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Suffix trees, suffix arrays, BWT 

 
Based on: 



Trie 

•  A tree representing a set of strings. 
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Trie 

•  Assume no string is a prefix of another 
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Each edge is labeled by a letter, 
no two edges outgoing from the 
same node are labeled the same. 
 
Each string corresponds to a 
leaf. 



Compressed Trie   

•  Compress unary nodes, label edges by strings 
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Suffix tree   

Given a string s a suffix tree of s is a 
compressed trie of all suffixes of s. 

Observation:  
To make suffixes prefix-free we add a special character, say $, at 
the end of s 



Suffix tree (Example)   
Let s=abab. A suffix tree of s is a compressed trie 
of all suffixes of s=abab$ 

{ 
$ 
b$ 
ab$ 
bab$ 
abab$ 
} 

a 
b 

a 
b 

$ 

a 
b 
$ 

b 

$ 

$ 

$ 



Trivial algorithm to build a Suffix tree     

Put the largest suffix in  

Put the suffix bab$ in  
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Put the suffix ab$ in  
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Put the suffix b$ in  
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Put the suffix $ in  
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We will also label each leaf with the starting point of the 
corresponding suffix.  
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Analysis 

Takes O(n2) time to build. 
 

But we can do it in O(n) time with Ukkonen algorithm 

 

It needs : implicit suffix trees, suffix links … 



Implicit suffix trees 

1.  Remove all the terminal symbols $ 
2.  From the resulting tree, remove edges without label 
3.  Finally, from the resulting tree, remove nodes that do not 

have at least two children 

T$={abcab$} 
 
I(T) – implicit suffix tree 



Suffix links 

 
Let A be an arbitrary substring of T, including the possibility of 
being the empty string. Let z be a character of T.  
Suppose there are two nodes v, w, the former with path-label zA 
and the latter with A.  
A pointer from v to w is a suffix link. 
 
Observation Every internal node has one suffix link. 
 



Suffix links 

Suffix links in the implicit suffix tree of string T = aabbabaa 



What can we do with it ? 

 Exact string matching 
 
   Given a text T (|T| = n), preprocess it such that when a pattern  
    P (|P|=m) arrives, you can quickly decide whether it occurs in T. 

 
 We may also want to find all occurrences of P in T. 



Exact string matching 

In preprocessing we just build a suffix tree in O(n) time 
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Given a pattern P =  ab we traverse the tree according to the 
pattern.  
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If we did not get stuck traversing the tree then the pattern 
occurs in the text.  

 Each leaf in the subtree below the node we reach corresponds 
to an occurrence. 

By traversing this subtree we get all k occurrences in O(n+k) 
time 



Generalized suffix tree   

Given a set of strings S, a generalized suffix tree 
of S is a compressed trie of all suffixes of s ∈ S 

To make these suffixes prefix-free we add a special char, say $, at 
the end of s 

To associate each suffix with a unique string in S add a different 
special char to each s 



Generalized suffix tree (Example)   

Let s1=abab and s2=aab, and a generalized suffix 
tree for s1 and s2  

{ 
   $           # 
   b$         b# 
   ab$       ab# 
   bab$     aab# 
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So what can we do with it ?   

Match a pattern against a database of strings 



Longest common substring (of two strings) 

E v e r y n o d e w i t h a l e a f 
descendant from string s1 and a 
leaf descendant from string s2  
represents a maximal common 
substring and vice versa. 
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Lowest common ancestors 

A lot more can be gained from the suffix tree if we preprocess it so 
that we can answer LCA queries on it 

      

  

    

  
  



Why? 
The LCA of two leaves represents the longest common prefix 
(LCP) of these 2 suffixes 
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 Finding maximal palindromes 

Let s = cbaaba$.  

Prepare a generalized suffix tree for  s = cbaaba$ and sr = abaabc# 

For every i find the LCA of suffix i of s and suffix m-i+1 of sr. 

The maximal palindrome with center between 
i-1 and i in string s, is the LCP of the suffix at 
position i of s and the suffix at position m-i of sr. 
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Let s = cbaaba$ then sr = abaabc# 



Drawbacks 

•  Suffix trees consume a lot of space 

•  It is O(n) but the constant is quite big 



Suffix array (SA) 

  We loose some of the functionality but we save space. 

Let  s = abab 

Sort the suffixes of s lexicographically: ab, abab, b, bab. 

The suffix array gives the indices of the suffixes 
in sorted order 

3 1 4 2 



How do we build it ? 

•  Build a suffix tree 
 
•  Traverse the tree in DFS, lexicographically 

picking edges outgoing from each node and fill 
the suffix array. 

 
•  O(n) time 



How do we search for a pattern ? 

•  If P occurs in T then all its occurrences are 
consecutive in the suffix array. 

•  Do a binary search on the suffix array 

•  Takes O(m logn) time 



Example 

Let  S = mississippi 
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Burrows-Wheeler Transform (BWT) 

A way of permuting the characters of a string T 
into another string BWT (T) 

•  Reversible permutation 

•  2 main applications: compression and indexing  

 
 



BWT via BWM 

T = abaaba$  
=> 6 x 6 matrix (BWM(T)) containing the rotations of T 
 
 
 
 

$ a b a a b a 
a $ a b a a b 
b a $ a b a a 
a b a $ a b a 
a a b a $ a b 
b a a b a $ a 
a b a a b a $ 

$ a b a a b a 
a $ a b a a b 
a a b a $ a b  
a b a $ a b a 
a b a a b a $ 
b a $ a b a a 
b a a b a $ a 

sort the rows 

lexicographically 
 

BWT(T) 



BWT via suffix arrays (SA) 

 
 
 
 

$ a b a a b a 
a $ a b a a b 
a a b a $ a b  
a b a $ a b a 
a b a a b a $ 
b a $ a b a a 
b a a b a $ a 

BWM(T) 

For BWM we sort T’s rotations and for SA we sort T’s 
suffixes. So, for i from 0 to |T|-1 

SA[i]>0 ? BWT[i]=T[SA[i]-1] : $  

$  
a $ 
a a b a $  
a b a $ 
a b a a b a $ 
b a $ 
b a a b a $ 

Suffixes for SA SA 
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LF Mapping 

$ a0 b0 a1 a2 b1 a3 
a3 $ a0 b0 a1 a2 b1 
a1 a2 b1 a3 $ a0 b0  
a2 b1 a3 $ a0 b0 a1 
a0 b0 a1 a2 b1a3 $ 
b1 a3 $ a0 b0 a1 a2 
b0 a1 a2 b1 a3 $ a0 

LF Mapping 
the ith occurrence of a character c in the 
last column has the same rank as the ith 
occurrence of c in the first column. 
 
Example 
a in the last column have ranks 3, 1, 2, 0 
a in the first column have the same ranks 

F L 

BWM(T) with ranks on T 



Reversing the BWT with LF Mapping 

$  a    0 
a  b    0 
a  b    1 
a  a    1 
a  $    0 
b  a    2 
b  a    3 

1.  L[1] = a0 is to the left of F[1]=$  in T 
 
2.  Find the char to the left of a0 ó find 

the row starting with a0 

Based on the LF Mapping, a0 has rank 
0 thus it corresponds to the first a in F 

  
L[2] = b0 is to the left of F[2]=a0 in T 
T = …ba$ 

 
… and so on for rows 6, 4, 3, 7, 5 
 

F L rank 

on the BWT(T) 



Applications of the BWT 

Finding all occurrences of P in T 
•  By applying LF Mapping repeatedly we find the range of rows 

prefixed by successively longer proper suffixes of P 
•  The size of the final range gives the number of times P occurs 

in T (if empty, P does not occur in T) 

Compression 
BWT(“tomorrow and tomorrow and tomorrow$”) 
= wwwdd   nnoooaatttmmmrrrrrrooo   $ooo 
 
 


