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Automatic Prosodic Variations Modeling for
Language and Dialect Discrimination

Jean-Luc Rouas

Abstract—This paper addresses the problem of modeling
prosody for language identification. The aim is to create a system
that can be used prior to any linguistic work to show if prosodic
differences among languages or dialects can be automatically
determined. In previous papers, we defined a prosodic unit, the
pseudosyllable. Rhythmic modeling has proven the relevance of
the pseudosyllable unit for automatic language identification.
In this paper, we propose to model the prosodic variations, that
is to say model sequences of prosodic units. This is achieved by
the separation of phrase and accentual components of intona-
tion. We propose an independent coding of those components
on differentiated scales of duration. Short-term and long-term
language-dependent sequences of labels are modeled by n-gram
models. The performance of the system is demonstrated by
experiments on read speech and evaluated by experiments on
spontaneous speech. Finally, an experiment is described on the
discrimination of Arabic dialects, for which there is a lack of
linguistic studies, notably on prosodic comparisons. We show that
our system is able to clearly identify the dialectal areas, leading to
the hypothesis that those dialects have prosodic differences.

Index Terms—Automatic language identification (ALI), prosody,
read and spontaneous speech.

I. INTRODUCTION

THE STANDARD approach to automatic language identifi-
cation (ALI) considers a phonetic modeling as a front-end.

The resulting sequences of phonetic units are then decoded ac-
cording to language-specific phonotactic grammars [1].

Other information sources can be useful to identify a lan-
guage, however. Recent studies (see [2] for a review) reveal
that humans use different levels of perception to identify a lan-
guage. Three major kinds of features are employed: segmental
features (acoustic properties of phonemes), suprasegmental fea-
tures (phonotactics and prosody), and high-level features (lex-
icon). Besides acoustics, phonetics, and phonotactics, prosody
is one of the most promising features to be considered for lan-
guage identification, even if its extraction and modeling are not
a straightforward issue.

In the NIST 2003 Language Verification campaign, most sys-
tems used acoustic modeling, using Gaussian mixture models
adapted from universal background models (a technique de-
rived from speaker verification [3]), and/or phonotactic mod-
eling (parallel phone recognition followed by language mod-
eling (PPRLM), see [1] and [4]). While these techniques gave
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the best results, systems using prosodic cues have also been in-
vestigated, following research in speaker recognition [5], no-
tably Adami’s system [6]. More recently, systems using syl-
lable-scale features have been under research, although their
aim is to model acoustic/phonotactic properties of languages [7]
or also prosodic cues [8].

Beside the use of prosody to improve the performances of
ALI systems, we believe that there is a real linguistic interest in
developing an automatic language identification system using
prosody and not requiring any a priori knowledge (e.g., manual
annotations). Hence, we will have the possibility of testing if
prosodically unstudied languages can be automatically differen-
tiated. The final aim of our studies is to automatically describe
prosodic language typologies.

In this paper, we will describe our prosodic-based language
identification system. In Section II, we will recall the main lin-
guistic theories about differences among languages. After re-
viewing the linguistic and perceptual elements that demonstrate
the interest of prosody modeling for language identification, we
will address the problem of modeling.

Indeed, modeling prosody is still an open problem, mostly be-
cause of the suprasegmental nature of the prosodic features. To
address this problem, automatic extraction techniques of sub-
phonemic segments are used (Section III). After an activity de-
tection and a vowel localization, a prosodic syllable-like unit
adapted to language identification is characterized. Results pre-
viously obtained by modeling prosodic features extracted on
this unit are briefly described at the end of Section III. We be-
lieve, however, that prosodic models should take into account
temporal fluctuations, as prosody perception is mostly linked to
variations (in duration, energy, and pitch). That is why we pro-
pose a prosody coding which enables to consider the sequences
of prosodic events in the same way as language models are used
to model phone sequences in the PPRLM approach. The orig-
inality of our method lies in differentiating phrase accent from
local accent, and modeling them separately. The method is de-
scribed in Section IV. The system is first tested on databases
with languages that have known prosodic differences to assess
the accuracy of the modeling. These experiments are carried out
on both read (Section V) and spontaneous (Section VI) speech,
using, respectively, the MULTEXT [9] and OGI-MLTS [10] cor-
pora. Then, a final experiment is performed on Arabic dialects
(Section VII), for which we investigate if prosodic differences
between those dialects can be automatically detected.

II. PROSODIC DIFFERENCES AMONG LANGUAGES

The system described in this paper aims at determining to
what extent languages are prosodically different. In this section,
we will describe what the rhythmic and intonational properties
of languages are and how humans perceive them.
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A. Rhythm

The rhythm of languages has been defined as an effect in-
volving the isochronous (that is to say at regular intervals) re-
currence of some type of speech unit [11]. Isochrony is de-
fined as the property of speech to organize itself in pieces equal
or equivalent in duration. Depending on the unit considered,
the isochrony theory classifies languages in the following three
main sets:

• stress-timed languages (as English and German);
• syllable-timed languages (as French and Spanish);
• mora-timed languages (as Japanese).
Syllable-timed languages share the characteristic of having

regular intervals between syllables, while stress-timed lan-
guages have regular intervals between stressed syllables, and
for mora-timed languages, successive mora are quasi-equiva-
lent in terms of duration. This point of view was made popular
by Pike [12] and later by Abercrombie [13]. According to
them, distinction between stress-timed and syllable-timed
languages is strictly categorical, since languages cannot be
more or less stress or syllable-timed. Despite its popularity
among linguists, the rhythm class hypothesis is contradicted by
several experiments (notably by Roach [14] and Dauer [15]).
This forced some researchers (e.g., Beckman [16]) to shift
from “objective” to “subjective” isochrony. True isochrony is
described as a constraint, and the production of isochronous
units is perturbed by phonetic, phonologic, and grammatical
rules of the languages. Some other researchers have concluded
that isochrony is mainly a perceptual phenomenon (e.g., Lehiste
[17]). Isochrony can then be seen as a concept relative to speech
perception.

The lack of an empirical proof of isochrony led Dauer [15] to
propose a new rhythmic classification system. From her point
of view, speakers do not try to keep equal interstress or in-
tersyllabic intervals, but languages are more or less stress or
syllable-timed. Nespor [18] introduced the notion of rhythmi-
cally intermediate languages, which share properties associated
with stress-timed languages and other associated with syllable-
timed languages. As an example, she cites Polish—classed as
stress-timed, although it does not have vocalic reduction, and
Catalan—syllable-timed but having vocalic reduction.

B. Intonation

The following three main groups of languages can be charac-
terized regarding their use of intonation:

• tone languages (as Mandarin Chinese);
• pitch-accent languages (as Japanese);
• stress-accent languages (as English and German).
According to Cummins [19], distinguishing languages using

fundamental frequency alone had a moderate success. The ex-
planation is twofold.

• On the one hand, we can imagine a discrimination based
on the use of lexical tone (Mandarin) or not (English), but
intermediate cases exist (Korean dialects) which are usu-
ally considered as representing transitory states between
languages of one class and those of another [20].

• On the other hand, phenomena linked to accents and into-
nation are less easy to handle. There are multiple theories
on utterance intonation that do not agree. The situation is

made more complex by studies on the nonlinguistic uses
of intonation, as for example to express emotions. Several
studies agree on a classification by degrees rather than sep-
arate classes [21].

C. Perception

Over the last few decades, numerous experiments have
shown the human capability for language identification [2]. The
following three major kinds of cues help humans to identify
languages:

1) segmental cues (acoustic properties of phonemes and their
frequency of occurrence);

2) suprasegmental cues (phonotactics, prosody);
3) high-level features (lexicon, morpho-syntax).
About prosodic features, several perceptual experiments

try to shed light on human abilities to distinguish languages
keeping only rhythmic or intonation properties. The method
is to degrade speech recordings by filtering or resynthesis to
remove all segmental cues to the subjects whose task is to
identify the language. The subjects are either naive or trained
adults, infants or newborns, or even nonhuman primates. For
example, all the syllables are replaced by a unique syllable
“/sa/” in Ramus’ experiments [22]. In other cases, processing
of speech through a low-pass filter (cutoff frequency 400 Hz)
is used to degrade the speech signal [23]. Other authors [24]
propose different methods to degrade the speech signal in order
to keep only the desired information (intensity, intonation, or
rhythm). From a general point of view, all those experiments
show the notable human capacity to identify to some extent
foreign languages after a short period of exposure.

III. SEGMENTATION, VOWEL DETECTION,
AND PSEUDOSYLLABLES

The starting point of recent work on rhythm is the rhythm
description method proposed by Ramus et al. in 1999 [22]. Fol-
lowing him, others have proposed different and more complex
rhythm modeling methods (e.g., [11] and [25]). The weak point
in many of those approaches is that they have only been ap-
plied after a manual segmentation of the speech signal. Conse-
quently, their performance has only been assessed on relatively
small corpora.

To overcome this limitation and to model the prosody
of languages automatically, we use automatic processing to
extract prosodic information. The following three baseline
procedures lead to relevant consonant, vocalic, and silence
segment boundaries.

• Automatic speech segmentation leading to quasista-
tionary segments: This segmentation results from the
“Forward–Backward Divergence” (DFB) algorithm [26],
which is based on a statistical study of the signal in the
temporal framework. The segmentation achieves a sub-
phonemic segmentation, where segments correspond to
steady or transient parts of phonemes.

• Vocal activity detection: The vocal activity detection is
based on a first-order statistical analysis of the temporal
signal [27]. The activity detection algorithm detects the
less intense segments of the excerpt (in terms of energy),
and the other segments are classified as Silence or Activity
according to an adaptive threshold.



1906 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 15, NO. 6, AUGUST 2007

Fig. 1. Result of the automatic segmentation, vowel location, and vocal activity
detection on a French recording of the MULTEXT database. The sentence is:
“les choux avaient été entièrement devorés par les limaces.” “#” labels are for
nonactivity segments, “V” are for vocalic segments, and other segments are la-
beled “C.” Word boundaries are displayed for illustration purposes.

• Vowel localization: The vowel location algorithm is based
on a spectral analysis (see [27] for more details). The fact
that neither labeled data nor supervised learning are neces-
sary constitutes the main advantage of this algorithm. The
fact that no learning phase is necessary allows the algo-
rithm to be used on different languages, even if no hand-la-
beled data is available. However, the consequence is that
the algorithm is not optimized for any language even if it
behaves correctly when compared to other systems [28].

This front-end processing results in a segmentation into vo-
calic, consonantal and silence segments. Labels “V,” “C,” or “#”
are used to qualify each segments (Fig. 1).

The syllable is a privileged unit for rhythm modeling. How-
ever, automatic extraction of syllables (in particular, boundary
detection) is a controversial operation that is still in debate
among phonologists: the pronunciation quality and the speech
rate are factors influencing directly the syllable segmentation
[29]. Furthermore, segmenting the speech signal in syllables
is a language-specific task [30]. No language-independent
algorithm can be easily applied.

We therefore used the notion of pseudosyllable [31]. The
basic idea is to articulate the prosodic unit around primordial el-
ements of the syllables—vowels—and to gather the neighboring
consonants around those nuclei. We have decided to gather only
the preceding consonants. This choice is explained by the fact
that syllable boundary detection is not an easy task in a multilin-
gual framework, and that the most frequent syllables correspond
to the consonant/vowel structure [15]. An example of this seg-
mentation is shown in Fig. 2.

We showed in previous papers [31] that the pseudosyllable
segmentation can be successfully used for language identifi-
cation. Features characterizing durations and fundamental fre-
quency variations are extracted from each pseudosyllable and
are used to learn the parameters of Gaussian mixtures for each
language of the database.

With the duration features, the correct identification rate is
67% for the seven languages of the MULTEXT corpus. This re-
sult is obtained using a mixture of eight Gaussians. With the
intonation features, the correct identification rate is 50%, using
a GMM with eight components. A fusion of the results ob-
tained with both duration and intonation features allows to reach

Fig. 2. Pseudosyllable segmentation performed for the sentence “les choux
avaient été entièrement dévorés par les limaces.” Consecutive “C” segments are
gathered until a “V” segment is found.

70% correct. The confusions occur mainly across languages be-
longing to the same groups evoked in linguistic theories.

Identifying stress-timed languages (English, German, and
hypothetically Mandarin) versus syllable-timed languages
(French, Italian, and Spanish) versus mora-timed languages
(Japanese), accuracy is 91% correct using both duration and
intonation models.

Nevertheless, the statistical models (Gaussian mixture
models) we use to model pseudosyllabic features are intrinsi-
cally static models. This does not fit with the perceptive reality
of prosody which is continue, dynamic, and suprasegmental.
We must use different models to take the temporal variations
into account.

IV. MODELING PROSODIC VARIATIONS

Following Adami’s work [6], we used the features computed
on each pseudosyllable to label the fundamental frequency
and energy trajectories. Two models are used to separate
the long-term and short-term components of prosody. The
long-term component characterizes prosodic movements over
several pseudosyllables, while the short-term component
represents prosodic movements inside a pseudosyllable. An
overview of the system is displayed in Fig. 3. Fundamental
frequency and energy are extracted from the signal using the
SNACK Sound toolkit [32].

A. Fundamental Frequency Coding

The fundamental frequency processing is divided into two
phases, representing the phrase accentuation and the local ac-
centuation, as in Fujisaki’s work [33].

1) Baseline Computing and Coding: The baseline extraction
consists in finding all the local minima of the contour, and
linking them. Then, the baseline is labeled in terms of U(p),
D(own), and #(silence or unvoiced).

To find local minima, the sound file is automatically divided
into “sentences,” defined here as intervals between silent seg-
ments of duration over 250 ms. The linear regression of the
curve is then computed on each sentence. Then each part of the
curve under the linear regression is used to find a unique minima
(Fig. 4).

Successive minima are linked by linear approximation. An
example of a resulting baseline curve is displayed in Fig. 5. The
slope of the regression is used to label the baseline. We use one
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Fig. 3. Description of the system.

Fig. 4. Finding local minima for the sentence “les choux avaient été entière-
ment dévorés par les limaces.” Local minima under the linear regression are
displayed as a big dot.

label per pseudosyllable. Labels are “U” for a positive slope and
“D” for a negative slope. Unvoiced pseudosyllables (less than
70% voiced in duration) are labeled “#.” In this example, the
label sequence corresponding to the sentence is

2) Residue Approximation and Coding: The baseline is sub-
tracted from the original contour. The resulting curve is called
residue (Fig. 6). This residue is then approximated for each seg-
ment by a linear regression. The slope of the linear regression
is used to label the movement on the unit, according to three
available labels (Up, Down, and Silence). The example sentence
is labeled in the following way:

B. Energy Coding

The energy curve is approximated by linear regressions for
each considered units (subphonemic segments or pseudosylla-

Fig. 5. Extraction of the baseline for the sentence “les choux avaient été en-
tièrement dévorés par les limaces.” Previously found local minima are linked
with a straight line.

Fig. 6. Approximation of the residue for the sentence “les choux avaient été
entièrement dévorés par les limaces.” The residue is approximated by a linear
regression for each segment.

Fig. 7. Approximation of the energy for the sentence “les choux avaient été
entièrement dévorés par les limaces.” The energy is approximated by a linear
regression for each segment.

bles) (Fig. 7). The process is the same as the one used for the
residue coding. As there is no segment with no energy, only two
labels are used: Up and Down. In this example, the sequence of
labels is

C. Duration Coding

Duration labels are computed only for the subphonemic seg-
ment units. The labels are assigned considering the mean dura-
tion of each kind of segment (vocalic, consonantic, or silence).
If the segment to label is a vocalic segment with a duration above
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the mean vocalic segments duration computed on the learning
part of the corpus, it is labeled “l” (long), If the current vocalic
segment duration is below the mean, the “s” (short) label is then
used. The duration labels generated on the example sentence are

D. Modeling

To model the prosodic variations, we use classical n-gram
language modeling provided by the SRI language modeling
toolkit [34]. For each system—long- and short-term—each
language is modeled by a n-gram model during the learning
procedure. During the test phase, the most likely language is
picked according to the model which provides the maximum
likelihood. For the long-term models, this modeling is applied
at the pseudosyllable level, and n-grams are learnt using base-
line labels, eventually combined with energy labels coded at the
pseudosyllable scale. The short-term models are learnt using
the subphonemic segmentation, and using the residue labels,
optionally combined with energy and duration labels. For each
segment, the label is then composed of three symbols. For the
example sentence, we have

Several lengths for the n-gram models have been tested (from
3- to 5-grams), but as the best results are obtained with 3-grams,
only the results obtained using 3-gram models are displayed.

V. EXPERIMENTS ON READ SPEECH

The first experiments are made on the MULTEXT corpus [9]
(a subset of EUROM1), which contains five languages (English,
French, German, Italian, and Spanish), and ten speakers per
language, balanced between male and female. We have ten
20-s files per speaker. This baseline corpus has been extended
with recordings of Japanese speakers [35]. Mandarin Chinese
recordings are also added to the original corpus, thanks to
Komatsu [24].

The three theoretical rhythmic classes are represented in
this corpus: English, German, and Mandarin Chinese are
stress-timed languages; French, Italian, and Spanish are syl-
lable-timed languages, and Japanese is a mora-timed language.
Moreover, Mandarin Chinese is a tone language, and Japanese
is a pitch-accent language.

For the learning phase, we used eight speakers (four for
Japanese), and two (one male and one female) were used for
the tests. We have 80 learning files per language ( 26 min)
and 20 test files per language ( 6 min)—except for French
(19 files)—resulting in a total of 139 test files.

A. Long-Term Modeling

The sequences of labels computed on each pseudosyllable are
modeled by n-gram models. We investigated different combina-
tions of labels to see which features are more useful (Table I).

TABLE I
EXPERIMENTS WITH LONG-TERM LABELS (139 FILES)

TABLE II
LONG-TERM PROSODIC MODEL [CORRECT= 50.3 � 8.2% (70/139 FILES)].

RESULTS ARE DISPLAYED AS PERCENTAGES

TABLE III
EXPERIMENTS WITH SHORT-TERM LABELS (139 FILES)

TABLE IV
SHORT-TERM PROSODIC MODEL [CORRECT= 79.8� 6.6% (111/139 FILES)].

RESULTS ARE DISPLAYED AS PERCENTAGES

The best performance is obtained using only the baseline labels.
With these labels, the correct identification rate is 50%. The con-
fusion matrix is drawn in Table II with identified languages in
columns and references in rows (confidence intervals are pro-
vided in the legend). Table II show that French, Spanish, and
German are clearly identified.

B. Short-Term Modeling

The sequences of labels computed on each subphonemic seg-
ment are also modeled by n-gram models. Contributions of dif-
ferent features are shown in Table III. The best results are ob-
tained using the combination of residue, energy, and duration
labels. The identification rate is 80%.

Detailed results using this configuration are displayed in
Table IV. These results allow us to hypothesize that the most
characteristic prosodic elements of languages are not pseu-
dosyllable sequences but sequences of elements constituting
them.

C. Merging Long and Short-Term Components

The merging of the two systems described previously is ad-
dressed. The merging technique is a simple addition of the log-
likelihoods. The identification rate obtained with this method is



ROUAS: AUTOMATIC PROSODIC VARIATIONS MODELING FOR LANGUAGE AND DIALECT DISCRIMINATION 1909

TABLE V
MERGING OF SHORT- AND LONG-TERM MODELS [CORRECT= 83.5 � 6.1%

(116/139 FILES)]. RESULTS ARE DISPLAYED AS PERCENTAGES

TABLE VI
RHYTHM CLASSES IDENTIFICATION TASK [CORRECT= 93.5 � 4.1%

(130/139 FILES)]. RESULTS ARE DISPLAYED AS PERCENTAGES

83%, which is considerably better than the 70% obtained with
static modeling (Section III).

Despite the poor performance of the long-term model,
merging the long- and short-term results allows to improve
the identification rate. Results (in Table V) show that most
languages are well identified.

The language classes evoked in Section II have an influence
on the correct identification rates: Mandarin (i.e., the only tone
language of the corpus) is the most clearly identified language.
Japanese, the only mora-timed language, and the only pitch-ac-
cent language in our corpus, is also well identified. The main
confusions are between Italian and Spanish, both belonging
to the syllable-timed and stress-accent groups. Considering
rhythmic classes (represented in different strength of grey in the
matrix), we can see that most confusions are within languages
of the same rhythmic family.

Consequently, a rhythmic classes identification experiment
was performed using the same data with the fusion of the short
and long-term models. English, German and Mandarin are part
of the stress-timed group; French, Italian, and Spanish are in
the syllable-timed group, and Japanese constitutes in itself the
mora-timed group. The rhythmic classes identification rate is
94% (Table VI).

On this data, our system manages well to classify languages
according to their prosodic properties.

VI. EXPERIMENTS ON SPONTANEOUS SPEECH

The same experiments have been made on a spontaneous
speech corpus, the OGI Multilingual Telephone Speech Corpus
(OGI-MLTS) corpus [10]. This corpus is composed of tele-
phone speech recorded in ten languages: English, Farsi, French,
German, Japanese, Korean, Mandarin, Spanish, Tamil, and
Vietnamese. Experiments are made on six languages (English,
French, German, Japanese, Mandarin, and Spanish) using spon-
taneous speech utterances of 45 s each, one file per speaker.
The data organization is displayed in Table VII.

The tests here are made using the same tuning as for the read
speech experiments—same features used (baseline labels for the
long-term model, and the combination of residue, energy, and

TABLE VII
DATA ORGANIZATION SUMMARY—OGI

TABLE VIII
LONG-TERM PROSODIC MODELS [CORRECT= 20.6� 8.0% (21/102 FILES)].

RESULTS ARE DISPLAYED AS PERCENTAGES

TABLE IX
SHORT-TERM PROSODIC MODELS [CORRECT= 40.2� 9.5% (41/102 FILES)].

RESULTS ARE DISPLAYED AS PERCENTAGES

TABLE X
RHYTHM CLASSES IDENTIFICATION TASK [CORRECT= 68.6 � 9.1%

(70/102 FILES)]. RESULTS ARE DISPLAYED AS PERCENTAGES

duration labels for the short-term model), same n-gram config-
uration (3-grams). Results are displayed in Tables VIII and IX
for the long- and short-term models, respectively.

The long-term model only manages to reach performances
slightly better than chance (on a six-way classification, the
chance level is 16 ).

The short-term model achieves a performance of 40% of cor-
rect identifications. The best recognized languages are English
(55%) and Japanese (53%). We can observe that German is
mainly confused with English.

The performances of the system for the rhythm classes iden-
tification task is given in Table X.

The global identification rate is 69%. The identification rates
for each class are, respectively, 85% for the stress-timed lan-
guages, 46% for the syllable-timed languages, and 53% for the
mora-timed language. As expected from language identifica-
tion results, syllable-timed languages are the least recognized.
The identification mistakes are made principally on the French
language, responsible for ten errors—that is to say 66% of the
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Fig. 8. (a) Number of detected vowels as a function of time on English read
speech. (b) Number of detected vowels as a function of time on English spon-
taneous speech.

TABLE XI
STANDARD DEVIATIONS OF SPEECH RATE (ESTIMATION) FOR DIFFERENT

LANGUAGES ON READ AND SPONTANEOUS SPEECH

syllable-timed languages identification error. This may be ex-
plained by the different varieties of French (Canadian and Eu-
ropean) encountered in the corpus.

It is, however, quite difficult to directly transpose our ap-
proach, designed on read speech, to spontaneous speech. The
main reason may be the intrinsic variability of the spontaneous
data. This variability can be linked to the great variations of
speech rate observed within each language (see [36] for a
study of automatic speech rate estimation on read and spon-
taneous speech). Fig. 8 displays the accumulated number of
vowels per second for the English parts of the MULTEXT
and OGI-MLTS corpus. Spontaneous speech leads to much
more variation in terms of number of vowels per second than
read speech. Table XI shows the standard deviations of the
speech rate approximation on spontaneous and read speech
for different languages (45-s spontaneous speech utterances
of the OGI-MLTS corpus and 20-s read utterances from the
MULTEXT corpus). These standard deviation values show that
there is a much greater dispersion of spontaneous speech rate
within each language than for read speech. These intralanguage
variations can explain why our models achieve a poor perfor-
mance on the test part of the corpus.

VII. EXPERIMENTS ON ARABIC DIALECTS

We believe nonetheless that our system can be applied, at least
on groups of languages, to investigate if the groups considered
can be automatically distinguished prosodically. We carried out
experiments with different Arabic dialects to show how the fea-
tures described in this paper help to classify them.

The corpus ARABER has been recorded at the Dynamique
du Langage Laboratory, Lyon, France. It consists of semispon-
taneous recordings (comments on an image book) from 40
speakers from Maghreb, Middle-East, and an intermediate
area (Tunisia, Egypt). The mean duration for each speaker’s
recording is 5 min, in 40 files of 7.6 s. All the data have
been used both for learning and testing, via a cross-validation
procedure.

The quality of the recordings made this corpus interesting be-
cause it is intermediate between the studio-recorded read speech

TABLE XII
ARABIC DIALECTAL AREAS IDENTIFICATION [CORRECT= 98.0 � 0.6%

(1563/1592 FILES)]. RESULTS ARE DISPLAYED AS PERCENTAGES

corpus MULTEXT and the telephone spontaneous speech of the
OGI corpus.

As research on the prosody of Arabic dialects is emerging,
very few observations are available to hypothesize how much
they differ. At this point, Arabic dialects are classified ac-
cording to intercomprehension between speakers, resulting in
three main areas: Occidental (Moroccan, Algerian), Interme-
diate (Tunisian, Egyptian), and Oriental (Lebanese, Jordanian,
Syrian). The aim of this study is to see, with an ALI system
that does not require any kind of annotation, if it is possible to
identify the hypothesized dialectal areas using only prosody.

The prosodic ALI system—using the combination of the long
and short-term models—has been applied to this corpus without
any tuning procedure: same features (baseline labels for the
long-term model and the combination of residue, energy, and
duration features for the short-term model), same n-gram con-
figuration. Experiments are made according to a cross-valida-
tion procedure applied on each speaker: learning is done using
all speakers except one who is used for the test. This is repeated
until all speakers have been used for the test. Results of the
cross-validation tests are displayed in Table XII.

The system performs very well on this data, which shows
that prosodic differences may be important between the hy-
pothesized dialectal areas of Arabic. Further studies are needed
in order to identify the exact prosodic differences between di-
alectal areas, and if there are differences among dialects of a
same area.

VIII. CONCLUSION AND PERSPECTIVES

Experiments on read speech show that our system is able
to automatically identify languages using prosody alone.
Differences between languages seem more characterized by
microprosodic events (short term) than macroprosodic ones.
The experiments show that variations of fundamental fre-
quency, energy, and segment duration that occur within a
syllable are more characteristic. The dynamic modeling allows
to reach 83% of correct identification on a seven language
discrimination task. Results tend to confirm the existence of
automatically identifiable rhythmic classes (accuracies above
90% for rhythm class identification).

Considering spontaneous speech, accuracies are lower. This
can be partly explained by the greater interspeaker variability
due to the number of different prosodic realizations allowed by
spontaneous speech, especially in terms of changes in speech
rate. The results remain, however, interesting for the language
class identification experiment.

An applicative example has been shown with the experiments
on Arabic dialects, where the speech quality is intermediate be-
tween read and spontaneous. This experiment has shown that
there exist some automatically detectable prosodic differences
between hypothesized dialectal areas of Arabic. A careful study
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with the help of linguists is needed in order to define precisely
what are those differences and where they appear. The next ex-
periment will be to test if the dialects can be automatically clus-
tered using our system.

The main advantage of our prosodic ALI system lies in the
fact it does not require any manual annotations (especially pho-
netic annotations which are very time-consuming). Hence, the
system can be directly applied to unknown data, and be used
to evaluate if the prosodic differences between languages or di-
alects can be automatically detected. Using this system can help
linguists to verify that further investigation is needed, leading
to new collaborations between the automatic processing and the
linguistic communities.
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