation using Observers

Still immature...

A. Rollet - ETR2011 - Brest (France) - August 2011 55/63

Timed extensions

Offline test generation : main ideas

@ Advantages :
o test cases are easier and faster to execute
e possibility to guarantee a coverage or a test objective
@ Drawbacks :
o specification has to be analyzed entirely = state explosion
o only deterministic (and impossible to determinize in general
case)

Test Generation with Test Purpose

@ Test Case Generation with Uppaal

Still immature...

A. Rollet - ETR2011 - Brest (France) - August 2011 55/63

Timed extensions

Test Case generation with Test Purpose using Uppaal

Uppaal Tool :

@ Model checker for temporal properties

e Symbolic efficient analysis (using DBM)

@ Generates diagnostic traces (shortest or fastest)
Assumptions : TIOTS are deterministic, weakly input enabled and
output urgent

A. Rollet - ETR2011 - Brest (France) - August 2011 56/63

Timed extensions

Test Case generation with Test Purpose using Uppaal

Uppaal Tool :

@ Model checker for temporal properties

e Symbolic efficient analysis (using DBM)

@ Generates diagnostic traces (shortest or fastest)
Assumptions : TIOTS are deterministic, weakly input enabled and
output urgent

e Formulate the problem as safety property (usually solved by a
reachability analysis) — obtain a trace of the form
o
(s0,€0) LN (51,€1).. == (55, €n)
@ Obtain a test sequence by projecting the trace to the
& — component (and summing delays)

@ Add Verdicts to the test sequence to obtain a test case

Test sequences are guaranteed to be included in the specification
A. Rollet - ETR2011 - Brest (France) - August 2011 56/63

Timed extensions

Example of test case

_ Fail
z2<0

z < delay
Toutg
z:

/—\
\/

Toutq

Sequence :

ling - delay-?outg Fail

Touty,

A. Rollet - ETR2011 - Brest (France) - August 2011

ling
z:=0

Fail
z < delay

z == delay
Toutg
z:=0

57/63

Timed extensions

Examples of Test Purposes (light controller)

TP1 : Check that the light can become bright :

A. Rollet - ETR2011 - Brest (France) - August 2011 58/63

Timed extensions

Examples of Test Purposes (light controller)

TP1 : Check that the light can become bright :
Simple reachability property : eventually the system specification
can enter location BRIGHT

A. Rollet - ETR2011 - Brest (France) - August 2011 58/63

Timed extensions

Examples of Test Purposes (light controller)

TP1 : Check that the light can become bright :
Simple reachability property : eventually the system specification
can enter location BRIGHT

TP2 : Check the light switch off after 3 successive touches

A. Rollet - ETR2011 - Brest (France) - August 2011 58/63

Timed extensions

Examples of Test Purposes (light controller)

TP1 : Check that the light can become bright :
Simple reachability property : eventually the system specification
can enter location BRIGHT

TP2 : Check the light switch off after 3 successive touches
reachability property + specific environment :

z > Treact z > Treact
ltouch Itouch ltouch
z = z:=0 z:=0 20ff
—Q0 8 8 8 goal
?off ?off ?dim
?dim ?dim ?bright
?bright ?bright

A. Rollet - ETR2011 - Brest (France) - August 2011 58/63

Timed extensions

Examples of coverage criteria

Edge Coverage

A. Rollet - ETR2011 - Brest (France) - August 2011 59/63

Timed extensions

Examples of coverage criteria

Edge Coverage
Reachability property :

@ add a boolean variable e; for each edge to be covered, initially
false

@ add assignment ¢; := true for each edge to be covered

@ property to reach : A e; == true

A. Rollet - ETR2011 - Brest (France) - August 2011 59/63

Timed extensions

Examples of coverage criteria

Edge Coverage
Reachability property :

@ add a boolean variable e; for each edge to be covered, initially
false

@ add assignment ¢; := true for each edge to be covered

@ property to reach : A e; == true

Location (I;) Coverage

A. Rollet - ETR2011 - Brest (France) - August 2011 59/63

Timed extensions

Examples of coverage criteria

Edge Coverage
Reachability property :

@ add a boolean variable e; for each edge to be covered, initially
false

@ add assignment ¢; := true for each edge to be covered
@ property to reach : A e; == true
Location (I;) Coverage

@ add a boolean variable b; for each node, initially false (except
initial)
o for every edge I 2% [; add assignment b; := true

@ property to reach : A\ b; == true

Etc... but not always possible

A. Rollet - ETR2011 - Brest (France) - August 2011 59/63

Timed extensions

Using observers

Weakness of this offline approach :
@ time-consuming to find the proper model annotation

@ model-checking tools not adapted for test cases generation :
may lead to performance problems

— Possibility to use a language of observers to describe coverage
criteria

— Adaptation of model-checking algorithms for test generation
based on observers

A. Rollet - ETR2011 - Brest (France) - August 2011 60/63

Conclusion

Outline

@ Conclusion and further work

A. Rollet - ETR2011 - Brest (France) - August 2011 61/63

Conclusion

Conclusion

@ Testing theory and generation algorithms for finite ioL TS
@ Extensions for Timed Automata with Inputs and Outputs

@ Off-line and on-line algorithms

A. Rollet - ETR2011 - Brest (France) - August 2011 62/63

Conclusion

Conclusion

@ Testing theory and generation algorithms for finite ioL TS
@ Extensions for Timed Automata with Inputs and Outputs

@ Off-line and on-line algorithms

Mature tools (scaling)

“Real-time" coverage criteria
Testing seen as “Game theory”

Add variables with “complex” assignments

e 6 o6 o

Run-time verification / enforcement dans le cadre temporisé

A. Rollet - ETR2011 - Brest (France) - August 2011 62/63

Thank you for your attention

rollet@labri.fr

A. Rollet - ETR2011 - Brest (France) - August 2011 63/63

	Model Based Testing
	Conformance Testing with IOLTS
	Testing Timed Systems
	Conclusion and further work

