ALGORITHMES POUR LA BIO-INFORMATIQUE ET LA VISUALISATION

COURS 3

Raluca Uricaru

Suffix trees, suffix arrays, BWT

Based on:

Suffix trees and suffix arrays presentation by Haim Kaplan Suffix trees course by Paco Gomez
Linear-Time Construction of Suffix Trees by Dan Gusfield Introduction to the Burrows-Wheeler Transform and FM Index, Ben Langmead

Trie

- A tree representing a set of strings.

Trie

- Assume no string is a prefix of another

Each edge is labeled by a letter, no two edges outgoing from the same node are labeled the same.

Each string corresponds to leaf.

Compressed Trie

- Compress unary nodes, label edges by strings

Suffix tree

Given a string s a suffix tree of s is a compressed trie of all suffixes of s.

Observation:
To make suffixes prefix-free we add a special character, say \$, at the end of s

Suffix tree (Example)

Let $s=a b a b$. A suffix tree of s is a compressed trie of all suffixes of $s=a b a b \$$

\author{
\$
 b\$
 ab\$
 bab\$
 abab\$
 \}

}

Trivial algorithm to build a Suffix tree

Put the largest suffix in

Put the suffix bab\$ in

Put the suffix ab\$ in

Put the suffix b\$ in

Put the suffix \$ in

We will also label each leaf with the starting point of the corresponding suffix.

Simple-Suffix-Tree-Algorithm (T)
Create the root node, with empty string
for $i \leftarrow 1$ to n do
Traverse current tree from the root
Match symbols in the edge label one-by-one with symbols in the current suffix, T_{i}
if a mismatch occurs then
Split the edge at the position of mismatch to create a new node, if need be
Insert suffix T_{i} into the suffix tree at the position of mismatch
end if
end for

Analysis

Takes $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time to build.

But we can do it in $\mathrm{O}(\mathrm{n})$ time with Ukkonen algorithm

It needs : implicit suffix trees, suffix links ...

Implicit suffix trees

1. Remove all the terminal symbols $\$$
2. From the resulting tree, remove edges without label
3. Finally, from the resulting tree, remove nodes that do not have at least two children
$\mathrm{T} \$=\{\mathrm{abcab} \$\}$
I(T) - implicit suffix tree

Suffix links

Let A be an arbitrary substring of T, including the possibility of being the empty string. Let z be a character of T.
Suppose there are two nodes v, w, the former with path-label $z A$ and the latter with A.

A pointer from v to w is a suffix link.

Observation Every internal node has one suffix link.

Suffix links

Suffix links in the implicit suffix tree of string T = aabbabaa

What can we do with it?

Exact string matching

Given a text $\mathrm{T}(|\mathrm{T}|=\mathrm{n})$, preprocess it such that when a pattern $\mathrm{P}(|\mathrm{P}|=\mathrm{m})$ arrives, you can quickly decide whether it occurs in T .

We may also want to find all occurrences of P in T .

Exact string matching

In preprocessing we just build a suffix tree in $\mathrm{O}(\mathrm{n})$ time

Given a pattern $\mathrm{P}=\mathrm{ab}$ we traverse the tree according to the pattern.

If we did not get stuck traversing the tree then the pattern occurs in the text.

Each leaf in the subtree below the node we reach corresponds to an occurrence.

By traversing this subtree we get all k occurrences in $\mathrm{O}(\mathrm{n}+\mathrm{k})$ time

Generalized suffix tree

Given a set of strings S, a generalized suffix tree of S is a compressed trie of all suffixes of $s \in S$

To make these suffixes prefix-free we add a special char, say $\$$, at the end of s

To associate each suffix with a unique string in S add a different special char to each s

Generalized suffix tree (Example)

Let $\mathrm{s}_{1}=\mathrm{abab}$ and $\mathrm{s}_{2}=\mathrm{aab}$, and a generalized suffix tree for s_{1} and s_{2}

So what can we do with it?

Match a pattern against a database of strings

Longest common substring (of two strings)

Every node with a leaf descendant from string S_{1} and a leaf descendant from string S_{2} represents a maximal common substring and vice versa.

Lowest common ancestors

A lot more can be gained from the suffix tree if we preprocess it so that we can answer LCA queries on it

Why?

The LCA of two leaves represents the longest common prefix (LCP) of these 2 suffixes

Finding maximal palindromes

The maximal palindrome with center between $i-1$ and i in string s, is the LCP of the suffix at position i of s and the suffix at position $m-i$ of s^{r}.

Let $\mathrm{s}=\mathrm{cbaaba} \$$.
Prepare a generalized suffix tree for $\mathrm{s}=$ cbaaba $\$$ and $\mathrm{s}^{\mathrm{r}}=$ abaabc \#
For every i find the LCA of suffix i of s and suffix $m-i+1$ of s^{r}

Let $\mathrm{s}=$ cbaaba\$ then $\mathrm{s}^{r}=$ abaabc\#

Drawbacks

- Suffix trees consume a lot of space
- It is $\mathrm{O}(\mathrm{n})$ but the constant is quite big

Suffix array (SA)

We loose some of the functionality but we save space.

Let $\mathrm{s}=\mathrm{abab}$
Sort the suffixes of s lexicographically: $a b, a b a b, b, b a b$.
The suffix array gives the indices of the suffixes in sorted order

How do we build it?

- Build a suffix tree
- Traverse the tree in DFS, lexicographically picking edges outgoing from each node and fill the suffix array.
- $\mathrm{O}(\mathrm{n})$ time

How do we search for a pattern ?

- If P occurs in T then all its occurrences are consecutive in the suffix array.
- Do a binary search on the suffix array
- Takes O(m logn) time

Example

Burrows-Wheeler Transform (BWT)

A way of permuting the characters of a string T into another string BWT (T)

- Reversible permutation
- 2 main applications: compression and indexing

BWT via BWM

$\mathrm{T}=\mathrm{abaaba} \$$
$\Rightarrow 6 \times 6$ matrix $(\mathrm{BWM}(\mathrm{T}))$ containing the rotations of T
\$ abaaba a\$ ababa
ba\$ abaa
aba\$aba
sort the rows
aba\$aba

\$abaaba
a \$ abaab
aaba\$ab
$a b a \$ a b a$
BWT(T)
abaaba\$ baaba\$a abaaba\$
ba\$abaa
babala

BWT via suffix arrays (SA)

For BWM we sort T's rotations and for SA we sort T's suffixes. So, for i from 0 to $|\mathrm{T}|-1$

$$
\mathrm{SA}[\mathrm{i}]>0 \text { ? BWT }[\mathrm{i}]=\mathrm{T}[\mathrm{SA}[\mathrm{i}]-1]: \$
$$

BWM(T)

SA
6
5
2
3
0
4
1

Suffixes for SA
\$
a \$
a aba\$
aba\$
abaaba\$
ba\$
baaba\$

LF Mapping

BWM(T) with ranks on T

$\$ a_{0} b_{0} a_{1} a^{2}$ $a_{3} \$ a_{0} b_{0} a_{1}$
$a_{1} a_{2} b_{1} a_{3} \$ a_{0} b_{0}$
$a_{2} b_{1} a_{3} \$ a_{0} b_{0} a^{2}$
$a_{0} b_{0} a_{1} a_{2} b_{1} a_{3}$ \$
$b_{1} a_{3} \$ a_{0} b_{0} a_{1} a^{2}$
$a_{1} a_{2} b_{1}$

LF Mapping
the $i^{\text {th }}$ occurrence of a character c in the last column has the same rank as the $i^{\text {th }}$ occurrence of c in the first column.

Example
a in the last column have ranks $3,1,2,0$
a in the first column have the same ranks

Reversing the BWT with LF Mapping

 on the BWT(T)1. $\mathrm{L}[1]=\mathrm{a}_{0}$ is to the left of $\mathrm{F}[1]=\$$ in T

$\$$	a	
$\$$	a	0
a	b	0
a	b	1
a	a	1
a	$\$$	0
b	a	2
b	a	3

2. Find the char to the left of $\mathrm{a}_{0} \Leftrightarrow$ find the row starting with a_{0}

Based on the LF Mapping, a_{0} has rank 0 thus it corresponds to the first a in F
$\mathrm{L}[2]=\mathrm{b}_{0}$ is to the left of $\mathrm{F}[2]=\mathrm{a}_{0}$ in T
$\mathrm{T}=\ldots \mathrm{ba} \$$
\ldots and so on for rows $6,4,3,7,5$

Applications of the BWT

Finding all occurrences of P in T

- By applying LF Mapping repeatedly we find the range of rows prefixed by successively longer proper suffixes of P
- The size of the final range gives the number of times P occurs in T (if empty, P does not occur in T)

Compression
BWT("tomorrow and tomorrow and tomorrow\$")
= wwwdd nnoooaatttmmmrrrrrooo \$0oo

