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Abstract

This paper addresses the problem of modeling prosody
for language identification. The main goal is to validate
(or invalidate) some languages characteristics proposed
by the linguists by the mean of an automatic language
identification (ALI) system. In previous papers, we de-
fined a prosodic unit, the pseudo-syllable. Static model-
ing has proven the relevance of the pseudo-syllable unit
for ALI. In this paper, we try to model the prosody dy-
namics. This is achieved by the separation of long-term
and short-term components of prosody and the propos-
ing of suitable models. Experiments are made on seven
languages and the efficiency of the modeling is discussed.

1. Introduction

The aim of automatic language identification is to recog-
nize a language spoken by an unknown speaker, within a
finite set of languages and for relatively short utterances
(usually from 3 to 50 seconds).

In this paper, we investigate the efficiency of prosodic
features for language identification, as they are known to
carry a substantial part of the language identity (section
2). However, modeling prosody is still an open prob-
lem, mostly because of the suprasegmental nature of the
prosodic features. To address this problem, automatic
extraction techniques of those features are studied (sec-
tion 3). Those techniques allowed us to characterize a
prosodic unit adapted to language identification. Re-
sults obtained by static modeling of prosodic features ex-
tracted on this unit are recalled in section 4. Dynamic
modeling of sequence of those units is then addressed in
section 5. The experiments and results are described in
section 6.

2. Motivations

This paper aims at determining to what extend may
prosodic features characterize languages. Consequently,
rhythmic and intonative properties of languages are con-
sidered and results from perceptual experiments are
evoked.

2.1. Languages’ rhythm

Languages’ rhythm has been defined as an effect involv-
ing the isochronous (that is to say at regular intervals)
recurrence of some type of speech unit [1]. Isochrony
is defined as the property of speech to organize itself in
pieces equal or equivalent in duration. Depending on the

unit considered, the isochrony theory allows to classify
languages in three main sets:

e stress-timed languages,
e syllable-timed languages,
e mora-timed languages®.

Syllable-timed languages share the characteristic to
have regular intervals between syllabes, while stress-
timed languages have regular intervals between stressed
syllabes, and for mora-timed languages, successive mora
are quasi equivalent in terms of duration. This point of
view has been made popular by Pike [2] and later by
Abercrombie [3]. Distinction between stress-timed and
syllable-timed languages is strictly categorical, languages
cannot be more or less stress or syllable-timed. Despites
its popularity among linguists, the rhythm class hypoth-
esis is contradicted by several experiments (notably by
Roach [4] and Dauer [5]). This forced some researchers
(Beckman [6] for example) to slide from “objective” to
“subjective” isochrony. True isochrony is described as
a constraint, and the production of isochronous units is
perturbed by phonetic, phonologic and grammatical rules
of the languages. Some other researchers have concluded
that isochrony is mainly a perceptual phenomenon (for
example Lehiste [7]). Isochrony can then be seen as a
concept relative to speech perception.

2.2. Languages’ intonation

Three main groups of languages can be characterized re-
garding to their use of intonation:

e tone languages (as Mandarin Chinese),
e pitch-accent languages (as Japanese),
e other languages.

According to Cummins [8], distinction between lan-
guages using fundamental frequency alone had a moder-
ate success. This can be explained in two ways:

e On one hand, we can imagine a discrimination
based on the use of lexical tone (Mandarin) or not
(English), but intermediate cases exist (Korean di-
alects) which are usually considered as represent-
ing transitory states between languages of one class
and those of another.

e On the other hand, phenomenon linked to accents
and intonation are less easy to handle with. There

1a mora is a sub-unit of the syllable often constituted by a

short vowel and the preceding consonants



are multiples theories on utterance intonation that
do not agree. The situation is made more complex
by studies on the non-linguistic uses of intonation,
as for example to express emotions. Several stud-
ies agree on a classification by degrees rather that
separate classes.

2.3. Perceptual experiments

About prosodic features, several perceptual experiments
try to shed light on human abilities to distinguish lan-
guages keeping only rhythmic or intonation properties.
The point is basically to degrade a speech recording by
filtering or resynthesis to let only few indices to the sub-
jects whom task is to identify the language. The subjects
can either be naive or trained adults, infants or newborns,
or even primates. For example, all the syllables are re-
placed by a unique syllable “/sa/” in Ramus’ experiments
[9]. Other authors [10] propose different methods to de-
grade the speech signal in order to keep only the desired
information (intensity, intonation or rhythm). From a
general point of view, all those experiments show the no-
table human capacity to identify to some extend foreign
languages after a short period of exposure.

3. Preprocessing

To automatically model the prosody of languages, we use
automatic processings to extract prosodic informations.
Three baseline procedures conduct to relevant consonant,
vocalic and silence segment boundaries:

e automatic speech segmentation in quasi-stationary
segments [11],

e vocal activity detection,
e vowel localization [11].

We then described a syllable-like prosodic unit. Syl-
lable is a privileged unit for rhythm modeling. Neverthe-
less, automatic extraction of syllables (in particular the
boundaries detection) is a difficult operation: the pronun-
ciation quality and the speech rate are factors influenc-
ing directly the syllable segmentation [12]. Furthermore,
to segment the speech signal in syllables is a language-
specific task [13], no language-independent algorithm can
be easily applied.

For this reason, we introduced the notion of pseudo-
syllable [14]. The basic idea is to articulate the prosodic
unit around primordial elements of the syllables: vowels,
and to gather the neighboring consonants around those
nuclei. We have decided to gather only the preceding
consonants. This choice is explained in the fact that syl-
lables boundaries detection is not an easy task in a mul-
tilingual framework, and that the most frequent syllables
correspond to the consonant/vowel structure [5] An ex-
ample of this segmentation is shown on figure 1.

4. Static Modeling

In previous papers [14], we have shown that the pseudo-
syllable segmentation can be successfully used for lan-
guage identification. Features characterizing durations
and fundamental frequency variations are extracted from
each pseudo-syllable and are used to learn the parameters
of Gaussian mixtures for each language of the database.
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Figure 1: Pseudo-syllable segmentation

With the rhythmic features, the correct identification
rate is 67 % on the seven languages of the MULTEXT
corpus (see [14] for results with less languages). With
the intonation features, the correct identification rate is
50 % (see [14] for results with less languages). Char-
acterizing this unit with both rhythmic and intonation
features allows to reach 70 % of correct identifications.
The confusions occur mainly across languages belonging
to the same groups evoked in linguistic theories.

Nevertheless, the statistic models (Gaussian Mixture
Models) we use to model pseudo-syllabic features are in-
trinsically static models. That doesn’t fit with the per-
ceptive reality of prosody, which is by nature continue.
We must use dynamic models to take into account this
temporal aspect.

5. Dynamic modeling

Following Adami’s work [15], we used the features com-
puted on each pseudo-syllable to label the fundamen-
tal frequency and energy trajectories. Two models are
used to separate the long-term and short-term compo-
nents of prosody. The long-term component characterizes
prosodic movements over several pseudo-syllables while
the short-term component represents prosodic move-
ments inside a pseudo-syllable.

The processing used for coding long-term and short-
term components are the same, the difference is only the
units considered, which are in the first case the pseudo-
syllables and in the second case the segments.

5.1. Fundamental frequency coding

The fundamental frequency processing is divided in two
phases, representing the phrase accentuation and the lo-
cal accentuation, as in Fujisaki’s work [16]:

e the baseline is extracted and labeled, as displayed
on figure 2. This is done by finding all the local
minimums of the Fy contour, and linking them.
Then, the baseline is labeled in terms of U(p),
D(own) and #(silence or unvoiced).

e The baseline is subtracted from the original con-
tour. The resulting curve is called residue (figure
3). This residue is then approximated on each con-
sidered unit (segments or pseudo-syllables) by a
linear regression. The slope of the linear regres-
sion is used to label the Fy movement on the unit,
according to three available labels (Up, Down and
Silence).
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Figure 2: Extraction of the baseline
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Figure 3: Approximation of the residue

5.2. Energy coding

The energy curve is approximated by linear regressions
on each considered units (segments or pseudo-syllables)
(figure 4). The process is the same as the one used for
the residue coding. The labels are also the same, with
three possibilities : Up, Down and Silence.
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Figure 4: Approximation of the energy

5.3. Duration coding

Two duration coding are used regarding the considered
unit.

e Considering pseudo-syllable units, 4 labels are used
to characterize the contrasts between the vocalic
and consonantic durations.

e For the segments units, 2 labels are used (short or
long), regarding the nature of the segment (vocalic
or consonantic).

5.4. Modeling

To model the prosodic variations, we use n-multigram
language modeling [17], which can model recurrent pat-

terns in the observation sequence. Unlike classical n-gram
modeling, these patterns can have a variable length. The
multigram modeling consist in finding the most likely
segmentation in an observation sequence. This model-
ing is applied to the pseudo-syllable labels for the long-
term model, and to the segments labels for the short-term
model.

6. Experiments

All the experiments are made on the MULTEXT cor-
pus [18] (a subset of EUROM1), which contains 5 lan-
guages (English, French, German, Italian and Spanish),
and 10 speakers per language, balanced between male
and female. This baseline corpus has been extended with
recordings of Japanese speakers made using the same pro-
tocol than used for the MULTEXT corpus. The Japanese
corpus contains 6 speakers, also balanced between male
and female (see [19] for more details about the Japanese
corpus). Mandarin Chinese recordings are also added to
the original corpus, thanks to Komatsu [10].

The three theoretical rhythmic classes are repre-
sented in this corpus : English, German and Mandarin
Chinese are stress-timed languages; French, Italian and
Spanish are syllable-timed languages, and Japanese is a
mora-timed language. Moreover, Mandarin Chinese is a
tone language and Japanese is a pitch-accent language.

For the learning phase, we used 8 speakers (4 for
Japanese), and 2 (one male and one female) were used
for the tests. The test utterances are approximately 20
seconds long.

6.1. Long-term modeling

The sequences of labels computed on each pseudo-syllable
are modeled by multigram models. The correct identifi-
cation rate is 41 % on the MULTEXT corpus.

Table 1: Long term prosodic model (41,0+8,2%
(57/139))
Eng | Ger | Man | Fra | Ita | Spa | Jap
Eng | 7 - 3 T | 4] - 5
Ger 5 12 2 - 1 - -
Man 3 3 6 - 5 - 3
Fra 1 - - 2 4 - 2
Ita 5 - 2 4 3 2 2
Spa 6 - 3 1 3 4 3
Jap 3 - 2 2 4 2 7

Those results show that only French and German are
clearly identified. This model suffers from the relatively
large number of labels regarding the limited database
size.

6.2. Short-term modeling

The sequences of labels computed on each segment are
also modeled by multigram models. The identification
rate obtained with this method is 63 %.

Those experiments allow us to hypothesize that the
most characteristic prosodic elements of languages aren’t
pseudo-syllable sequences but sequences of elements con-
stituting them.



Table 2: Short term prosodic model (63,3 + 8,0 %
(88/139))

Eng | Ger | Man | Fra | Ita | Spa | Jap
Eng | 6 N 5 1 |5 | 2 1
Ger 1 18 1 - - - -
Man 4 2 12 - 2 - -
Fra - - - 16 1 2 -
Ita 1 - 1 2 13 2 1
Spa 2 - - 1 7 9 1

Jap | - - i | 5 - 14

6.3. Merging long and short-term components

The merging is addressed between the two systems de-
scribed here-above. The merging technique is a weighted
addition of the log-likelihoods. The identification rate
obtained with this method is 71 %.

Table 3: Merging of short and long-term models (71,2 &+
7,5 % (99/139))

Eng | Ger | Man | Fra | Ita | Spa | Jap
Eng 12 - 4 2 1 - 1
Ger 2 17 1 - - - -
Man 1 1 18 - - - -
Fra 1 - - 14 4 - -
Ita - 1 1 2 10 3 3
Spa 1 - 1 1 6 9 2

Jap - - - - 1 - 19

Results show that most languages are well identified.
Japanese is the only mora-timed language, and the only
pitch-accent language in our corpus, therefore it seems
natural that it is the most well identified language. Man-
darin (i.e. the only tone language of the corpus) is also
quite well characterized.

Considering rhythmic classes (represented in different
strength of grey in the matrix), we can see that most con-
fusion are across languages of the same rhythmic family.
The rhythmic classes identification rate is 89%

7. Conclusions and perspectives

These experiments shows that it is possible to identify
languages using prosody alone. The dynamic modeling
allows to reach 71% of correct identification on a seven
language discrimination task. Results tend to confirm the
existence of the rhythmic classes of the isochrony theory,
as confusions are mainly across languages belonging to
the same family.

This method gives promising results, but further ex-
periments have to be made, with different kinds of data
(spontaneous speech for example) and we need to test our
system on many more languages to confirm the linguistic
classes hypothesis.
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