
Conformance Testing of Variable Driven Automata

Omer Nguena Timo

LABRI - CNRS (UMR 5800)

University of Bordeaux

F-33405 Talence, France

nguena@labri.fr

Antoine Rollet

LABRI - CNRS (UMR 5800)

University of Bordeaux

F-33405 Talence, France

rollet@labri.fr

Abstract

In this paper, we address the conformance testing prob-

lem for timed constrained critical systems. We propose a

new model adapted to describe such systems. The model

is called Variable Driven Timed Automata (VDTA) and is

a variant of timed automata in which events are variable

assignments and all transitions are urgent. We present a

sound and exhaustive on the fly testing algorithm for such

systems. As an application of our approach, we propose a

case study on a “Bi-manual command” system.

1. Introduction

Testing is an important activity during the development

cycle. Since systems are getting more and more complex,

it is important to use a proper validation strategy to ensure

their correctness. The testing process consists of apply-

ing experimentation directly on an Implementation Un-

der Test (IUT). Testing may focus on different topics such

as conformance, reliability, interoperability or robustness.

The test sequences may be obtained with two major meth-

ods : (1) structural testing : the source code is used to

extract data for test experimentation (flow graph, etc...);

(2) functional testing : the specification (formal or not) is

used as a basis for test cases generation. In both cases, the

results are observed and compared to the specification.

In this paper we deal with functional testing, and more

precisely with formal conformance testing: we define a

formal model for specifying a class of timed constrained

critical systems. We provide a testing algorithm to ensure

the correctness of such systems. The model is called Vari-

able Driven Timed Automata (VDTA). VDTA is a variant

of Timed Automata ([1]), specially adapted to describe

concisely systems guided by their variable values: in

states of variable driven systems, the time elapses contin-

uously or the environment changes the contents of input

variables. Transitions are fired as soon as constraints over

input, output and clock variables are satisfied and contents

of output variables may change. We consider that a firing

event is a changing value of a variable. In this model all

transitions are urgent i.e. the transition is automatically

fired if the guard is true. There are no other events in such

automata. It permits to handle simultaneous variations of

variables. In addition of this contribution, we present a

testing approach adapted for this model with a proof of

completeness and a case study on a real system: the “Bi-

manual command” [2].

The paper is organised as follows. Section 2 recalls the

previous major contributions of this domain. Section 3

describes the newmodel used to specify timed constrained

critical systems. Section 4 presents the complete testing

framework and a proof of soundness and exhaustiveness.

We give a case study of our approach on a real system

called “Bi-manual machine” in Section 5 and we finally

conclude in Section 6.

This work has been supported by the ANR1 Testec

Project.

2. State of the art

Validation of timed systems has been studied quite a

long time. Alur and Dill proposed a new model for such

systems called timed automata [1] : automata with guards

and clocks. Then testing approaches have been proposed

in [3], [4], [5] and [6]. [3] and [6] present testing ap-

proaches for extensions of timed automata with inputs and

outputs based on characterization of states approaches in-

spired from the Finite State Machines (FSM) testing the-

ory. [4] proposes to generate test cases from event-clock

automata, a subset of timed automata with one clock for

one action. In [6] and [5] authors use the region graph

([1]) in order to generate test suites.

In the same period, Tretmans end al. presented a new

approach for formal testing ([7]) based on asynchronous

and non-deterministic specifications with the Labelled

Transition Systems model and its I/O extension, and de-

fined conformance relations as preorders. In [8], authors

propose to apply the same principle with timed confor-

mance relations on the Timed Extended Finite State Ma-

chines (TEFSM) model, a timed extension of FSM with

guards on variables and clocks. Labelled Transition Sys-

tems (LTS) model has inspired many timed extensions us-

ing the LTS semantic ([9], [10]). In [10] authors describe

a testing method for timed automata with inputs, outputs

1Agence Nationale de la Recherche

and variables. They propose a timed extension of the ioco

relation ([7]) and a test generation method using special

tick actions to model time elapsing.

In the previous described works, only events coming

from the environment permit to fire transitions. Such

models are not adapted for variable driven systems.

The Uppaal project uses timed automata with variables

and the possibility of handling urgent events. The asso-

ciated testing tool [9] generates test cases based on an on

the fly algorithm using a symbolic extension of [7]. It is

possible to find a Uppaal model of the “Bi-manual” com-

mand in [2]. The problem of all these models is that their

semantic does not allow to consider simultaneous actions

directly in the model. Then it is necessary to add a special

event for this case, maybe leading to an important number

of transitions.

3. Models of Systems

3.1. Definitions

A simple way to represent timed systems is to use

timed transition systems (TTS) over a set of actions. Tran-

sitions of TTS are labelled with either an action from Σ or

a delay from R
+, the set of non negative real numbers.

Definition 1 A timed transition system (TTS) over the al-

phabet Σ is a transition system S = 〈Q, Σ, q0,→〉, where
Q is the set of states, q0 ∈ Q is the initial state, and the

transition relation →⊆ Q × (Σ ∪ R
+) × Q consists of

time-elapsing transitions q
t
−→ q′ (with t ∈ R

+), and dis-

crete transitions q
a
−→ q′ (with a ∈ Σ).

As usual, we require the following standard properties for

TTS:

• TIME-DETERMINISM (if q
t
−→ q′ and q

t
−→ q′′ with

t ∈ R
+, then q′ = q′′),

• 0-DELAY :(q
0
−→ q),

• ADDITIVITY (if q
t
−→ q′ and q′

t′

−→ q′′ with t, t′ ∈

R
+, then q

t+t′

−−−→ q′′) and,

• CONTINUITY (if q
t
−→ q′, then for every t′ and t′′ in

R
+ such that t = t′ + t′′, there exists q′′ such that

q
t′

−→ q′′
t′′

−→ q′).

Notation: Let a ∈ Σ be an action. we write q 6
a
−→ when

from q there is no transition labelled with a.

In software engineering, TTS are not adapted to spec-

ify directly timed systems; this is because the set of (time-

elpasing) transitions can be infinite. But TTS is a natural

representation for the semantics of high-level timed mod-

els such as timed automata [1], the Uppaal model [9] or

the model that we introduce.

We define Variable Driven Timed Automata (VDTA), a

new model for specifying an important class of timed sys-

tems. VDTA is a variant of timed automata. Compared to

timed automata, actions in our models, are assignments of

memory-variables and constraints are defined over clocks

andmemory-variables. Another particularity of our model

is that all transitions are urgent, meaning that they must be

fired as soon as constraints are satisfied. Justification of

this choice is given in Subsection 3.2.

A variable v ranges over a domain Dom(v). Given a

set of variables V , we define Dom(V) = ∪v∈VDom(v),
the domain of V . An action a over a set of variables V

is a total function a : V → Dom(V) that assigns a value
in Dom(v) to each variable v ∈ V . The symbol ΣV will

denote the set of actions over a set of variables in 2V .

A constraint g over V is a boolean combination of sim-

ple constraints of the form v ⊲⊳ c where ⊲⊳∈ {<,≤, >≥}
and c is a constant. The set of constraints over V is de-

noted by Φ(V).

In our model, the set of variables are partitioned into a

setH of clock-variables and a set X ofmemory-variables.

A clock-variable (or a clock for short) h records the elapse

of time. A clock is evaluated over R
+, the set of non

negative real numbers. A memory-variable (or a memory

for short) x records a value from a domain. If an action

changes a clock, it sets the clock always to zero.

A clock-constraint is a constraint defined over a set of

clocks and a memory-constraint is defined over a set of

memory-variables. Constants in constraints are natural

numbers.

Definition 2 A variable driven timed automaton (VDTA)

is a tuple A = 〈L, l0, ΣX∪H,X ,Xc,H, ∆〉 where, L is a

finite set of locations, l0 is the initial location,X is a finite

set of memory-variables,Xc ⊆ X is the set of controllable

memory-variables, H is a finite set of clocks, and ∆ ⊆
L×Φ(X ∪H)×Σ(X\Xc)∪H×L is the transition relation.

Notation: A transition (ℓ, g, a, ℓ′) ∈ ∆ is often denoted

by ℓ
g,a
−−→ ℓ′.

The environment of a system modelled with a VDTA

observes all memory-variables. The set of controllable

memory-variablesXc represents the variables in which the

environment (e.g. the tester) can assign a value. Actions

from ΣX that involve variables from X \ Xc are termed

uncontrollable; otherwise they are termed controllable.

We describe the semantics of VDTA presented above.

We need to evaluate variables, to check whether a con-

straint is true according to a given valuation, and we will

need to get new values of variables after an action is per-

formed.

A snapshot over a set of variables V is a function

val : V → Dom(V) defined such that val(v) ∈ Dom(v).
The symbol Val(V) denotes the set of snapshots over V .

Actions can change values of variables. Given an ac-

tion a and a snapshot val of variables of V , the snap-

shot val[a] returns values of memories after the execu-

tion of the action a; it is defined by val[a](v) = a(v)
if the action a is over v; otherwise val[a](v) = val(v).

2

As the time elapses in real-time systems, we consider a

time elapse operation over variables. This operation only

changes the value of the clock-variables and leaves the

memory-variables unchanged. Given a delay t ∈ R
+,

and a snapshot val over X ∪ H, the snapshot val + t is

such that (val + t)(v) = val(v) + t if v ∈ H; otherwise
(val + t)(v) = val(v).
A constraint g can be satisfied by a snapshot val; this no-

tion is standard. We write val |= g when g is evaluated to

true according to val.

Definition 3 The semantics [[A]] of a VDTAA is the TTS

[[A]] = 〈L × Val(H ∪ X), (l0, val0), ΣH∪X ∪ R
+,→〉,

where val0 is an initial snapshot of variables and the tran-

sition relation→ is such that:

T1: (l, val)
a
−→ (l′, val[a]) if and only if there exists

(l′, g, a) ∈ L × Φ(X ∪ H) × Σ(X\Xc)∪H such that

l
g,a
−−→ l′ and val |= g.

T2: (l, val)
a′

−→ (l, val[a′]) with a′ ∈ ΣXc
if for every

(l′, g, a) ∈ L × Φ(X ∪ H) × Σ(X\Xc)∪H such that

l
g,a
−−→ l′ we have val 6|= g.

T3: (l, val)
t
−→ (l, val + t) with t > 0 if for every t′ < t,

for every (l′, g, a) ∈ L × Φ(X ∪ H) × Σ(X\Xc)∪H,

such that l
g,a
−−→ l′ we have val + t′ 6|= g.

The semantics considers two kinds of transitions: discrete

transitions (T1 and T2) and delay transitions (T3). De-

lay transitions (T3) represent the elapse of time. Discrete

transitions are triggered by actions on variables. There are

two sorts of discrete transitions: internal discrete transi-

tions (T1) and external discrete transitions (T2). Internal

discrete transitions (T1) are fired as soon as constraints

are satisfied by the current snapshot. External discrete

transitions (T2) allow to change only the contents of con-

trollable memory-variables; they are fired when an action

on controllable memory-variable is executed and no con-

straint is satisfiable. Internal discrete transitions are ur-

gent. External discrete transitions and delay transitions

are fired only if there is no urgent transition that can be

fired. In the following (l, val)
a
−→1 (l′, val′) denotes a dis-

crete transition of type T1, (l, val)
a
−→2 (l′, val′) denotes a

discrete transition of type T2 and (l, val)
t
−→3 (l′, val′) de-

notes a delay transition. Later we will consider contents of

memory-variables in a given state (l, val). Out((l, val))
denotes the projection of val on memory-variables in X .

3.2. Relation with Other Models

We consider the example of the “Bi-manual command”

system. Using VDTA we present a “natural” represen-

tation of that system. Then we discuss the difficulty to

represent that system with famous Uppaal model. Here is

the description of the “Bi-manual command” system.

Consider the control program of a device designed to

start some machine when two buttons (L and R for left

and right buttons) are pushed within 0.5 seconds. If only

one button is pushed (then L or R are true) and a delay of

0.5 time units delay is performed (time-out has occurred),

then the whole process must be started again. The ma-

chine starts when the signal s is set to 1. After the machine

has started (s=1), it stops as soon as one button is released,

and it can start again only after both buttons have been re-

leased (L and R are both false).

Figure 1 presents a VDTA model for the “Bi-manual

command” system. The model has three memory-

variables (L, R and s) and a clock h; L and R are control-

lable variables. The environment can change the content

of L and R; but it can not change the content of s. Actions

on s are done by the system.

l0

l1

l2

l3

L = 1 ∨R = 1; h := 0

L = 1 ∧R = 1 ∧ h < 0.5; s := 1

L = 0 ∨R = 0; s := 0

L = 0 ∧R = 0 ∧ h < 0.5

h ≥ 0.5

L = 0 ∧R = 0

Figure 1. The System Controller

Let us present two important use cases of the model:

1. From the initial location l0, if L and R are both set to

1, the system must go immediately to l2 after start-

ing the machine (s := 1). This is done by taking in

urgency and successively two transitions.

2. If the system reaches l1 with L = 0 and R = 1, it
can stay in l1 for at most 0.5 time units, otherwise,

the system moves immediately to the state l3. This is

possible since transitions are urgent.

These two use cases are difficult to model with Uppaal

because urgent transitions in this tool can not be guarded

with constraints on clocks variables and invariants in lo-

cations should be constraints of the form h < n or h ≤ n

(h is a clock and n is a constant).

4. Conformance Testing

4.1. Overview

We consider conformance testing of critical timed sys-

tems modelled with VDTA. We define a conformance re-

lation to ensure that an implementation under test (IUT)

conforms to its specification. The main idea of this rela-

tion is that all behaviors of the implementation have to be

allowed by the specification. Especially:

1. The IUT is not allowed to change a memory-variable

in a time (too late or too early) when it is not allowed

by the specification.

3

2. The IUT is not allowed to omit to change a memory-

variable in a time instant at which the modification is

required by the specification.

The model-driven conformance testing activity can be

seen as a two player game interaction between a tester

(or the environment of the implementation) and the im-

plementation. During a play in the game, the tester pro-

vides a conformance verdict of the implementation against

the specification. The tester who knows the specification

plays in the following way:

1. either, it performs an action on memory-variables

and then observes how the implementation reacts. In

case of non conformance, the tester returns a fail ver-

dict.

2. or, it lets the time elapse for a while; but while the

time elapses, it observes eventual actions from the

implementation. In case of non conformance, the

tester returns a fail verdict.

3. or, it stops the play and returns pass verdict meaning

that up to this point no fault has been detected.

The tester observes behaviours of the implementation

through the content of memory-variables. If their content

changes, the tester checks whether the new values are ex-

pected by the specification. Choice of actions by the tester

are guided by the specification.

We assume that the tester can observe all memory-

variables of the implementation. The tester is allowed

to execute actions that involve only controllable memory-

variables (or their copies) of the implementation; it is not

allowed to execute actions on non controllable memory-

variables. In our model, an output for the tester is

an action over controllable memory-variables (or their

copies) and an input is an action over observable memory-

variables of the implementation.

4.2. Conformance Relation

We provide some definitions involved in the test algo-

rithm. We define the set of reachable states after the ex-

ecution of a sequence of actions, the computation of out-

puts and inputs of the specification and the conformance

relation tvco. These definitions hold on TTS since they

are used to define the semantics of systems. They care

about urgency of transitions and are not standard.

Let [[A]] = 〈Q, q0, ΣH∪X ∪ R
+,→〉 be a TTS

that represents the semantics of a VDTA A =
〈L, l0, ΣX∪H,X ,Xc,H, ∆〉.

A run of A from q0 is a sequence of the form q0
t1−→3

q′1
a1−→j q1

t2−→3 q′1
a2−→j q2 · · ·

tn−→3 q′n
an−−→j qn where

ai ∈ ΣX∪H, j ∈ {1, 2}, ti ∈ R
+ and it holds that:

• if qi−1
ti−→3 q′i

ai−→j qi and j = 2, then there is no

q′′i ∈ Q and no a ∈ ΣX∪H such that q′i
a
−→1 q′′i .

This property of runs is a consequence of the urgency of

internal transitions (T1). Urgent runs only consider in-

ternal transitions. An urgent run is maximal if it ends

in a state from which only delay or external transitions

can be fired. A trace is a sequence of elements from

(R+ × ΣX∪H) and it is an element of (R+ × ΣX∪H)∗.
The trace of a run is the ordered sequence of delays and

actions on successive transitions of the run.

Let α be an action from ΣH∪X or a delay from R
+. We

write q
α
−→i iff q

α
−→i q′ for some q′ ∈ Q and i = 1, 2, 3.

The idea in the definitions of =⇒ below is that if con-

straints of successive transitions are true, these transitions

are fired instantaneously. Let a ∈ ΣH∪X be an action; we

write q
a

=⇒ q′ iff there is q1, q2 ∈ Q, σ1, σ2 ∈ (ΣH∪X)∗

such that q
σ1−→1 q1

a
−→2 q2

σ2−→1 q′ and for every

b ∈ ΣH∪X with b 6= a it holds that q1 6
b
−→1 and q′ 6

b
−→1 (in

other words σ1 and σ2 are sequences of actions on maxi-

mal sequences of urgent transitions).

Recall that successive internal discrete transitions can be

fired in urgency and in zero time units and wihtout any

variation of controllable variables. Constraints of these

transitions should be true. A sequence of internal discrete

transitions is stable if it is maximal and ends in a state

from which no internal discrete transition is firable. Af-

ter an execution of a stable sequence of internal discrete

transitions, the system can let the time elapse or the en-

vironment can change the contents of controllable vari-

ables. After letting the time elapse, another stable se-

quence of internal discrete transitions can be executed.

In consequence more than one stable sequences of in-

ternal discrete transitions can be executed within t time

units. For a delay t ∈ R
+, we write q

t
=⇒ q′ iff

q
σ1−→1

t1−→3
σ2−→1

t2−→3
σ3−→1 . . .

σn−−→1
tn−→3 q′ where each

t =
∑

i=1..n ti, σi ∈ (Σ(X\Xc)∪H)∗ is a sequence of

stable internal discrete transitions and q′ 6
σ′

−→1 for some

σ′ ∈ (Σ(X\Xc)∪H)∗).

For a sequence σ = t0.a0.t1.a1. . . . tn.an (where

ti ∈ R
+ and ai ∈ ΣXc∪H, we write q

σ
=⇒ q′ iff

q
t1=⇒

a1=⇒
t2=⇒

a2=⇒ · · ·
tn=⇒

an=⇒ q′. For α ∈ ΣX∪H ∪ R
+

we define q After α = {q′ | q
α

=⇒ q′}. We de-

fine Trace(q) = {σ ∈ (ΣX∪H ∪ R
+)∗ | q

σ
=⇒}

the set of traces from q. For a set of states

P , we define P After α =
⋃

q∈P q After α and

Trace(P) =
⋃

q∈P Trace(p).

Let us define the timed variable-change conformance

relation (tvco) between two TTS.

Definition 4 Let P = 〈P, p0, ΣH∪X∪R
+,→P 〉 andQ =

〈Q, q0, ΣH∪X ∪R
+,→Q〉 be the semantics of two VDTA.

P tvco Q

iff

∀σ ∈ Trace(q0),Out(p0 After σ) ⊆ Out(q0 After σ)

4

where in the context of our model, Out(p) is a set of ac-
tions and each action corresponds to the values of the vari-

ables in a state from p′ ∈ p After σ. Recall that a state is a

tuple made of a location and a snapshot over variables.

Consider the model in Figure 1 and let q =
(l0, (0, 0, 0, 0.2)) be a state where (0, 0, 0, 0.2) are the val-
ues of the tuple (L, R, s, h). If σ is the sequence with a

single action a = {L = 1, R = 1}, then q After σ = {q′}
where q′ = (l2, 1, 1, 1, 0) andOut(q′) = Out(q After σ) =
{L := 1, R := 1, s := 1}. Actions in Out(q) are defined
over memory-variables.

Definition 5 Consider a specification A =
〈LA, lA0 , ΣHA∪XA,XA,XA

c ,HA, ∆A〉 and an IUT

I = 〈LI , lI0 , ΣHI∪XI ,X I ,X I
c ,HI , ∆I〉. Let valA0

be a snapshot that assigns 0 to clocks and variables of

A and valI0 be a snapshot that assigns 0 to clocks and

variables of I. I conforms to A and we write I tvco A
iff [[I]] tvco[[A]].

We remark that in the definition above, the IUT and

the specification neither share their memory-variables nor

their clocks variables. But, we will assume that there is a

one to one correspondence between memory-variables of

the IUT and memory-variables of the specification. Then,

we say that an action over memory-variables of the IUT

is equal to an action over memory-variables of the spec-

ification if and only if by replacing memory-variables by

their correspondent we get the same action. Under that

assumptions, we can compare actions from ΣXI with ac-

tions from ΣXA and we can check if a subset of ΣXI is

included in a subset of ΣXA .

4.3. Conformance Testing Algorithm

We propose Algorithm 1 that is an on the fly con-

formance testing algorithm for systems modeled with

VDTA. Algorithm 1 follows the principle presented in

Subsection 4.1.

An observable memory-variable action is an action over

X that changes the value of at least one memory-variable.

The tester chooses controllable actions over XA
c that

enable to fire a discrete transition from a set of states Z .

These actions belong to the set: EnvOut(Z) = {a ∈

ΣXA
c
| ∃(l, val) ∈ Z.∃l

g,a′

−−→ l′ s.t val[a] |= g}. Observe
that EnvOut(Z) is empty if for every state in q ∈ Z ,

the constraint on each transition from the location in q is

not satisfied by the snapshot in q. In example consider

the specification in Figure 1. If Z = {(l0, (0, 0, 0, 2))},
the unique transition from locations in Z is the transition

l0
g,a
−−→ l1 where g is the constraint L = 1 ∨ R = 1

and a is a silent action over ∅. The set EnvOut(Z) =
{{L := 1}, {R := 1}, {(L := 1), (R := 1)}} contains
three actions; one action is the union of the two others.

The execution of every action in EnvOut(Z) makes the

constraint L = 1 ∨ R = 1 become true. As L and R are

controllable memory-variables, the tester can execute any

action in {{L := 1}, {R := 1}, {(L := 1), (R := 1)}}.

When the tester delays, the amount of the delay is not

hazardous. It must belong to Delay(Z), the set of time

instants at which a constraint on a transition from a

location in Z is satisfied. During the delay, the tester

observes outputs from the implementation and checks

their conformance with those expected from currents

states of the specification. Let Z be the set of current

states of the specification. Expected outputs in the speci-

fication belong to the set ImpOut(Z) defined as follows:
ImpOut(Z) = {a ∈ ΣXA | ∃(l, val) ∈ Z. s.t ∀v ∈
X .val[a](v) = a(v)}.

Algorithm 1 On-The-Fly Testing Algorithm for VDTA

Require: A = 〈L, l0, ΣX∪H,X ,Xc,H, ∆〉
Require: IUT

1: Z = {(l0, val0)}
2: while TRUE do

3: operation = switch-randomly (action,delay,pass)

4: if operation == action then

5: if EnvOut(Z) 6= ∅ then
6: randomly choose a ∈ EnvOut(Z)
7: Z ← Z After a

8: execute the action a on the IUT and let o be an

observed action over XI .

9: if o 6∈ ImpOut(Z) then
10: RETURN fail

11: end if

12: end if

13: else if operation == delay then

14: randomly choose t ∈ Delays(Z)
15: sleep for t time units and wake up on an observ-

able variable action o.

16: if o occurs at t′ ≤ t then

17: Z ← Z After t′

18: if o 6∈ ImpOut(Z) then
19: RETURN fail

20: else

21: Z ← Z After o

22: end if

23: else

24: Z ← Z After t

25: end if

26: else if operation == pass then

27: RETURN pass

28: end if

29: end while

In Line 9 (Algorithm 1), we require a copy of each

memory variables. One copy for the IUT and one copy for

the specification A. This allows to compare contents of

memory-variables of the implementation with contents of

their copies in the specification.

Each execution of Algorithm 1 constructs a sequence

of delays and actions. Actions in sequences come either

from the tester or the IUT. Actions from the tester are

5

executed on the IUT and actions from the IUT are observed

by the tester. Sets of such sequences of delays and actions

are test cases.

A test case can be represented by a TTS having the

following properties:

• finiteness: it ensures that a testing experiment lasts

for a finite time and obviously, terminal states in test

cases are labelled with fail or pass.

• determinism: it ensures that in a time instant, a single

action can be observed. Moreover from a state of the

test case, there must be no choice between actions

and delays; nor between input (action from the tester)

and output (action from the IUT).

We remark that every state of a test case can have many

outgoing transitions labelled with actions from the IUT (or

outputs). This is because the tester is allowed to observe

all possible actions from the IUT.

Algorithm 1 can be executed infinitely many times pro-

viding a (infinite) set of test cases. A set of test cases is

called a test suite. A test case is executed on an implemen-

tation. An implementation may behave in a non determin-

istic way. Then different test runs of a test case with the

same implementation may lead to different terminal states

of the test case and hence to different verdicts.

Definition 6 A IUT passes a test case if and only if every

test run leads to a final state of the test case labelled with

the verdict pass.

4.4. Completeness

A test suite checks IUT conformancewith respect to the

specification and the relation tvco. Ideally, an implemen-

tation should pass the test suite if and only if it conforms.

In this case the test suite is called complete. But, it may

happen that one restricts to sound test suites. A test suite

is sound if it never considers a correct IUT as faulty. On

the other hand, a test suite which can ensure conformance

but may reject conforming IUT is called exhaustive.

Definition 7 Let A be a specification and T be a test

suite; then for the relation tvco:

T is complete means ∀I :IUT, I tvcoA iff I passes T .

T is sound means ∀I :IUT, I tvco A implies I passes

T .

T is exhaustive means ∀I ∈IUT, I tvcoA if I passes T .

We provide a proof of the following proposition:

Proposition 8 Algorithm 1 is complete for A with re-

spect to all possible test cases and the relation tvco.

We show that the algorithm is sound and exhaustive.

Soundness We would like to show that ∀I, I tvcoA im-

plies I passes T . We use a contradiction argumen-

tation.

Suppose that it is not true that I passes T . Then,

there is an execution of the algorithm that returns (at

step 3) the verdict Fail. That execution exhibits a

trace σ = σ′.a where σ′ is a sequence of actions and

a is an action. As the verdict is returned in Line 27 of

the algorithm, a is necessarily an output of the imple-

mentation that is not expected by the specification.

Consequently the tvco relation is violated. This is a

contradiction the hypothesis.

Exhaustivity We show that ∀I, I passes T implies

I tvco A. We use a contradiction argument. We as-

sume that is is not true that I tvco A and it is true

that I passes T . By definition ¬(I tvco A) im-

plies there is a trace σ, such that Out(I After σ) 6⊆
Out(A After σ). Equivalently, there is an ac-

tion a such that a ∈ Out(I After σ) and a 6∈
Out(A After σ). In a first step we show that there

is a run of our algorithm that reaches a step where a

test case tcσ , having σ as an observable trace, is con-

structed. We recall that by definition, a test case is

not necessarily a sequence. The construction of tcσ

is done by induction on the length of σ; it works as

follows:

• If σ = ǫ is an empty sequence, then according

to Line 27 of the algorithm, tcσ is the test case

having a single state labelled with pass. There

is no transition from that state.

• If σ is of the form b.β and b is an output from

the tester (or the environment), then according

to Line 4 of the algorithm, tcσ is the test case

having a state q as initial state and q has an out-

going transition labelled with a. The target of

that transition is the root of the test case tcβ .

This is an inductive step.

• If σ is of the form d.β and d ∈ R
+ is a delay,

then according to Line 13, tcσ is the test case

having a state q as initial state and q has an out-

going transition labelled with d. The target of

that transition is the root of the test case tcβ .

• If σ is of the form o.β and o is an output from

the implementation. Then tcσ is the test case

having a state q as initial state. Outgoing tran-

sitions from q are labelled with all possible out-

puts from the implementation. If o is one of that

outputs, there is an o-labelled transition from q

to the root of tcβ if o is expected by the spec-

ification; otherwise there is an o-labelled tran-

sition from q to fail. In particular, according to

the hypothesis, there will be an a-labelled tran-

sition from q to fail.

It should be clear that there exists at least one test

run of tcσ that leads to fail. Consequently it is not

6

true that I passes T . This is a contradiction with the

hypothesis.

5. A Case Study

Now, we present some runs of Algorithm 1 when the

IUT is the same as the specification, and when the IUT

is a mutation of the specification. We consider the “Bi-

manual” control command system.

5.1. The IUT is the Specification

A state is represented by a tuple (l, (c1, c2, c3, c4))
where l is a location, and (c1, c2, c3, c4) are values of L,

R, s and h respectively. Locations of implementations

can not be observed by the tester. Only contents of

memory-variables of the IUT are observable.

Initially, clock-variables and memory-variables are equal

to zero. The algorithm starts with Z = {(l0, (0, 0, 0, 0))}.
In Table 1 and Table 2 we present two scenarios starting

with a same action a1 and a same delay t = 0.1. The

column observation
Z

presents observations of the tester

(above the line) and states of the specification (below

the line). Current location and values of clocks in the

implementation are not observed; but they are presented

in tables.

op EnvOut(Z) Choice Observation
Z

action a1 := {L := 1} a = a1

a2 := {R := 1} (l1,(1,0,0,0))
{(l1,(1,0,0,0))}

a3 := {a1, a2}

delay t = 0.1 (l1,(1,0,0,0.1))
{(l1,(1,0,0,0.1))}

Sub-scenario 1

delay t = 0.2 (l1,(1,0,0,0.3))
{(l1,(1,0,0,0.3))}

action a1 := {R := 1} a = a1
(l2(1,1,1,0.3))

{(l2,(1,1,1,0.3))}

delay d = 1.2 (l2,(1,1,1,1.5)
{(l2,(1,1,1,1.5))}

action a1 := {L := 0} a = a3
(l0,(0,0,0,1.5))
{(l0,(0,0,0,1.5))}

a2 := {R := 0}
a3 := {a1, a2}

Sub-scenario 2

delay t = 0.5 (l3,(1,0,0,0.6))
{(l3,(1,0,0,0.6))}

action a1 := {R := 1} a = a1
(l3,(1,1,0,0.6))

{(l3,(1,1,0,0.6))}

delay t = 1.2 (l3,(1,1,0,1.8))
{(l3,(1,1,0,1.8))}

action a1 := {L := 0} a = a3
(l0,(0,0,0,1.8))

{(l0,(0,0,0,1.8))}

a2 := (R := 0)
a3 := {a1, a2}

Table 1. Simulation of Algorithm 1

We give some comments on Sub-scenario 1 in Table 1;

they can be adapted easily on Sub-scenario 2. The tester

executes the sequence of choices a1, t = 0.1, t = 0.2,
a1, t = 1.2 a3. When it executes a1 for the first time, it

does not observe any change on uncontrollable memory-

variables of the implementation; this conforms to the

specification. This is also true when it executes t = 0.1,
t = 0.2. But after the execution of a1 for the second time,

the tester observes that the value of s has changed to 1;
this conforms to the specification. After the execution of

a3 the value of s changes to 0 in accordance to the speci-

fication.

5.2. The IUT is a Mutant of the Specification

Figure 2 presents a model of the IUT that is obtained

from the specification (see Figure 1) by changing the con-

straint on the clock t. The new constraint compares t with

0.8.

l′0

l′1

l′2

l′3

L = 1 ∨R = 1; h := 0

L = 1 ∧R = 1 ∧ h < 0.8; s := 1

L = 0 ∨R = 0; s := 0

L = 0 ∧R = 0 ∧ h < 0.8

h ≥ 0.8

L = 0 ∧R = 0

Figure 2. A VDTA model for a mutant IUT

Table 1 presents two executions of Algorithm 1 against

an implementation of the model in Figure 2 and the spec-

ification (see Figure 1).

Sub-scenario 1 conforms to the specification while

Sub-scenario 2 does not : the algorithm returns the fail

verdict. The non-conformance occurs because the value

of s has changed to 1 after 0.6 time units after the left

button has been pushed. But this is not allowed by the

specification in Figure 1.

op EnvOut(Z) Choice Observation
Z

action a1 := {L := 1} a = a1
(L′

1
,(1,0,0,0))

{(l1,(1,0,0,0)}

a2 := {R := 1}
a3 := {a1, a2}

delay t = 0.1
(l′

1
,(1,0,0,0.1))

{(l1,(1,0,0,0.1))}

Sub-scenario 1

delay t = 0.2
(l′

1
,(1,0,0,0.3))

{(l1,(1,0,0,0.3))}

action a1 := {R := 1} a = a1
(l′

2
,(1,1,1,0.3))

{(l2,(1,1,1,0.3))}

delay t = 1.2
(l′

2
,(1,1,1,1.5))

{(l2,(1,1,1,1.5))}

action a1 := (L := 0) a = a3
(l′

0
,(0,0,0,1.5))

{(l0,(0,0,0,1.5))}

a2 := (R := 0)
a3 := {a1, a2}

Sub-scenario 2

delay t = 0.5
(l′

1
,(1,0,0,0.6))

{(l1,(1,0,0,0.6))}

action a1 := {R := 1} a = a1
(l′

2
,(1,1,1,0.6))

{(l1,(1,1,0,0.6))}

Verdict: FAIL

Table 2. Simulation of Algorithm 1

7

6. Concluding Remarks

In this paper, we presented a test generation algorithm

for a new model adapted to describe systems with only

urgent transitions and driven by variables: only variable

changing are considered as events and transitions are fired

as soon as constraints become true. The test generation

algorithm is proved to be sound and exhaustive. Then we

have presented a case study to explain our approach.

As a future work, we intend to add formal verification

approaches (such as symbolic model checking) to increase

the testing efficiency. Indeed, at this step our method does

not provide a way to focus on a particular part of the sys-

tem. We are currently working on new approaches to lead

the test session into particular states.

References

[1] R. Alur and D. Dill, “A theory of timed automata”, Theo-

retical Comput. Sci., vol. 126, pp. 183–235, 1994.

[2] H. B. Mokadem, B. Bérard, P. Bouyer, and F. Laroussinie,

“A New Modality for Almost Everywhere Properties in

Timed Automata”, in CONCUR 2005 - Concurrency The-

ory, 16th International Conference, CONCUR 2005, San

Francisco, CA, USA, August 23-26, 2005, volume 3653 of

Lecture Notes in Computer Science, 2005, pp. 110–124.

[3] R. Cardell-Oliver, “Conformance Testing of Real-Time

Systems with Timed Automata Specifications”, Formal

Aspects of Computing Journal, vol. 12, no. 5, pp. 350–

371, 2000.

[4] B. Nielsen and A. Skou, “Automated Test Generation from

Timed Automata”, in Tools and Algorithms for the Con-

struction and Analysis of Systems, 7th International Con-

ference, TACAS 2001 Held as Part of the Joint European

Conferences on Theory and Practice of Software, ETAPS

2001 Genova, Italy, April 2-6, 2001, volume 2031 of Lec-

ture Notes in Computer Science, 2001, pp. 343–357.

[5] J. Springintveld, F. Vaandrager, and P. R. D’Argenio,

“Timed Testing Automata”, Theoretical Comput. Sci.,

vol. 254, no. 254, pp. 225–257, 2001.

[6] A. EnNouaary, R. Dssouli, and F. Khendek, “Timed Wp-

Method: Testing Real-Time Systems”, IEEE Transactions

on Software Engineering (TSE), vol. 28, no. 11, pp. 1023–

1038, 2002.

[7] J. Tretmans, “Test generation with Inputs, Outputs, and

Repetitive Quiescence”, vol. 17, pp. 103–120, 1996.

[8] M. Núñez and I. Rodrı́guez, “Conformance Testing Rela-

tions for Timed Systems”, in Formal Approaches to Soft-

ware Testing, 5th International Workshop, FATES 2005,

Edinburgh, UK, July 11, 2005, Revised Selected Papers,

volume 3997 of Lecture Notes in Computer Science, 2005,

pp. 103–117. Springer.

[9] M. Mikucionis, K. G. Larsen, and B. Nielsen, “T-

UPPAAL: Online Model-based Testing of Real-Time Sys-

tems”, in 19th IEEE International Conference on Auto-

mated Software Engineering (ASE 2004), 20-25 Septem-

ber 2004, Linz, Austria, 2004, pp. 396–397. IEEE Com-

puter Society.

[10] M. Krichen and S. Tripakis, “Black-Box Conformance

Testing for Real-Time Systems”, in Model Checking

Software, 11th International SPIN Workshop, Barcelona,

Spain, April 1-3, 2004, volume 2989 of Lecture Notes in

Computer Science, 2004, pp. 109–126. Springer.

8

