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Abstract— This paper addresses the problem of automatic
audio analysis for aided surveillance application in public trans-
port. The aim of such application is to detect critical situations
and to warn the control room. We propose a comparative
study of two methods of modelisation/classification of acoustical
segments. The problem is quite similar to the "‘audio indexing"’
framework, nevertheless the environment here is very noisy.
We present two general frameworks based on Gaussian Model
Mixture (GMM) and Support Vector Machine (SVM) to achieve
shout detection in railway embedded environment.

Index Terms— Audio processing, classification, transport,
surveillance.

I. I NTRODUCTION

I MPROVING security and safety of public transport sys-
tem is a major priority of operating companies which have

deployed video surveillance thanks to CCTV systems. The
installed systems are composed of ever-increasing number of
cameras connected to a control room. The monitoring task
requires too much workload for the operator to maintain a
high level of attention and a short reaction time. Over the last
decades, many researchers have been working on developing
image processing tools to assist the operator by automatically
detecting abnormal situations. In several projects, a set of
tools, specifically dedicated to metro station environment,
have been provided and evaluated in real situations [1], [2].

Nowadays, CCTV systems are deployed in embedded
areas like train, bus or metro-vehicles. To reach the same
objectives of security improvement and work flow reduction,
video processing has to be adapted by taking into account
the mobility constraints. A single visual analysis is not
always sufficient to reliably understand passengers activity.
It is often the case in overcrowded environments where
occlusions appear. In this context, it is very difficult to
isolate each passenger and to track its activity efficiently.
Even if visual information can be extracted without too much
difficulties, it can remain impossible to discriminate several
activities when the behaviours have a quite similar visual
description. When audio features are components of the
behaviours model, sound can be a salient information to deal
with ambiguities and to improve the detection/identification
rate. Sound information become impossible to circumvent
for an event that can’t be modeled by video features and in
area where video-surveillance can not be deployed.
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Automated audio analysis is a challenging problem. A
large amount of work have been carried out in speech recog-
nition, in audio segmentation and classification and more
recently, in audio source separation and localisation. In this
project, we are interested in segmentation and classification
of audio events. Recently, this research have been proposed
in a medical telemonitoring application where the objective
is to help patients at home or at hospitals when potentially
dangerous situations appear [3]. The proposed system has
been evaluated in a real environment and good results have
been reached but in moderate noise conditions.

Before classifying audio events, the first step is to extract
relevant events from the audio stream. This is achieved by
an automatic audio event extraction algorithm based on an
automatic segmentation algorithm and an activity detection.
This algorithm is described in section II. In section III, after a
brief description of speech characterisation features used, we
focus on two kinds of classification techniques based on dif-
ferent paradigms: the Gaussian Mixture Model (GMM) and
the Support Vector Machine (SVM) classifier. Experiments
on the learning part of the corpus are described in section IV
in order to assess the system’s structure (front-end processing
and classification tree). Cross-validation experiments are then
achieved in section V to evaluate the different feature sets and
to test the generalisation power of the models. A discussion
is then proposed in section VI.

II. SEGMENTATION IN ACTIVITY ZONES

The goal of the front-end processing is to extract relevant
audio samples (activity segments) from the complete audio
stream to reduce computing time and to improve global
performance. It is based on 3 steps:

• An automatic audio segmentation, which splits an audio
signal in several quasi-stationary consecutive zones,

• An activity detection algorithm, which aims at skipping
silence and low-level noise zones, out of interest and

• A merging step, to gather successive activity segments.

A. Audio segmentation

The segmentation is issued from the "‘Forward-Backward
Divergence"’ (DFB) algorithm [4], which is based on a
statistical study of the signal in the temporal framework.
This algorithm has been firstly applied to speech [4] and
then successfully applied to speech/music segmentation [5]
The audio signal is hypothetically described by a sequence
of quasi-stationary segments. Each segment is characterised
by a statistic model, the autoregressive Gaussian model:
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∑
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where(yn) is the speech signal and(en) is a Gaussian white
noise.

The method consists in detecting the changes in the au-
toregressive models through the prediction errors computed
on two analysis windows (figure 1). The distance between
the two models is obtained by computing the mutual entropy
of the two corresponding conditional laws.

Fig. 1. Localisation of the estimation windows of modelsMn
0 and Mn

1
at time n; time “0” corresponds to the last validated boundary. The french
sentence is “il se garantira du ...”.
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for each model at instant k isei
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This method has been compared to numerous other seg-
mentation methods [6]. It has given interesting results for
automatic speech recognition: experiments have shown that
the segments duration carries a relevant information [7].

The segmentation achieves an infra-phonemic segmenta-
tion where three kinds of segments can be identified:
• quasi-stationary segments, corresponding to the stable

part of phonemes,
• transient segments,
• short segments (about 20 ms).

Their lengths vary between 20 and 100 ms for speech
(figure 2).

Fig. 2. Result of the segmentation on about 1 second of speech. The
sentence is: “Confirmez le rendez-vous par écrit”.

B. Activity segments detection and merging

The vocal activity detection is based on a first order
statistic analysis of the temporal signal [8]. This algorithm
has been developed by François Pellegrino, and previously

integrated in an automatic language identification algorithm
[9].

The activity detection algorithm detects the less intense
segment of the excerpt (in terms of energy) and the other
segments are classified as Silence or Activity according to
an adaptive threshold. One can distinguish silences showing
an absence of activity (long segments) and silences occurring
during a sentence (short pauses, stops).

Time short segments are provided by the segmentation and
the detection steps. To discard short segments (duration under
300ms), we merge quasi-adjacent segments. The activity
segments are quasi-adjacent if they are separated by a non
activity segment which duration is under300ms. An example
of a result obtained by this method is shown on figure 3.

Fig. 3. Activity zones detected on an audio signal (in grey)

III. M ODELLING AND CLASSIFICATION FRAMEWORK

We have used two methods to model the audio data: the
classical Gaussian Mixture Models (GMM) and the Support
Vector Machine (SVM) technique. Both methods are applied
to acoustic parameters extracted from the audio signal.

A. Feature extraction

We have studied the impact of using different features
that are widely used in speech processing: the Mel Fre-
quency Cepstral Coefficients (MFCC), the Linear Prediction
Coefficients (LPC) and the Perceptual Lineal Prediction
Coefficients (PLP). The MFCC and the PLP are computed
after a transformation of the signal in the spectral domain.
LPC is based on a predictive analysis assuming that a speech
sample at a current time can be approximated as a linear
combination of past speech samples.

We have completed each coefficient set by their temporal
derivatives and their accelerations and we have added the en-
ergy coefficient with its derivative and acceleration. Finally,
the coefficients set we used in the experiments are:

1) 12 MFCC, energy,∆, ∆∆ (39 coefficients),
2) 20 MFCC, energy,∆, ∆∆ (63 coefficients),
3) 12 LPC, energy,∆, ∆∆ (39 coefficients),
4) 12 PLP, energy,∆, ∆∆ (39 coefficients).

B. GMM

This method supposes that the different classes which
are represented in the feature space can be modeled with
a weighted sum of Gaussian distributions. The parame-
ters of the Gaussian mixture are estimated using the EM



(Expectation-Maximisation) algorithm initialised with the
LBG algorithm [10].

Let X = {x1, x2, .., xN} be the training set andΠ =
{(αi, µi, σi), 1 ≤ i ≤ Q} the parameter set that defines a
mixture of Q p-dimensional Gaussian pdfs. The model that
maximises the overall likelihood of the data is given by:

Π∗ = arg max
π
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where αk is the mixing weight of thekth Gaussian
term. The maximum likelihood parametersΠ∗ are obtained
using the EM algorithm. This algorithm presupposes that
the number of componentsQ and the initial values are given
for each Gaussian pdf. Since these values greatly affect the
performances of the EM algorithm, a vector quantization
(VQ) is applied to the training corpus to optimize them.

During the identification phase, all the activity segments
detected in the test utterance are gathered and parame-
terised. The likelihood of this set of segmentsY =
{y1, y2, ..., yN} according to each model (denotedCi) is
given by P (Y |Ci) =

∏N
j=1 P (yj |Ci), where P (yj |Ci)

denotes the likelihood of each segment. Under the Winner
Takes All (WTA) assumption [11],P (yj |Ci) is approximated
by:
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C. SVM

The GMM is capturing the feature distributions of several
classes and perform classification using a bayesian criterion
decision. On the contrary, the SVM technique directly fo-
cus on modelling a discriminative function to separate the
classes. This function is a linear combination of several
kernel functions k estimated on some training data. For a
binary classification problem, involving training data

(
x+

i

)
(resp.

(
x−i

)
) with labelsli = +1 (resp.−1), it can be written

f(y) =
∑

α+
i k(y, x+

i )−
∑

α−i k(y, x−i ) + b.
The weightsαi are positive,b is a threshold such that

f(y) > 0 means that we should decide to affect the label
+1 to y, andk(., .) can be seen as a generalised dot product.
The training process is an optimisation problem, in which the
regularised cost to minimise can be seen as a weighted sum
of the empirical risk (overall difference with target values
li = +1/−1) on the training corpus, and a complexity term
to control capacity and prevent overfitting:
C 1

N

∑N
i=1 | li − f(xi) |+ +T (α).

The trade-off parameterC plays the same role as the num-
ber of Gaussian mixtures in the GMM approach. Because
of discontinuity of the first derivatives of the regularised
cost, involving the loss function|z|+ = max(0, |z|), many

components of the optimal weight vectorα are zero, i.e.
a sparse solution is obtained, leading to a quite fast-scoring
procedure. Non-zeroαi correspond tosupport vectors, which
define, with the functionk, the complexity of the decision
frontier (f(y) = 0). If the gram matrixK, composed of ker-
nel evaluations between every pair of training data (Ki,j) =
k(xi, xj)), is definite positive, then it is possible to find the
optimal solution of the optimisation problem. Otherwise, the
training algorithm is not guaranteed to converge.

In the case of audio data classification, each acoustic
vector taken individually contains little discriminative infor-
mation, and discriminative techniques applied at the vector
level suffer from the noise. Hence the interest of processing
at a higher scale: the sequence level. As the optimal way to
combine SVM outputs was not yet found (contrary to GMM
that offers a probabilistic framework which allows to process
sequences in a natural way), we investigate here SVM with
sequence kernels.

An efficient technique which has shown good performance
in speaker verification (a typical problem of audio sequence
classification), is the SVM using a Generalised Linear Dis-
criminant Sequence (GLDS) Kernel [12]. The kernel compu-
tation between two sequences amounts (with a few practical
approximations) to learn a vector-level polynomial classifier
on one sequence and to test on the other.

The GLDS kernel computation involves a polynomial
expansionφp, composed of all monomials between every
possible combination of vector components up to a given
degreep. For example, ifp = 2 and x = [x1, x2]> is a
2-dimensional input vector,φp(x) = [x1, x2, x

2
1, x1x2, x

2
2]
>.

The GLDS kernel between two sequences of vectorsX =
{xt}t=1...TX

andY = {yt}t=1...TY
is given as a rescaled dot

product between average expansions :

kGLDS(X, Y ) =
1

TX

TX∑
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φp(xt)> M−1
p

1
TY

TY∑
s=1

φp(ys)

(4)
where Mp is the second moment matrix of polynomial
expansionsφp estimated on some background population,
or its diagonal approximation for more efficiency. In our
experiments we use this approximation andp = 3, with a
view to having a first idea of the performance of a SVM
classifier.

D. Classification Framework

The hierarchical tree is build according to figure 4. Several
options are studied regarding the topology of the tree.

1) During the first step, a background noise/short term
noises detection is achieved. The background noise
model is composed with every parts of the signal where
the noise is present, including speech and shout parts.
The short term noise model is learnt on particular noise
segments (opening of doors, bags hitting the ground ...)

2) During the second step, a speech/non speech classifi-
cation is done. For this step, we assume human shouts
as part of the speech model.



3) Finally, a shout/non shout decision is made.

Fig. 4. Complete hierarchical tree used for classification

IV. T UNING EXPERIMENTS

We ran the modelisation/classification process on the
learning part of the corpus in order to confirm or infirm the
relevance of the front-end processing and the classification
tree. Those experiments allow to see which are the best
technical choices. For each experiment, a confusion matrix is
drawn. We focus on shout detection rate and false detection
rate (Shouts identified while they should not be). The system
aims at helping surveillance operators by providing alarms
when shouts are detected. If the system gives too much false
alarms, it will not be used anymore.

A. Description of the Corpus

The audio data of the corpus were recorded by ourselves in
a regional train in the SAMSIT project context. Scenes were
recorded using simultaneously 4 microphones. Actors were
asked to play scenarios representative of the public french
train operator’s needs:

• Scenario 1: fight scene involving two people or more,
• Scenario 2: fight scene involving two men and a women,
• Scenario 3: violent robbery scene (two guys attack one

person),

• Scenario 4: bag or mobile snatching (one lady).

Each scenario is played several times. Moreover, for each
kind of scenario, the actors played a scene which is not
a critical situation but has similar acoustic properties. The
scene is called the "‘normal"’ situation. The total corpus
duration is approximatively2500 seconds, and the total
duration of shouts is approximatively140s. All files of the
corpus have been labelled. The hand labelled shouts have a
mean duration of2.85s.

B. Relevance of the front-end processing

We have shown the relevance of the front-end processing
(segmentation in activity zones) in the GMM context. We
achieved experiments using 12 MFCC with energy, deriva-
tives and accelerations.

The table I shows the best results obtained without front-
end processing. Feature vectors are computed on all the
signal, each8ms and a smoothing is applied to provide
results each200ms.

TABLE I

RESULTS ON THE LEARNING PART OF THE CORPUS, WITHOUT

FRONT-END PROCESSING AND WITHOUT HIERARCHICAL TREE

Result→ Non Shouts Shouts
↓ Expected

Non Shouts (2402 s.) 85.0% (2043 s.) 15.0% (360 s.)
Shouts (138 s.) 24.1% (35 s.) 75.9% (109 s.)

As a comparison, experiments are also made using the
same system, including the front-end processing. In this
context, the features and a decision are computed on each
activity zone. The table II shows the best results we obtained.

TABLE II

RESULTS ON THE LEARNING PART OF THE CORPUS, WITH FRONT-END

PROCESSING AND WITHOUT HIERARCHICAL CLASSIFICATION TREE

Result→ Non Shouts Shouts
↓ Expected

Non Shouts (2402 s.) 97.0% (2330 s.) 3.0% (73 s)
Shouts (138 s) 24.2%(33 s) 75.8% (105 s)

Considering shout detection, results are very similar
whether the front-end processing is used or not (about 75%
of correct detections). More importantly, the false alarms
rate decrease significantly if we use the front-end processing
(only 73 s of misclassified shouts against 360 s). These
experiments show the relevance of the front-end processing,
which does not influence the shout detection performance
while decreasing the number of false alarms.

C. Relevance of the classification tree

These experiments aim at verifying whether the use of
the classification tree can improve the performance of the
system. In both cases, system settings are the same, except
for the use of the classification tree. The front-end processing
is applied. The features used are 12 MFCC with energy,∆
and ∆∆. Models used are in both cases Gaussian Mixture



Models. Results obtained without using the classification tree
are displayed in table II.

As we said previously, the classification tree is composed
of a background noise or other noise decision, and a speech /
non speech decision. For the noise classification, other noise
models are trained using short term noise excerpts of the
corpus (i.e. door noises, etc.). The background noise model is
trained using all the remaining parts of the corpus (including
speech and shouts). The speech model is learnt using any part
of the corpus containing speech, including shouts. The non
speech model is learnt using every non speech parts of the
corpus.

Results obtained with the classification tree are displayed
in table III.

TABLE III

RESULTS ON THE LEARNING PART OF THE CORPUS, WITH FONT-END

PROCESSING AND WITH COMPLETE HIERARCHICAL TREE

Result→ Non Shouts Shouts
↓ Expected

Non Shouts (2402 s.) 98.3 % (2363 s) 1.6 % (39 s)
Shouts (138 s) 25.6% (35 s) 74.3% (103 s)

Considering shout detection, results are very similar
whether the classification tree is used or not (about 75%
of correct detections), while being a little under perfor-
mance without using the classification tree (103s versus
105s correct). The false alarm rate decrease if we use the
classification tree (only39s of misclassified shouts against
73s).

V. CROSS-VALIDATION EXPERIMENTS

Cross-validation aims at estimating how well the model
we have learned from some training data is going to perform
on future unknown data. We have choosen the Leave-one-
out Method. This method involves in three steps. Firstly,
the model is trained on all the training data except for one.
Secondly, the learned model is evaluated on the remaining
data. Both steps are repeated such that each data is used once
as the validation data. The evaluation process we achieved
focuses not only on the good or bad detection of events, but
also on the precision on the time scale of the detection. The
results are then expressed as correctly identified durations
(for shouts and non shouts) and misidentified durations. We
present only the shout detection rate and the shout false alarm
rate.

This procedure is repeated for all the files of the corpus
and for both classification algorithms (GMM and SVM). In
the GMM context, we test different number of Gaussian laws.
From the SVM point of view, theC parameter is varying
within the interval [0.01 10]. To save space and to ease
reading, results are displayed graphically. The correct identi-
fied shouts duration and the misidentified shouts duration are
respectively in white and grey bars. The shout false alarm
duration is the black curve.

Results obtained with Gaussian Mixture Models are dis-
played in figure 5.

(a) (b)

(c) (d)

Fig. 5. Results obtained in cross validation experiments with Gaussian
Mixture Models. Correct identifications correspond to the white parts of
bars. Wrong classifications are represented by the grey part of bars. False
alarms are displayed as a curve. (a) 12 MFCC + E +∆ + ∆∆ (b) 20
MFCC + E +∆ + ∆∆ (c) 12 LPC + E +∆ + ∆∆ (d) 12 PLP+ E +∆
+ ∆∆

These graphics show that the least false error rate is
obtained using 1024 Gaussian laws in the mixture and for
the feature sets (b) and (d). The duration of the false alarms,
respectively9.4s. and14s, is relatively low compared to the
total duration of the corpus (≈ 2540s) and the total duration
of shouts to identify (≈ 140s).

The table IV shows results in a different way for these
two features sets. On this table, one can see that while
there are no shouts to be detected ("‘Normal"’ cases), the
algorithm does produce very few false alarms (i.e. only1.3s
shout identified for the "‘Normal"’ condition of the second
scenario).

Shout detection rate does not seem very good. However,
even if all shouts are not always identified on the "‘Scene"’
cases, the GMM method with PLP features set perform
well in terms of number of "‘identified shouts"’. A critical
situation can be composed of several shouts and the detection
of a part of the shouts can be sufficient to detect a critical
situation and to set off an alarm.

TABLE IV

RESULTS FOR THEGAUSSIAN M IXTURE MODEL CLASSIFIER, 20 MFCC

AND 12 PLPFEATURE SETS. RESULTS ARE DISPLAYED AS NUMBER AND

DURATION OF SHOUTS TO BE IDENTIFIED FOR EACH SCENARIO.

Scenario Scene Hand GMM GMM
Labels (12 PLP) (20 MFCC)

Scenario 1 Normal 0 (0 s.) 3 (1.2 s.) 2 (0.8 s.)
Scene 5 (28.4 s.) 4 (10.4 s.) 13 (27.8 s.)

Scenario 2 Normal 0 (0 s.) 1 (1.3 s.) 1 (1.3 s.)
Scene 17 (57.4 s.) 17 (34.4 s.) 6 (8.8 s.)

Scenario 3 Normal 0 (0 s.) 1 (0.5 s.) 0 (0 s.)
Scene 17 (43 s.) 14 (24.3 s.) 8 (16.9 s.)

Scenario 4 Scene 9 (9.2 s.) 9 (9.5 s.) 5 (4.0 s.)

The same experiments have been done with the SVM
classifier approach. Results are summarised in figure 6.



(a) (b)

(c) (d)

Fig. 6. Results obtained in cross validation experiments with Support
Vector Machines. Correct identifications correspond to white parts of bars.
Wrong classifications are represented by grey part of bars. False alarms are
displayed as a curve.(a) 12 MFCC + E +∆ + ∆∆ (b) 20 MFCC + E +∆
+ ∆∆ (c) 12 LPC + E +∆ + ∆∆ (d) 12 PLP+ E +∆ + ∆∆

The graphics show that the SVM classification framework
results in less false alarms than GMM. The most effective
feature sets are still 20 MFCC and PLP, with total false
alarms duration respectively of6.2s and 7.4s. Meanwhile
performance in terms of duration of identified shouts seems
better than for the GMM case.

We have also further investigated results for those two
features sets using the SVM classifier. Results are presented
in table V. This table allows us to verify that the SVM per-
forms well in terms of false alarms, except in the "‘normal"’
scene of the Scenario 2, for which one or two shouts are
detected. As for the GMM, the PLP features set provides
slightly better performance than the 20 MFCC features set.

TABLE V

RESULTS FOR THESUPPORTVECTORMACHINE CLASSIFIER, 20 MFCC

AND 12 PLPFEATURE SETS. RESULTS ARE DISPLAYED AS NUMBER AND

DURATION OF SHOUTS TO BE IDENTIFIED FOR EACH SCENARIO.

Scenario Scene Hand SVM SVM
Labels (12 PLP) (20 MFCC)

Scenario 1 Normal 0 (0 s.) 0 (0 s.) 0 (0 s.)
Scene 5 (28.4 s.) 5 (18.7 s.) 4 (14.8 s.)

Scenario 2 Normal 0 (0 s.) 1 (1.3 s.) 2 (2.4 s.)
Scene 17 (57.4 s.) 11 (29.1 s.) 10 (25.5 s.)

Scenario 3 Normal 0 (0 s.) 0 (0 s.) 0 (0 s.)
Scene 17 (43 s.) 11 (23.6 s.) 14 (28.3 s.)

Scenario 4 Scene 9 (9.2 s.) 8 (6.8 s.) 6 (6.0 s.)

When comparing GMM and SVM using the PLP features
set, we can see that the SVM approach generates less false
alarms than the GMM classifier: one false alarm for a
duration of 1.3 seconds versus 5 false alarms for a duration
of 2.98 seconds. But the shout identification performance is

worst for the SVM classifier than for the GMM approach.

VI. CONCLUSIONS AND PERSPECTIVES

We have presented and compared two mod-
elling/classification methods to detect shout events in a
public transport vehicle. Both methods have been evaluated
on real life railway environment. Vehicle environment
is quite noisy and both approaches achieved promising
performance.

We have shown that SVM method generates a weak false
alarms rate and that GMM approach has better identifica-
tion rate. In a surveillance application, it is important not
to generate too much false alarms. In the case of shout
detection, missing some shouts may not be critical if we
can detect a significant number of shouts to raise the alarm.
Thus, a compromise has to be done to choose one between
these GMM and SVM classifiers. As a consequence the PLP
feature set combined with the SVM classifier should be the
best choice for our application.

We are working to adapt both methods in an urban bus
context. This environment is more constrained because of the
vehicle vibrations, the motor noise and the sounds outside
the bus.
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