

Suffix trees and suffix arrays presentation by Haim Kaplan
Suffix trees course by Paco Gomez
Linear-Time Construction of Suffix Trees by Dan Gusfield
Introduction to the Burrows-Wheeler Transform and FM Index, Ben Langmead

ALGORITHMES POUR LA BIO-INFORMATIQUE ET
LA VISUALISATION

COURS 3

Raluca Uricaru

Suffix trees, suffix arrays, BWT

Based on:

Trie

•  A tree representing a set of strings.

a
b

c

e

e

f

d b

f

e g

{
aeef
ad
bbfe
bbfg
c
}

Trie

•  Assume no string is a prefix of another

a
b

c

e

e

f

d b

f

e g

Each edge is labeled by a letter,
no two edges outgoing from the
same node are labeled the same.

Each string corresponds to a
leaf.

Compressed Trie

•  Compress unary nodes, label edges by strings

a
b

c

e

e

f

d b

f

e g

a

bbf

c

eef
d

e g

è

Suffix tree

Given a string s a suffix tree of s is a
compressed trie of all suffixes of s.

Observation:
To make suffixes prefix-free we add a special character, say $, at
the end of s

Suffix tree (Example)
Let s=abab. A suffix tree of s is a compressed trie
of all suffixes of s=abab$

{
$
b$
ab$
bab$
abab$
}

a
b

a
b

$

a
b
$

b

$

$

$

Trivial algorithm to build a Suffix tree

Put the largest suffix in

Put the suffix bab$ in

a
b
a
b
$

a
b
a
b

$

a
b
$

b

Put the suffix ab$ in

a
b

a
b

$

a
b
$

b

a
b

a
b

$

a
b
$

b

$

Put the suffix b$ in

a
b

a
b

$

a
b
$

b

$

a
b

a
b

$

a
b
$

b

$

$

Put the suffix $ in

a
b

a
b

$

a
b
$

b

$

$

a
b

a
b

$

a
b
$

b

$

$

$

We will also label each leaf with the starting point of the
corresponding suffix.

a
b

a
b

$

a
b
$

b

$

$

$

1
2

a
b

a
b

$

a
b

$

b

3

$ 4

$

5

$

Analysis

Takes O(n2) time to build.

But we can do it in O(n) time with Ukkonen algorithm

It needs : implicit suffix trees, suffix links …

Implicit suffix trees

1.  Remove all the terminal symbols $
2.  From the resulting tree, remove edges without label
3.  Finally, from the resulting tree, remove nodes that do not

have at least two children

T$={abcab$}

I(T) – implicit suffix tree

Suffix links

Let A be an arbitrary substring of T, including the possibility of
being the empty string. Let z be a character of T.
Suppose there are two nodes v, w, the former with path-label zA
and the latter with A.
A pointer from v to w is a suffix link.

Observation Every internal node has one suffix link.

Suffix links

Suffix links in the implicit suffix tree of string T = aabbabaa

What can we do with it ?

 Exact string matching

 Given a text T (|T| = n), preprocess it such that when a pattern
 P (|P|=m) arrives, you can quickly decide whether it occurs in T.

 We may also want to find all occurrences of P in T.

Exact string matching

In preprocessing we just build a suffix tree in O(n) time

1
2

a
b

a
b

$

a
b
$

b

3

$ 4

$

5

$

Given a pattern P = ab we traverse the tree according to the
pattern.

1
2

a
b

a
b

$

a
b
$

b

3

$ 4

$

5

$

If we did not get stuck traversing the tree then the pattern
occurs in the text.

 Each leaf in the subtree below the node we reach corresponds
to an occurrence.

By traversing this subtree we get all k occurrences in O(n+k)
time

Generalized suffix tree

Given a set of strings S, a generalized suffix tree
of S is a compressed trie of all suffixes of s ∈ S

To make these suffixes prefix-free we add a special char, say $, at
the end of s

To associate each suffix with a unique string in S add a different
special char to each s

Generalized suffix tree (Example)

Let s1=abab and s2=aab, and a generalized suffix
tree for s1 and s2

{
 $ #
 b$ b#
 ab$ ab#
 bab$ aab#
 abab$
}

1

2

a

b

a
b

$

a
b
$

b

3

$

4

$

5
$

1

b

a

2

3

4

So what can we do with it ?

Match a pattern against a database of strings

Longest common substring (of two strings)

E v e r y n o d e w i t h a l e a f
descendant from string s1 and a
leaf descendant from string s2
represents a maximal common
substring and vice versa.

1

2

a

b

a
b

$

a
b
$

b

3

$

4

$

5
$

1

b

a

2

3

4

Lowest common ancestors

A lot more can be gained from the suffix tree if we preprocess it so
that we can answer LCA queries on it

Why?
The LCA of two leaves represents the longest common prefix
(LCP) of these 2 suffixes

1

2

a

b

a
b

$

a
b
$

b

3

$

4

$

5
$

1

b

a

2

3

4

 Finding maximal palindromes

Let s = cbaaba$.

Prepare a generalized suffix tree for s = cbaaba$ and sr = abaabc#

For every i find the LCA of suffix i of s and suffix m-i+1 of sr.

The maximal palindrome with center between
i-1 and i in string s, is the LCP of the suffix at
position i of s and the suffix at position m-i of sr.

3

a

a

b

3

$

7
$

b

7

c

1

6 a
b

5

2 2

a
$

a

5

6

$

4

4

1

a
$

$ a
b
c

Let s = cbaaba$ then sr = abaabc#

Drawbacks

•  Suffix trees consume a lot of space

•  It is O(n) but the constant is quite big

Suffix array (SA)

 We loose some of the functionality but we save space.

Let s = abab

Sort the suffixes of s lexicographically: ab, abab, b, bab.

The suffix array gives the indices of the suffixes
in sorted order

3 1 4 2

How do we build it ?

•  Build a suffix tree

•  Traverse the tree in DFS, lexicographically

picking edges outgoing from each node and fill
the suffix array.

•  O(n) time

How do we search for a pattern ?

•  If P occurs in T then all its occurrences are
consecutive in the suffix array.

•  Do a binary search on the suffix array

•  Takes O(m logn) time

Example

Let S = mississippi

i
ippi
issippi
ississippi
mississippi
pi

8

5

2

1

10

9

7

4

11

6

3

ppi
sippi
sisippi
ssippi
ssissippi

L

R

Let P = issa
M

Burrows-Wheeler Transform (BWT)

A way of permuting the characters of a string T
into another string BWT (T)

•  Reversible permutation

•  2 main applications: compression and indexing

BWT via BWM

T = abaaba$
=> 6 x 6 matrix (BWM(T)) containing the rotations of T

$ a b a a b a
a $ a b a a b
b a $ a b a a
a b a $ a b a
a a b a $ a b
b a a b a $ a
a b a a b a $

$ a b a a b a
a $ a b a a b
a a b a $ a b
a b a $ a b a
a b a a b a $
b a $ a b a a
b a a b a $ a

sort the rows

lexicographically

BWT(T)

BWT via suffix arrays (SA)

$ a b a a b a
a $ a b a a b
a a b a $ a b
a b a $ a b a
a b a a b a $
b a $ a b a a
b a a b a $ a

BWM(T)

For BWM we sort T’s rotations and for SA we sort T’s
suffixes. So, for i from 0 to |T|-1

SA[i]>0 ? BWT[i]=T[SA[i]-1] : $

$
a $
a a b a $
a b a $
a b a a b a $
b a $
b a a b a $

Suffixes for SA SA

6
5
2
3
0
4
1

LF Mapping

$ a0 b0 a1 a2 b1 a3
a3 $ a0 b0 a1 a2 b1
a1 a2 b1 a3 $ a0 b0
a2 b1 a3 $ a0 b0 a1
a0 b0 a1 a2 b1a3 $
b1 a3 $ a0 b0 a1 a2
b0 a1 a2 b1 a3 $ a0

LF Mapping
the ith occurrence of a character c in the
last column has the same rank as the ith
occurrence of c in the first column.

Example
a in the last column have ranks 3, 1, 2, 0
a in the first column have the same ranks

F L

BWM(T) with ranks on T

Reversing the BWT with LF Mapping

$ a 0
a b 0
a b 1
a a 1
a $ 0
b a 2
b a 3

1.  L[1] = a0 is to the left of F[1]=$ in T

2.  Find the char to the left of a0 ó find

the row starting with a0

Based on the LF Mapping, a0 has rank
0 thus it corresponds to the first a in F

L[2] = b0 is to the left of F[2]=a0 in T
T = …ba$

… and so on for rows 6, 4, 3, 7, 5

F L rank

on the BWT(T)

Applications of the BWT

Finding all occurrences of P in T
•  By applying LF Mapping repeatedly we find the range of rows

prefixed by successively longer proper suffixes of P
•  The size of the final range gives the number of times P occurs

in T (if empty, P does not occur in T)

Compression
BWT(“tomorrow and tomorrow and tomorrow$”)
= wwwdd nnoooaatttmmmrrrrrrooo $ooo

