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Abstract

This paper deals with an approach to Automatic Lan-
guage Identification using only prosodic modeling. The
traditional approach for language identification focuses
mainly on phonotactics because it gives the best re-
sults. Recent studies reveal that humans use different
levels of perception to identify a language, in particular
prosodic cues.

Among prosodic features, rhythm is known to carry
a substantial information about language identity.
Rhythm is produced by the periodicity of a pat-
tern that can be syllable, which is a language spe-
cific unit. That is why we introduced the notion
of ”Pseudo-Syllable”, derived from the most frequent
syllable structure in the world, the Consonant-Vowel
structure. In this paper, an automatic and language
independent rhythmic units extraction algorithm is de-
scribed: using a vowel detection algorithm, rhythmic
units matching the Consonant-Vowel structure are seg-
mented. Two models describing rhythm and intona-
tion of each language are then learned using Gaussian
Mixtures.

1 Introduction

Nowadays, the standard approach to automatic lan-
guage identification considers a phonetic modeling as
a front-end. The resulting sequences of phonetic units
are then decoded according to language specific gram-
mars [1]. This approach gives the best results but only
marginal improvements have been achieved since 1996,
and it seems crucial not to underestimate the relevance
of alternative features also present in the signal to over-
come the current limitations.

Recent studies (see [2] for a review) reveal that humans
use different levels of perception to identify a language.
Three major kinds of features are employed: segmental
features (acoustic properties of phonemes), supraseg-
mental features (phonotactics and prosody) and high

level features (lexicon). Beside phonetics and phono-
tactics, prosody is one of the most promising features
to be considered for language identification, even if its
extraction and modeling are not a straightforward is-
sue. Actually, one of the main problems to address is
what to model (Section 2).

Rhythm is known to carry a substantial information
about language identity, and is useful for language
identification by humans. Our assumption is that
rhythm is produced by the periodicity of a pattern that
can be syllable, which is a language specific unit. That
is why we introduced the notion of ”Pseudo-Syllable”,
derived from the most frequent syllable structure in
the world, the Consonant-Vowel structure (Section 3).

In this paper, an automatic and language indepen-
dent rhythm extraction algorithm is described: using
a vowel detection algorithm , rhythmic units matching
the Consonant-Vowel structure are segmented. Several
parameters are extracted including consonantal and
vowel durations, and cluster complexity. Other fea-
tures related to pitch and intensity are also considered
to model the languages tones. Two models describ-
ing rhythm and intonation of each language are then
learned using Gaussian Mixtures (Section 4). Results
are presented in section 5.

2 Motivations

2.1 About rhythm
Languages can be gathered in main rhythmic classes.
According to the literature, Spanish is syllable-timed
whereas English and German are stress-timed, and
Japanese is mora-timed. These categories emerged
from the theory of isochrony introduced by Pike and
developed by Abercrombie [3].

However, more recent works based on the measure-
ment of the duration of inter-stress intervals in both
stress-timed and syllable-timed languages provide an
alternative framework in which these categories are re-
placed by a continuum [4]. Rhythmic differences be-



tween languages are then mostly related to their syl-
lable structure and the presence (or absence) of vowel
reduction. The controversies on the status of rhythm
in world languages illustrate dramatically the difficulty
to segment speech into correct rhythmic units. Even if
correlates between speech signal and linguistic rhythm
exist, reaching a relevant representation seems to be
difficult. Another difficulty rises from the selection of
an efficient modeling paradigm.

2.2 About intonation
Intonation can also be seen as an efficient cue for
discriminating among languages. There is a linguis-
tic grouping between languages using tone as a lex-
ical marker and those that do not. Some evidence
have shown that intonation contours can be a part of
a language’s identity, even if there are universals [5]
and speaker specific processes involved. Other experi-
ments have shown that intonation patterns can help to
discriminate among languages [6] and among dialects
from the same language [7] and [8].

The approach we develop here was first introduced in
[9] and improved by considering fundamental frequency
features in [10]. Now, we validate this approach by
widening the corpus with the Japanese language which
will help us to have a closer look to linguistic categories.

3 System overview
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Figure 1: Overview of the system.

Syllable may be a first-rate candidate for rhythm mod-
eling. Unfortunately, segmenting speech in syllables is
typically a language-specific mechanism and thus no
language independent algorithm can be derived. For
this reason, we introduced in [9] the notion of pseudo-
syllables derived from the most frequent syllable struc-

ture in the world, namely the CV structure [11].

A pseudo-syllable is a language independent unit that
is near the definition of the syllable and that can be
automatically extracted. A synoptic of the system is
displayed on figure 1.

3.1 Pre-processing
The pseudo-syllable generation requires the following
pre-processing steps:

• A language-independent speech segmentation al-
gorithm [12] of the signal. This algorithm is
based on the modeling of the speech signal with
an autoregressive model. The changes in the co-
efficients of the autoregressive model are detected
according to a distance measurement. The re-
sulting short and long segments corresponds to
transient and steady parts of the signal.

• A language-independent vowel detection algo-
rithm (based on the Energy) [13].

• A speech activity detection algorithm that pro-
duces Silence, Non Vowel or Vowel labels on each
of the detected segments. This algorithm, based
on a spectral analysis of the signal, is described
in [14]. It is applied in a language and speaker
independent way without any manual adaptation
phase.

3.2 Pseudo Syllable Extraction
A pseudo-syllable is articulated around the vocalic seg-
ment and consists in a CnV pattern: n is an inte-
ger (that may be zero) and V may result from the
merging of consecutive vowel segments. See an ex-
ample of extraction in figure 2. To improve the ro-
bustness, we decided to discard any segment that last
over 150 ms. Furthermore, pseudo-syllables containing
only consonantal segments are discarded (as the last
pseudo-syllable in the example).
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Figure 2: Extraction of prosodic features after the
pseudo-syllable segmentation.



4 Features

Rhythmic and fundamental frequency statistics are ex-
tracted from each pseudo-syllable (Figure 2).

4.1 Rhythmic parameters
Three parameters are computed, corresponding respec-
tively to the total consonant cluster duration, the total
vowel duration and the complexity of the consonan-
tal cluster. For example, the description for a .CCV.
pseudo-sequence is:

π.CCV. = {DC DV NC} (1)

where DC is the total duration of the consonantal seg-
ments, DV is the duration of the vowel segment and
NC is the number of segments in the consonantal clus-
ter (here, NC = 2). Such a basic rhythmic parsing is
obviously limited, but provides a framework to model
rhythm that requires no knowledge on the language
rhythmic structure

4.2 Fundamental frequency parameters
The fundamental frequency outlines are used to com-
pute statistics within the same pseudo-syllable fron-
tiers than those used for rhythm modeling, in order to
model intonation on each pseudo-syllable. The param-
eters used to characterize each pseudo syllable intona-
tion are : a measurement of the accent location (max-
imum f0 location regarding to vocalic onset, noted α)
and the normalized fundamental frequency bandwidth
on each syllable (∆F0). The resulting feature vector is
then, for each Pseudo-Syllable :

πF0 = {αF0 ∆F0} (2)

4.3 Modeling
Each pseudo-syllable is then characterized by a two
vectors, one characterizing rhythmic units and the
other characterizing intonation on each of these rhyth-
mic units :

π.CV V. = {DC DV NC}, πF0 = {αF0 ∆F0} (3)

This vector is computed for each pseudo syllable of
each sentence of the learning part of the corpus. For
each language a two Gaussian Mixture Models are
learned to characterize the language specific π.CCV.

and πF0 distributions, using the EM algorithm with
LBG initialization [15].

4.4 Decision
Let be L = {L1, ..., Li, ..., LNL

} the set of language to
identify. The problem is to find the most likely lan-
guage L∗ in the set L. Let be Sπ = {π1, ..., πk, ..., πnp}
the sequence of prosodic informations extracted from
each pseudo-syllable and πk is the vector formed by the
prosodic parameters for the pseudo-syllable k (equa-
tion (3)).

The probability that the observation πk belongs to the
language Li is defined by the probability density func-
tion of the Gaussian mixture:

Pr(πk|Li) =
Qi∑
j=1

ai
j
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(4)

where Qi is the number of Gaussian mixtures and
(µi

j ,Σ
i
j) are the parameters of the Gaussian mixture

j of the language Li.

Assuming that each pseudo-syllable is independent, the
probability that the sequence Sπ belongs to the lan-
guage Li is:

Pr(Sπ|Li) =
np∏

k=1

Pr(πk|Li) (5)

Using Bayes rule and considering that a priori proba-
bilities are equal, the most likely language L∗ is defined
by the following equation:

L∗ = arg max
1≤i≤NL

(Pr(Li|Sπ)) = arg max
1≤i≤NL

(Pr(Sπ|Li))

(6)

5 Experiments

Experiments are made on the MULTEXT corpus [16]
(a subset of EUROM1), which contains 5 languages
(English, French, German, Italian and Spanish), and
10 speakers per language, balanced between male and
female. Mr. Kitazawa recently sent us recordings of
Japanese speakers he made using the same protocol
than used for the MULTEXT corpus. The Japanese
corpus contains 6 speakers, also balanced between
male and female (see [17] for more details about the
Japanese corpus).

For the learning phase, we used 8 speakers (4 for
Japanese), and 2 (one male and one female) were used
for the tests. The test utterances are approximately 20
seconds long.

5.1 Rhythm Modeling
The matrix of confusion shows the relevance of our
approach as rhythmic classes can be identified, like
stress-timed languages (English and German) which
are slightly confused. The simple rhythmic structure
of Japanese which is mainly composed of CV sylla-
bles allows our system to easily discriminate this lan-
guage among others. Rhythmic similarities can also be
guessed between French, Italian and Spanish, which are
said to be syllable-timed.



Eng Fre Ger Ita Jap Spa
Eng 15 3 1 8 - 3
Fre - 15 - - - 4
Ger 5 - 33 2 - -
Ita - 3 1 17 - 9
Jap - 0 - - 80 -
Spa - 4 - 4 - 22

Table 1: Matrix of confusion given by the rhythm
model (Correct identification rate : 79.4 %

(182/229)).

5.2 Fundamental frequency modeling
As shown in the matrix confusion below, most lan-
guages are well identified, except French and Italian.
French and Spanish are confused with almost every
language present in the database.

Eng Fre Ger Ita Jap Spa
Eng 25 1 4 - - -
Fre 3 4 6 3 - 3
Ger 6 2 20 4 1 7
Ita 2 - 8 5 1 14
Jap 2 - - 1 77 0
Spa 3 1 6 4 2 12
Table 2: Matrix of confusion given by the

fundamental frequency model (Correct identification
rate : 62.4 % (143/229).

6 Conclusion

Experiments show that modeling rhythm and intona-
tion is useful for language identification.

The rhythmic modeling manages to catch the rhyth-
mic information and achieves a clear separation be-
tween languages which don’t belong to the same hy-
pothetic rhythmic class. But our rhythmic model
don’t catch the languages’ rhythm but characterizes
language-specific rhythmic units, so we need to model
the sequences of these units to get a complete rhythm
model.

The fundamental frequency model better characterizes
languages which have well defined intonational rules
like Japanese and English.

This method gives promising results, but further exper-
iments have to be made, with different kinds of data
(spontaneous speech for example) and we need to test
our system on many more languages to confirm (or not)
the linguistic classes hypothesis.
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