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Abstract 

Relying on uncertainty theories, a 
formal methodology to fuse automatic  
language identification expert decisions 
is presented. Special attention is 
focused on representing and making use 
of a priori knowledge about the  
performance of experts: the 
Discriminant Factor Analysis method is 
applied to compute performance 
confidence indices at the class level. 
Experimentation results support the 
hypothesis  that implementing some 
uncertainty-based inference techniques 
issued from recent research advances in 
Evidential or Possibility theories 
appears not only as a feasible fusion 
alternative to empirical weighted 
techniques but also as the one which 
best exploits the knowledge provided 
by such indices while delivering better 
language identification rates. 

Keywords: Multicriteria Decision Making, 
Information Fusion, Performance Confidence 
Indices, Discriminant Factor Analysis, 
Automatic Language Identification. 

1     Introduction 
 

In the field of Automatic Language 
Identification (ALI), experts are primary 
systems, also known as sources of decision 
information, whose aim is to identify as soon as 

possible the language in which an utterance has 
been pronounced. An ALI system can be 
composed of several experts whose architecture 
allows them to take advantage of language-
discriminant specific features and characterises 
them as: 

• Acoustic Expert: vocalic and consonant 
phones and their frequency of occurrence differ 
from language to language [12]; the acoustic 
information of each language is modelled by 
Gaussian Mixture Models (GMM) or Hidden 
Markov Models (HMM) [16]; 

• Phonotactic Expert: specific sequences of  
phonetic units that appear at different 
occurrence rate in each language [16]; bi-gram 
or tri-gram models translates the language 
phonotactic rules;  

• Prosodic Expert: sound duration, fundamental 
frequency, intensity variation and rhythm are 
language discriminant lineaments [14]; this 
expert is mostly based on statistical moments 
computed on the rhythm and the fundamental 
frequency. 

In taking into account the identification 
decisions issued from experts, an ALI system 
faces the problem of merging (fusing)  them in a 
suitable way. Till now several merging 
techniques have been implemented and have 
evolved from the application of empirical 
operators (average, addition, multiplication, 
consensus, and so forth) still used not long ago, 



to, nowadays estimations of confidence 
indicators [13] regarding the performance of 
experts; this is applied as heuristics-like a priori 
knowledge by weighting the expert decisions. 

Both generation and application of confidence 
indices are carried out in an empirical iterative 
way by testing and adjusting values with no 
clear formal background: good performance is 
often  obtained though [9]. So, great efforts have 
started to be deployed to try to formally justify 
such techniques [4] [10]. 

We propose an original method to fuse language 
identification expert decisions. It consists of 
developing a formal methodology to: 

• represent and compute confidence indices by 
extracting language-discriminant information 
while processing a development corpus and 
using the Discriminant Factor Analysis (DFA) 
method in the decision score field. The DFA 
projection is used to obtain the confusion matrix 
and to provide expert and class performance 
confidence indices. 

• model the language identification process by 
means of the concept of a Linguistic Variable, 
so that we can work on the scores in the 
domains of Possibility and Evidence Theories, 
where respectively: 

− we implement a hierarchical searching 
inference mechanism based on the class 
confidence indices and apply an Adaptive 
Fusion [8] technique to compute the 
possibility degree of each language; 

− we assign basic belief mass values to the 
language occurrence events [5], weight such 
event mass values [1] with the class 
confidence indices, apply the Dempster’s 
orthogonal rule to fuse them and derive the 
pignistic probability [15] of each language.  

Thus, in section 2 we present the methodology 
used to represent expert information such as the 
collected expert decisions and the computed 
performance confidence indices. In section 3 we 
describe the empirical weighted fusing 
techniques while the uncertainty-based fusion 
models and methodologies are elaborated and 

depicted in section 4. Experiments are explained 
in section 5.    

2     Information Representation 

2.1     Expert Decisions are Scores 

ALI experts accept a speech utterance called the 
observation, as input, and provide the class (or 
language) decision as output, after computing 
language-score values; mostly a statistical model 
is used and the language score is the language 
likelihood; so that the experts  handle a vector of 
language-likelihood values. Given M languages 
to identify, Li, 1≤i≤M, and N experts, sj, 1≤j≤N , we 
obtain for each observation, N vectors of M 
values, each one ranging from 0 to 1; the higher 
the value, the more confident the expert is that 
the corresponding language is the right one.  

This global observation is represented as a score 
matrix: δ = [  dij ]1≤i≤M, 1≤j≤N (Table 1), where       
L = { L1, L2, …, Li, …, LM } is the set of 
languages and S = { s1, s2, …, sj, …, sN } the set 
of experts. 

Table 1:  Matrix δ = [ dij ]1≤i≤M,  1≤j≤N, of scores 
obtained for each observation. 

 

2.2     Computation of Confidence Indices 

Estimation of expert performance, with a view 
to provide the language identification process 
with heuristic -like information, can be achieved 
beforehand by means of an evaluation phase 
where the expert is tested on a set of segments 
whose language is known.  

We  split a global speech corpus into three 
partitions: a learning corpus X = { xlearn }, a test 
corpus Y = { ytest } and a  development corpus   
Z = { zdev }. We use the last one to compute the 



two families of indices: the performance expert 
and class indices. In order to explain our future 
fusion techniques, it is necessary to define not 
only such indices, but also the observation 
performance confidence indices which represent 
for each expert the confidence of the decision 
taken for the observation . The two first families 
of indices are independent of the current 
observation. 

 
 
Figure 1:  Computing expert (α), class (β) and 

observation (γ) confidence indices. 

We collect the score matrices corresponding to 
the acoustic segments of the development 
corpus; each expert sj, 1≤j≤N, contributes with a 
score vector corresponding to an acoustic 
segment and is represented by column j, in the 
score matrix (Table 1). Then a matrix Mj (set of 
score vectors from expert sj) will correspond to 
several acoustic segments. 

For each expert sj, we apply the DFA statistical 
method to its matrix Mj in order to search for an 

appropriate representation space for them and a 
way of obtaining performance confidence 
indices on a correct discrimination rate basis: we 
use the M−1 factorial axis corresponding to the 
M−1 eigen-values and project the set Mj of score 
vectors into this subspace. In building the 
corresponding confusion matrix (Figure 1), the 
class confidence indices (βij,1≤i≤M) are directly 
mapped from the diagonal values of it while the 
expert confidence index must be computed as an 
averaged value:  

αj=(1/M) ∑i∈[1,M] βij. 

Many solutions may be proposed to define the 
observation confidence indices. We retain two 
formulas to be applied to test-corpus matrices: 
given an identification expert sj and î the 
decision class, dîj = maxk (dkj), k∈[1,M], 

• kjîkîjj dd
≠

−= maxγ ;  
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≠−
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3     Empirical Fusion 

The most current operations to empirically fuse 
decision scores are the so called linear and 
logarithmic ones that are respectively 
implemented by summing and multiplying score 
values. In addition, the estimated performance 
of each expert can be taken into account to 
weight its own scores in a heuristic -like way.  

The concept of weighting by expert estimated 
performance [4] matches the one of weighting 
by the expert confidence index α described 
above. Thus, a language is considered as the 
identified one if it corresponds to the greatest 
value computed with the following weighted 
rules: 

• Sum    L* = arg max i∈[1,M] [ Σj∈[1,N] αj dij ], 

• Product L* = arg max i∈[1 ,M] [ Π j∈[1,N] dij
αj ].  

4     Modelling under Uncertainty 

Let Ψ be a linguistic variable  that is represented 
by a triplet (Figure 2) [2]:     Ψ=(δ, MxN, L); 
• δ is a simple variable representing the score 
matrix, corresponding to an acoustic segment y, 
that is defined in the reference space MxN;  



• MxN = { x | x = [dij], 1≤i≤M, 1≤j≤N } is the set of 
all score matrix values that δ can take; 

• L = { L1, L2, …, Li, …, LM } is a finite set 
composed of fuzzy sets  Li, that is to say the set 
of different languages to be identified that 
characterise the variable δ and define its value 
constraints in MxN. 

 
Figure 2:  Automatic language identification is 

modelled as a linguistic variable concept. 

Li is an infinite fuzzy set that is defined a priori 
by a membership function  that associates to 
each element x∈ MxN the degree µLi(x), within 
the range [0,1], with which x belongs to Li: 

µLi  :  MxN  à  [ 0, 1 ]; 

and can be denoted either in ordered-pair 
notation: 
Li = { (µLi(x), x); x∈ MxN } = { (µLi([dij]), [dij]); 

 [dij]∈ MxN, 1≤i≤M,1≤j≤N }, 

or in additive continuous notation [2]: 

Li = ∫x µLi(x) / x = ∫[dij] µLi([dij]) / [dij]. 

Making an identification decision is figured out 
by means of fuzzy elementary propositions such 
as “(score matrix) δ  is (in language) Li ”. Such 
proposition is an a posteriori description that 
vaguely describes the language employed to 
pronounce an acoustic segment y, and it 
indicates the membership degree of the variable 
δ to language Li. 

If for each language Li we associate a possibility 
distribution to a fuzzy elementary proposition 
[2]:            

∀x∈ MxN,    πδ,Li(x) = µLi(x) ; 
then we will be able to make an identification 
decision after computing the possibility degree 

πδ,Li(x) to which δ belongs to each language Li. 
This can be accomplished by means of directly 
applying uncertainty-based fusion techniques [8] 
on the matrix score values of the variable δ. 

Taking into account each score value dij in 
matrix δ is a language-likelihood value, we can 
consider them as possibility values π(dij) [5] [8] 
after normalising them: 

π(dij)  =  dij / maxk∈[1,M] dkj ; 
so that we can compute πδ,Li(x) for each 
language Li by means of fusing all possibility 
values in δ. 

4.1 Possibility Theory 

Before the fusion operation takes place, we 
exploit the a priori expert performance 
information provided by the class confidence 
indices (βij,1≤i≤M,1≤j≤N) to implement a 
hierarchical tree (Figure 3) of experts with a 
view to fuse their scores on a priority basis. The 
higher the performance of the experts at the 
class (language) level, the first they appear in 
the hierarchical tree. Each node of the tree 
comprises similarly-performing experts. 

 

Figure 3:  Hierarchical adaptive fusion of expert 
decisions 

We apply the Adaptive Fusion [8] technique to 
fuse the score values issued from the experts 
that are inside each node of the tree. This 
technique implies computing the consistency 
index γ (a sort of observation confidence index) 
of the experts on a score matrix basis: 

γrk = supremumLi∈L[ min(πδ,Li(sr), πδ,Li(sk)) ], 



so that conjunctive or disjunctive fusion can be 
done adaptively at the class level for each node: 

πδ,Li(x) = max[ πconjδ,Li(sr,sk)/γ rk, 
min(1–γ rk, πdisjδ,Li(sr,sk)) ]. 

The rules employed for conjunctive and 
disjunctive fusion are: 

πconjδ,Li(sr,sk) = min(πδ,Li(sr), πδ,Li(sk)) ; 

 πdisjδ,Li(sr,sk) = max(πδ,Li(sr), πδ,Li(sk)) . 

Results from pairs of adjacent nodes are fused in 
an adaptive way as well. We start the fusion 
process from the upper node and end up with the 
lower node so that a global possibility value 
πδ,Li(x) is obtained as result. We compute the 
consistency index γ and apply the adaptive rule 
the same way we explained above, but the 
conjunctive and disjunctive rules [8] between 
nodes are respectively the following: 

πconjδ,Li(x)’,’’ = min[ πδ,Li(x)’, 
max(πδ,Li(x)’’, 1–γ’,’’) ]; 

πdisjδ,Li(x)’,’’ = max[ πδ,Li(x)’, 
min(πδ,Li(x)’’, γ’,’’) ]. 

Having M languages Li, we compute M global 
possibility distribution functions πδ,Li(x) to make 
an identification decision by considering as the 
identified language the one that has been 
assigned to the score-matrix variable δ with the  
maximum possibility degree: 

L* = arg maxi [πδ,Li(x) ]. 

4.2     Theory of Evidence 

Let L = { L1, L2, …, Li, …, LM } denote the finite 
set of possible languages to be identified; this 
set L is composed of M exhaustive and exclusive 
hypotheses of the decision process and we 
assume every union of hypotheses may be a 
response of the decision process. The set 2L of 
all possible events A based on L is the set of all 
subsets of L,  2L = {A | A⊆L},  |2L| = 2M, that is 
to say: 

2L = { ∅, {L1}, {L2}, …, {Li}, …, {LM}, 
                       {L1, L2}, …, {LM–1, LM}, …, L }. 

For each unknown utterance, and for each expert 
sj, we define a basic belief mass function mL

Sj, 
which explains how the decision L* belongs to 
the subset A of L:        mL

Sj : 2L à [0, 1] 
with the constraints: 
                      ∑A⊆L mL

Sj(A) = 1 and mL
Sj(∅) = 0. 

The basic belief mass function mL
Sj is built from 

the score matrix values of the utterance; we 
assign basic belief mass values from the 
distances between their corresponding 
possibility values [1] [5] [7].  

Let Ak represent an event A in position k when 
all the singleton events have been arranged in 
decreasing order taking into account its 
corresponding possibility value πk. In the case of 
events that are different than singletons, the 
corresponding possibility value is the minimum 
value found among the several possibility values 
that correspond to the participating singletons 
[5]. 

If  π1=1 > π2 > … πk > … πM > πM+1=0; 
then for any non-empty set A:  

mL
Sj(Ak) =  πk – πk+1 ; 

but: mL
Sj(Ak) =  0 if Ak represents ∅. 

In order to verify the constraints above, we 
normalise all the belief values after computing a 
normalisation factor: 

Rj  =  1 / ΣAk⊆L mL
Sj(Ak); 

and we apply it as a multiplying factor: 

mL
Sj(Ar) = Rj mL

Sj(Ak); ∀Ar⊆L. 

Thus the set of focal elements includes all the 
subsets A such as its corresponding mL

Sj(Ar) > 0. 
 

 
Figure 4:  Cascade-like application of 

Dempster’s orthogonal rule. 

Let (sk, sr) represent any pair of the N experts, 
we may combine the belief mass values of the 
focal elements (B, C, etc.) of these experts on a 
cascade-like pair basis (Figure 4) by applying 
the Dempster’s orthogonal combination rule:  

mL
Sr,k( A) = KL ⋅ ∑B∩C=A mL

Sk(B) ⋅ mL
Sr(C); 



where KL = 1 / [1–∑B∩C=∅ mL
Sk(B) ⋅ mL

Sr(C)] is 
a normalisation factor taking into account the 
case where the empty set results from conjoining 
focal elements (Figure 5). We obtain thus a 
global belief mass function, noted mL

S(A), for 
each event A. 

We weight basic belief mass functions [1] of the 
events (B, C, etc.) by discounting the expert and 
class confidence indices (respectively α and β) 
before normalising to do the orthogonal 
operation: 
mL

Sj,β ij(C) = βij ⋅ mL
Sj(C), ∀C ≠ L, |C| = 1; 

mL
Sj,αj(C) = αj ⋅ mL

Sj(C), ∀C ≠ L, |C| > 1; 
mL

Sj,αj(L) = (1 – αj
 ) + αj ⋅ mL

Sj(L). 
 

 
Figure 5:  Orthogonal combination of basic 
belief mass values of expert focal elements. 

In order to make a language identification 
decision, we use the pignistic transformation 
[15] to derive a probability on L, from the belief 
mass values: 

BetP(Li) = ∑Li∈A  mL
S(A) / |A|. 

Thus, the decision process can be carried out by 
maximum pignistic probability [6]:  

L* = arg maxi [ BetP(Li) ]. 

5     Experimentation 

5.1     Preliminaries 

Acoustic data is provided by the MULTEXT 
corpus [3] which comprises a set of 20 kHz 16-
bit sampled records in 5 languages:  English, 
French, German, Italian and Spanish. Data 
consists of read passages from the EUROM1 
corpus pronounced by 50 different speakers (5 
males and 5 females per language). The mean 
duration of each passage is 20.8 seconds. 

The global corpus is split into three partitions 
for each language: the learning corpus, the 
development corpus and the test corpus (2 
speakers: 1 male and 1 female who do not 
belong to the other corpora). 

 
Figure 6:  Architecture of the Fusion System. 

The ALI system is based on three ALI experts 
and a fusion module (see Figure 6): 

• Acoustics Expert [12]: After an automatic 
vowel detection, each vocalic segment is 
represented with a set of 8 Mel-Frequency 
Cepstral Coefficients and 8 delta-MFCC, 
augmented with the Energy and delta Energy of 
the segment. This parameter vector is extended 
with the duration of the underlying segment 
providing a 19-coefficient vector. A cepstral 
subtraction performs both blind removal of the 
channel effect and speaker normalisation. For 
each recording sentence, the average MFCC 
vector is computed and subtracted from each 
coefficient. 

• Rhythm Expert [14]: Syllable may be a first-
rate candidate for rhythm modelling. 
Nevertheless, segmenting speech in syllables is 
typically a language-specific mechanism and 
thus no language independent algorithm can be 
derived. For this reason, we have introduced the 
notion of pseudo-syllables derived from the 
most frequent syllable structure in the world, 
namely the CV structure. Using the vowel-non 
vowel segmentation, speech signal is parsed in 
patterns matching the structure: .CnV. Each 
pseudo-syllable is then characterised by its 
consonants global duration, its vocalic duration, 
its complexity (the number of consonant 
segments), and its energy. 

• Fundamental Frequency Expert [14]: The 
fundamental frequency outlines are used to 
compute statistics within the same pseudo-
syllable frontiers (previously defined) in order to 
model intonation on each pseudo-syllable. The 
parameters used to characterise each pseudo 
syllable intonation are a measurement of the 
accent location (maximum f0 location in regard 
to vocalic onset) and the normalised 
fundamental frequency bandwidth on each 
syllable.  



For each expert, we applied the same learning-
testing procedure: for each language, a Gaussian 
Mixture Model (GMM) is trained using EM 
algorithm with LBG initialisation [11]. The 
optimal number of components of the mixture is 
obtained from experiments on the learning part 
of the corpus. During the test, the decision relies 
on a Maximum Likelihood procedure. 

The performance of these three experts is given 
in Table 2, and is considered as a reference to be 
compared with. We may observe the relatively 
bad performance of: the fundamental frequency-
based expert in general and the three experts on 
the test set number two (see next section) in 
particular. 

5.2     Tests 

Three sets of  the test corpus (2 speakers out of 
10: 1 male and 1 female) are selected and tested 
on a round-robin basis with a view to analyse 
the fusion system behaviour over representative 
expert performance data of good (set 1) and 
rather-bad examples (sets 2 and 3). 

The three techniques of fusion (empirical, 
possibility-based and evidential ones) are 
experimented to merge the decision scores 
(outputs of the three experts) as explained in the 
previous sections.  

The development corpus is used to compute the 
class and expert performance confidence indices 
while the test corpus is used to compute the 
observation index. The information provided by 
these indices drive in a heuristic -like way the 
uncertainty-based inference.  

The empirical fusion techniques are tested in 
their non-weighted and weighted versions. The 
expert confidence index is used for the weighted 
versions. 

Minimum and maximum operations are selected 
and tested as conjunctive and disjunctive 
possibility-based aggregation techniques; we use 
them while applying the adaptive fusion 
technique explained above. 

Regarding the evidential fusion techniques, two 
versions of focal element sets are tested 
depending on what events can participate to 
compose them: I) any event A⊆L is eligible; and 
II)  any event A⊆L such that |A|=1 and the event 
A=L are eligible.    

Furthermore, 2-expert fusion is also tested to 
observe which combinations could provide 
better results and how efficient the fusion 
techniques were in obtaining the best 
identification rates when combining 3 experts at 
a time. 

5.3     Results 

Most important results in fusing the three 
experts are the following (see Table 2): 

• The empirical fusion delivers better 
identification rates than those of any expert for 
sets 1 and 3 (up to 84%), but for set 2. Weighted 
versions work out better than non-weighted 
versions for set 1 (good-example data) only. 

• The possibility fusion generally attains a  good 
identification-rate delivery level: up to 85%. But 
it fails in set 2 (bad-example data). 

• Excepting the evidential fusion (version II), all 
the others fail in set 2 (bad-example data). The 
performance of evidential fusion version II is 
better than version I for bad-example data 
(where the incoherence degree between experts 
is too high: from 0.5 to 0.9).  

• The best identification rates are reached by the 
fusion system using the evidential method with 
data from either the good-example set or the 
bad-example set (version II only): up to 90%. 

• Regarding the 2-expert fusion, we observe that 
two combinations barely deliver better 
identification rates than the 3-expert 
combination for the empirical (experts 2 and 3, 
set 1: 85%) and possibility (experts 1 and 2, set 
2: 65%) fusion approaches. This scenario does 
not take place for the evidential fusion. 

Table 2:  Results of Fusion Strategies. 

 



6     Conclusion 

Uncertainty-based fusion methods can be 
applied properly to model the language 
identification expert process of interaction in the 
presence of robust confidence indices that 
reflect a priori knowledge on expert 
performance, like those computed by the 
Discriminant Factor Analysis method. This 
fusion methodology comes out as a formal 
strong alternative to empirical techniques.  

Both Possib ility and Evidence Theories provide 
us with inference techniques that can take 
advantage of weighting values in a more refined 
way: not only at the expert level but also at the 
class and observation levels, so that they will 
generally deliver better identification rates 
compared to empirical techniques. 

Future works could include experimenting with: 
a) other conjunctive and disjunctive operations 
in the possibility/fuzzy domain: Lukasiewicz, 
Hamacher or Weber; and b) possibility-to-
probability transformations [7] in search of a 
common risk-based function to make fused 
decisions in the probabilistic domain (note that 
the pignistic probability has already been 
computed from the evidential domain). 
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