
Noname manuscript No.

(will be inserted by the editor)

A Faithful Representation of Non-Associative Lambek

Grammars in Abstract Categorial Grammars

Christian Retoré, Sylvain Salvati

Abstract This paper solves a natural but still open question: can Abstract Categorial

Grammars (ACGs) have been defined by de Groote as a unifying way to represent

formal grammars within simply lambda-caculus. Despite their name, up to now there

was no faithful representation of usual categorial grammars in ACGs. This paper shows

Non-Associative Lambek grammars as well as their derivations can be defined using

ACGs of order two and discusses the outcomes of such a representation.

1 Introduction

Abstract Categorial Grammars (ACGs) have been defined by de Groote as a uniform

way to define formal grammars in simply typed, even linear, lambda-calculus, that is

the smallest functional system.

These grammars share with categorial grammars the definition of the grammar as

a lexicon, and the use of lambda terms as objects and derivations. In particular, they

use a systematic view of strings and trees as user defined types with constructors à la

ML.

Nevertheless, they also differ from standard categorial grammars, taking apart the

hierarchical structure and the mappings to word sequences or to semantic represen-

tations. This two level approach can be connected to a broader contemporary trend,

including minimalist grammars [1], lambda grammars [2], and the two step approach

[3].

The expressivity of ACGs has already been explored in [4], but one may wonder

whether one can represent faithfully any categorial formalism. By represent faithfully

we mean that not only the string language is recognized, but also the proof structures,

which are trees that can be represented within simply typed lambda calculus as ACGs

usually do.

To do so, we represent the natural deduction trees corresponding to grammatical

analyses of a Non-Associative Lambek Grammar (NLCG) as terms built on a second

Christian Retoré, Sylvain Salvati
INRIA Bordeaux Sud-Ouest, LaBRI, Université de Bordeaux, Unité Mixte de Recherche
CNRS (UMR 5800), 351, cours de la Libération, F-33405 Talence cedex France
Tel.: +33(0)5 4000 35 23, Fax: +33(0)5 4000 66 69
E-mail: christian.retore@labri.fr, sylvain.salvati@labri.fr

2

order signature (the type of any argument always is a base type and never a functional

one) and the main result, to be established in section can be stated as follows:

Theorem 1 Given a non associative Lambek categorial grammar G defined by a lex-

icon there exists a second order ACG whose object language precisely is the set of the

derivations of G viewed as lambda terms in long normal form.

From this one easily obtain that languages generated by NLCGs are context free

(see section ??) and a parsing complexity in O(m2n3) where m is the number of

symbols in the NLCG lexicon and n the number of words, thus competing with the

most results in this area [5] — remember that when parsing in NLCG the correct

binary tree structure on the words is not given but has to be founbd by the parsing

strategy.

Another interest of such a representation is that it allows one to import into ACGs

the analyses of grammatical phenomena implemented in categorial grammars, which

are the core of Multimodal Categorial Grammars which encompass a number of lin-

guistic descriptions [?] as well as practical large scale implementations [?].

An expected step is to look within the ACG setting at the corner stone of categorial

grammar, namely their easy syntax/semantics interface. It consists in mapping the

λ-terms provided by our translation to some meaning representation, hence it is at

least as simple as in the plain categorial setting, and perfectly suits in with the ACG

framework.

The paper is organised as follows. We first define the simply typed λ-calculus and

Abstract Categorial Grammars in section 2. In section 3, we present the non-associative

Lambek calculus and NL-grammars. Section 4 describes the embedding we propose.

Section 5 sketches the conversion of a tiny NL grammar. Section 6 explains the out-

comes of our result. And finally section 7 offers an outline of future work.

2 λ-calculus and Abstract Categorial Grammars

2.1 Reminder on simply typed lambda calculus

We consider usual simply typed lambda-calculus. Given a set of base types A, the types

over A is defined as TA ::= A | TA → TA We assume that → associates to the right

and therefore that α1 → · · ·αn → β stands for type (α1 → · · · (αn → β) · · ·).

Regarding lambda term we write λxα1

1 . . . xαn
n .M for λxα1

1 λxαn
n .M andM0M1 . . .Mn

for (. . . (M0M1) . . .Mn). Moreover we implicitly assume that when n = 0 λxα1

1 . . . xαn
n .M

denotes M and that M0M1 . . .Mn denotes M0. We take for granted that the no-

tion of free variables (FV (M) denotes the set of free variables of M), α-conversion,

β-conversion, normal form are known (see [6] and [7]). The head of the term t =

λx1 . . . xn.hM1 . . .Mp is said to be h whenever h is either a variable or a constant.

Contexts are λ-terms with a hole. They are defined according to the following

grammar:

C[] = [] | C[]ΛΣ | λΣ .C[] | λxα.C[]

We write C[N] (resp. C[C′[]]) the term obtained by inserting the term N (resp. the

context C′[]) at the place of the hole in C[]. Note that inserting a term or a context

in another context may bind variables. For example when C[] = λx.[] and N = x, we

have C[N] = λx.x.

3

A term M is said to be in long form whenever, for any context C[] and term N

from λα→β
Σ such that C[N] = M , it verifies one of the following property:

1. N is of the form λxα.N ′,

2. C[] is of the form C′[[]N ′].

The set of terms in long form is closed under β-reduction [7].

A term M is said to be linear if M = xα; if M = c; if M = M1M2, M1 and M2 are

linear, and FV (M1)∩FV (M2) = ∅; or if M = λxβ.M ′, M ′ is linear and xβ ∈ FV (M ′).

2.2 Higher order signatures and abstract categorial grammars

A higher order signature Σ is a triple (A, C, τ) where

– A is a finite set of atomic types,

– C is a finite set of constants

– τ is a typing function, i.e. a function from C to TA

Unless otherwise stated , we assume that the triple defining the signatureΣi is (Ai, Ci, τi).

Let (Λα
Σ) with α ∈ TA stand for the terms of type α. The usual definition of typed

terms using a set of constants as above may be stated as follows:

1. xα ∈ Λα
Σ (xα is a λ-variable),

2. c ∈ Λ
τ(c)
Σ ,

3. M1 ∈ Λβ→α
Σ and M2 ∈ Λβ

Σ imply that (M1M2) ∈ Λα
Σ , and

4. λxβ.M ∈ Λβ→α
Σ whenever M ∈ Λβ

Σ .

A string signature is an HOS Σ = (A, C, τ) such that A = {∗} and for all

c ∈ C, τ (c) = ∗ → ∗. The elements of C∗ are represented as closed terms (i.e. terms

with no free variables) of Λ∗→∗
Σ and the string c1 . . . cn is represented by the term

λx∗.c1(. . . (cnx
∗) . . .) denoted by /c1 . . . cn/. The empty string is λx∗.x∗ and the con-

catenation operation can be represented by function composition and will be written

s1 + s2 = λx∗.s1(s2x
∗) for s1, s2 ∈ Λ∗→∗

Σ . Note that + is an associative operation,

has λx∗.x∗ as neutral element and that /c1 . . . cn/+ /b1 . . . bp/ =β /c1 . . . cnb1 . . . bp/.

Given W a set we write ΣW for the string signature ({∗},W, τ). We will also use the

infix operators +\ and +/ such that s1 +\ s2 = s1 + s2 and s1 +/ s2 = s2 + s1.

A homomorphism between the signatures Σ1 and Σ2 is a pair (g, h) such that g

maps TA1
to TA2

, h maps ΛΣ1
to ΛΣ2

and verify the following properties:

1. g(α→ β) = g(α) → g(β),

2. h(xα) = xg(α),

3. h(c) is a closed term (i.e. FV (h(c)) = ∅) of Λ
g(τ(c))
Σ2

,

4. h(M1M2) = h(M1)h(M2) and

5. h(λxβ.M) = λxg(β).h(M).

A homomorphism is said to be linear whenever closed linear terms are mapped

onto constants. We write H(α) and H(M) respectively instead of g(α) and of h(M) for

a given homomorphism H = (g, h). Note that if H is a homomorphism from Σ1 to Σ2

and M ∈ Λα
Σ1

then H(M) ∈ Λ
H(α)
Σ2

, note furthermore that if H and M are both linear

then so is H(M).

An Abstract Categorial Grammar [8] (ACG) is a 4-tuple (Σ1, Σ2,L, S) where Σ1

is the abstract vocabulary, Σ2 is the object vocabulary, L is linear homomorphism,

4

the lexicon, and S is an element of A1, the distinguished type. A non-linear Abstract

Categorial Grammar is an ACG whose lexicon may be an arbitrary homomorphism. An

ACG G = (Σ1, Σ2,L, S) (resp. a non-linear ACG) defines two languages: the abstract

language: A(G) = {M ∈ ΛS
Σ1

|M is closed and linear}, the object language: O(G) =

{M |∃N ∈ A(G) ∧M is the long normal form of L(N)}.

Note that given a homomorphism L′ from Σ2 to Σ3, and an ACG (Σ1, Σ2,L, S),

then (Σ1, Σ3,L
′ ◦ L, S) is an ACG when L′ is linear and otherwise it is a non-linear

ACG.

3 The non-associative Lambek calculus

In this paper we deal with the non-associative Lambek calculus without product known

as NL [9]. Given a finite set Cat, called the basic set of categories, the set of categories

built on Cat, NLCat, is the smallest set containing Cat and having the property that if

A,B ∈ NLCat then \(B,A) and /(B,A) are in NLCat.
1 Categories will be represented

by the roman uppercase letters A, B, C, D, E and F (possibly with some indices). A

hypothesis base, or simply a base, is a binary tree whose leaves are elements of NLCat;

any element of NLCat can be considered as a base, and given two bases Γ and ∆, we

write (Γ,∆) the new base obtained from them. Given a base Γ , we write Γ the list of

the leaves of Γ taken from left to right.

The non-associative Lambek calculus derives judgements of the form Γ ⊢ A where

Γ is a base and A belongs to NLCat. These judgements are obtained with the following

rules:

Ax.
A ⊢ A

(Γ,B) ⊢ A
/ I

Γ ⊢ /(B,A)

(B,Γ) ⊢ A
\ I

Γ ⊢ \(B,A)

Γ ⊢ \(B,A) ∆ ⊢ B
/ E

(∆,Γ) ⊢ A

Γ ⊢ /(B,A) ∆ ⊢ B
\ E

(Γ,∆) ⊢ A

If we define the functions f\ and f/ as binary operators over contexts such that

f\(Γ,∆) = (∆,Γ) and f/(Γ,∆) = (Γ,∆) we then may write the introduction and the

elimination rules as rules parametrised by the operator c ∈ {\; /}:

fc(Γ,B) ⊢ A
c I

Γ ⊢ c(B,A)

Γ ⊢ c(B,A) ∆ ⊢ B
c E

fc(Γ,∆) ⊢ A

This remark will simplify the notation of derivations in the following of the paper. We

will also write c̃ for \ if c = / and for / when c = \.

A non-associative Lambek grammar (NL-grammar) is a 4-tuple G = (W,Cat, χ, S)

where W is a set of words, Cat is a set of atomic categories, χ is a function from W

to finite subsets of NLCat, and S ∈ Cat. In order to account for grammaticality, we

now allow a new kind of hypothesis in hypothesis bases. These new hypotheses are

pairs 〈w,A〉 such that A ∈ χ(w). They represent the use of a lexical entry of the NL-

grammar in a derivation. A base is said to be lexical if all its leaves are such pairs. We

also add the following rule:

A ∈ χ(w)
Lex

〈w,A〉 ⊢ A

1 In the literature \(B, A) is rather written as B\A and /(B, A), as A/B. We adopt these
non-conventional notations so as to facilitate the encoding of NL-grammars in ACGs.

5

The only distinction between this new kind of hypothesis and the usual ones is that

they cannot be discharged by using the rules \ I and / I .

A sentence w1 . . . wn of W ∗ is said to be accepted by G if there is a lexical base

Γ such that Γ = [〈w1, A1〉; . . . ; 〈wn, An〉] and Γ ⊢ S is derivable. Such a derivation

is called a grammatical analysis of w1 . . . wn. The language defined by G is the set of

sentences in W ∗ that it accepts.

The Curry-Howard correspondence derivations in intuitionistic logic onto λ-terms.

Since non associative Lambek calculus is a subcalculus (linear, non commutative, non

associative), one can easily obtain a lambda term, even a linear one out of an NL proof.

In this later case, however, our mapping s not an isomorphism, sine the symply typed

lambda term is not enough to recover the NL proof: for instance the directionnality is

lost.

An NL type A is mapped onto a simple type A as usual:

The following system shows how to transform a derivation in NL into a linear λ-

term built on the signature ΣG with AG = Cat, CG = {〈w,A〉|w ∈ W ∧ A ∈ χ(w)}

and τG(〈w,A〉) = A† where c(A1, A2)
† = A1

† → A2
†.

A ∈ χ(w)

〈w,A〉 ⊢ 〈w,A〉 : A

Ax.

xA†

: A ⊢ xA†

: A

fc(Γ, x
B†

: B) ⊢M : A
c I

Γ ⊢ λxB†

.M : c(B,A)

Γ ⊢M1 : c(B,A) ∆ ⊢ M2 : B
cE

fc(Γ,∆) ⊢ (M1M2) : A

This correspondence allows us to talk about derivations in normal form, derivations

in long forms, and also about the head of a derivation as induced from the λ-calculus.

In particular the derivations that are in normal form enjoy the so-called subformula

property; for grammatical derivation, this property implies that the formulae used in

the grammatical analyses of G can only be S or some subformula of A ∈
⋃

w∈W χ(w).

We adopt the notation FG for this set of formulae for a NL-grammar G.

3.1 From NL grammatical derivations to the analysed strings

One can devise a lexicon Y which maps every atomic category to the type ∗ → ∗ so

that every term M denoting a grammatical analyses of w1 . . . wn is mapped by Y to

the term /w1 . . . wn/ of ΣW .

The definition of Y is done using the functions mutually defined by induction on

types ϕ and ψ:

1. ϕ(A) = λx.x if A is an atomic category,

2. ϕ(c(B,A)) = λx.ψ(x,B) +c ϕ(A) with c ∈ {\; /},
3. ψ(M,B) = M ,

4. ψ(M,c(B,A)) = Mϕ(B) with c ∈ {\; /}

The important property which arises from this definition is that ψ(ϕ(B), B) = λx∗.x∗.

Then a constant 〈w,A〉 is mapped to the term ρ([], w, A) by Y where:

1. ρ(C[],M,A) = C[M] when A is an atomic category,

2. ρ(C[],M, c(B,A)) = ρ(C[λx.[]], ψ(x,B) +c M,B) with c ∈ {\; /}

Furthermore, the meaning representation of the sentence, for Montague-like seman-

tics, can be obtained from those λ-terms, by means of a non-linear lexicon LSem.

6

4 Coding NL-grammars into ACGs

The aim of this section is to define a second order ACG whose object language is exactly

the set of λ-terms that represent the derivations of a given NL-grammar. With such an

ACG, it is easy to construct other ACGs that implement the usual interface between

syntax and semantics of the NL-grammar. Indeed, we have seen in the previous section

how to interpret with the homomorphism Y the λ-terms representing the derivations

of an NL-grammar in order to obtain the corresponding surface structures. Obtaining

the semantics can be done as usual in the categorial approach. The overall architecture

of our approach is summarized by the following picture:

ΣDer G

ΣG

ΣW ΣSem

LG

Y LSem

Our construction based on a careful study of the shape of the grammatical analyses

of NL-grammars. Thus we divide this section in two sub-sections. First we study the

structure of NL-derivations and second, based on this study we construct our ACG.

4.1 The structure of NL-derivations

We here try to understand the general structure of NL-grammars. This means that we

do not try to give an account of any proof in NL, but rather that we try to account for

the specific proofs that are grammatical analyses of NL-grammars. In proof-theory, the

object of study is the nature of proofs and in particular, proofs are identified modulo

some congruence relation in order to account for their meaning. Since proofs have the

same long normal form if and only if they have the same denotation, NL-derivations

in long normal form are the right representation of proofs. Thus, accounting for the

structural properties of derivations amounts to describe the structural properties of

long normal derivations. Such derivations are represented by λ-terms of the form

λx1 . . . xn.hM1 . . .Mp

where h is either a constant or a variable (remind that h is called the head of the term

and by extension of the head of the derivation that the term represents) and M1, . . . ,

Mp represent proofs in long normal forms. We will see now some more properties of

the grammatical analyses of NL-grammars.

Grammatical analyses of an NL-grammars are derivations of sequents of the form

Γ ⊢ A where Γ is a lexical base. Because we are interested in long normal derivations,

we know that if A is a category of the form

c1(A1, . . . cn(An, B) . . .) where B is atomic

7

then the derivation must finish with a sequence of n introduction rules and, therefore,

be of the form:

...
cn I

fcn(An, . . . fc1
(A1, Γ) . . .) ⊢ B

...
C2 I

fc1
(A1, Γ) ⊢ c2(A2, . . . cn(An, B)

c1 I
Γ ⊢ c1(A1, . . . cn(An, B) . . .)

In the representation of the proof as λ-terms, λx1 . . . xn.hM1 . . .Mp, this sequence of

introduction rules is responsible for the n λ-abstractions in front of the term. Further-

more hM1 . . .Mp is the representation of the proof of fcn(An, . . . fc1
(A1, Γ) . . .) ⊢ B

which is finished by a sequence of elimination rules which are represented by the p

applications in hM1 . . .Mp.

First of all we remark that because of the particular shape of the context fcn(An, . . . fc1
(A1, Γ) . . .),

the structure of the proof fcn(An, . . . fc1
(A1, Γ) . . .) ⊢ B is fully determined for its n−1

last steps and must be of the form:

...

fc1
(A1, Γ) ⊢ c2(B2, . . . cn(Bn, B))

...

A2 ⊢ B2
c2 E

...
cn−1 E

fcn−1
(An−1, . . . fc1

(A1, Γ) ⊢ cn(Bn, B)

...

An ⊢ Bn
cn E

fcn(An, . . . fc1
(A1, Γ) . . .) ⊢ B

This implies that hM1 . . .Mp is actually of the form hN1 . . . NkR2 . . . Rn where Ri

represents a proof of Ai ⊢ Bi (this entails that if the hypothesis Ai is represented by

the λ-variable xi then Ri only contains one free variable that is xi).

The overall structure of the proof of Γ ⊢ A that we have analysed so far is sum-

marized in figure 1. Then the shape of the proof of fc1
(A1, Γ) ⊢ c2(B2, . . . cn(Bn, B))

is determined by the nature of its head, i.e by whether h is a variable or a constant.

In the first case the proof is of the shape

Ax.
A1 ⊢ c̃1(B1, c2(B2, . . . cn(Bn, B))

...

Γ ⊢ B1
c̃1 E

c̃1 E
fc1

(A1, Γ) ⊢ c2(B2, . . . cn(Bn, B))

and therefore A1 = c̃1(B1, c2(B2, . . . cn(Bn, B)). Furthermore, the term that represents

the proof of Γ ⊢ A is of the form

λx1 . . . xn.x1NR2 . . . Rn

where N is a closed term and Ri is a term that does not contain any constant and

whose only free variable is xi.

In the second case, the case where h is a constant, the first rule that is used to prove

the sequent fc1
(A1, Γ) ⊢ c2(B2, . . . cn(Bn, B)) must be an elimination of the operator

c1 thus the proof must be of the form:

8

...

fc1
(Γ, A1) ⊢ D2 = c2(C2, D3)

...

A2 ⊢ C2

c2 E
fc2

(fc1
(Γ, A1), A2) ⊢ D3

...

Γn−1 ⊢ cn(Cn, B)

...

An ⊢ Cn

cn E
fcn (Γn−1, An) ⊢ B

cn I
...

c2 I
fc1

(Γ, A1) ⊢ B2

c1 I
Γ ⊢ c1(A1, B2) = B1 = A

The notations are as follows: A = c1(A1, . . . cn(An, B) . . .), Bn = Dn = cn(An, B), Bk =
ck(Ak, Bk+1), Dk = ck(Ck , Dk+1), Γ1 = Γ , and Γk+1 = fck

(Γk , Ak)

Fig. 1 Shape of the long normal derivation of Γ ⊢ A

B1 ∈ χ(w)
Lex

〈w, F1〉 ⊢ F1 = c′1(E1, F2)

...

Θ1 ⊢ E1
c′1 E

fc′
1

(〈w,F1〉, Θ1) = ∆2 ⊢ F2

...
c′p E

Γ ⊢ D1 = c1(C1,D2)

...

A1 ⊢ C1
c1 E

fc1
(Γ,A1) ⊢ D2

Note that the bases Θi must be lexical since Γ is lexical. This implies that the whole

proof of Γ ⊢ A (in the case where h is a constant) is represented by a λ-term of the

form λx1 . . . xn.〈w,F1〉N1 . . . NlR1 . . . Rn where the Ni are closed λ-terms and the Ri

are λ-terms that do not contain any constant and a unique free variable, namely xi.

If we summarize what we have seen from our analysis, we note the long normal

derivations of sequents of the forms Γ ⊢ A where Γ is a lexical base are composed only

by derivations of sequents that whose base is lexical and sequents of the form C ⊢ A.

Furthermore the way these derivations are composed so as to obtain a derivation of

Γ ⊢ A is fully determined by the shape of A and the head of the derivation of Γ ⊢ A
(whether it is a variable or a constant).

In order to complete our analyse of the structure of the grammatical analyses of

NL-grammars, we have to analyse the structure of the long normal proofs of sequents

of the form C ⊢ A.

An analysis similar to the one that we conducted for the previous case leads to

the fact that the general shape of the derivation of C ⊢ A obeys the general scheme

presented in figure 1 where Γ = C. Now, there are two possibilities for the derivation

of fc1
(C,A1) ⊢ D2: either the head of the derivation is the hypothesis C or it is the

hypothesis A1. If the head is C then we get the following derivation for fc1
(C,A1) ⊢ D2:

9

Ax.
C ⊢ C = D1 = c1(C1,D2)

...

A1 ⊢ C1

fc1
(C,A1) ⊢ D2

In that case, the term that represents the derivation is λx1 . . . xn.yR1 . . . Rn where y

is the λ-variable that represents the hypothesis C and Ri is a λ-term that does not

contain any constant and whose only free variable is xi.

When A1 is the head, the derivation of fc1
(C,A1) ⊢ D2 is:

Ax.
A1 ⊢ A1 = c1(C1,D2)

...

C ⊢ C1

fc1
(A1, C) = fc1

(C,A1) ⊢ D2

and the term that represents the derivation is λx1 . . . xn.x1NR2 . . . Rn where N is a

term that does not contain any constant and such that FV (N) = {y} if y is the λ-

variable that represents the hypothesis C and Ri are terms with the same properties

as in the previous case.

In a nutshell we have seen that grammatical analyses of NL-grammars are composed

of derivations of sequents of two kinds:

1. either sequents of the form Γ ⊢ A where Γ is a lexical base,

2. or sequents of the form C ⊢ A

In both cases the general shape of the derivation is determined by the structure of A

and the head of the derivation.

4.2 Representing NL-grammars as ACGs

We now define a second order signature ΣDer G which encodes the grammatical anal-

yses of an NL-grammar G = (W,Cat, χ, S). The set of types of ΣDer G is given by

AG = {[• ⊢ A]|A ∈ FG} ∪ {[B ⊢ A]|A,B ∈ FG}. The types of the form [• ⊢ A] are

the type of the terms encoding the derivations whose conclusion is of the form Γ ⊢ A

with Γ being a lexical base; a type of the form [B ⊢ A] is the type of the encodings of

the derivations whose conclusion is B ⊢ A. The set of constants of ΣDer G is given by

CG = CConst 1 ∪CConst 2 ∪CV ar 1 ∪CV ar 2. The constants of CConst 1 and of CConst 2

will serve the construction of derivations whose conclusions are of the form Γ ⊢ A

with Γ being lexical, they respectively correspond to the cases where the head is a

lexical hypothesis and where the head is a hypothesis; the constants of CV ar 1 and

of CV ar 2 code for the two cases of derivations of the form B ⊢ A, respectively the

case where B is the head of the derivation and the case where it is not. Along with

the definition of those sets we define τG but also LG (we let LG([• ⊢ A]) = A† and

LG([C ⊢ A]) = C† → A†) a lexicon that decodes the terms built with those constants

into linear λ-terms that represent the encoded derivations. Even though they are tech-

nical, our definitions follow exactly the cases we detailed in the previous sub-section

while describing the general structure of NL-derivations.

Cconst 1 = {〈c, F, A〉| F ∈ χ(c) ∧A ∈ FG

∧ F = c′1(E1, . . . c
′
p(Ep, c1(C1, . . . cn(Cn, B) . . .)) . . .)

∧ A = c1(A1, . . . cn(An, B) . . .)

∧ B ∈ Cat}

10

In this case we have τG(〈c, F,A〉) = β1 → · · ·βp → α1 → · · · → αn → [• ⊢ A] with

βi = [• ⊢ Ei] and αj = [Aj ⊢ Cj]. Furthermore:

LG(〈c, F, A〉) = λx1 . . . xpy1 . . . ynz1 . . . zn.〈c, F 〉x1 . . . xp(y1 z1) . . . (yn zn)

A constant 〈c, F,A〉 of the set Cconst 1 is used to construct a derivation of a sequent of

the form Γ ⊢ A where Γ is lexical and the head of the derivation is the lexical constant

〈c, F 〉.

CConst 2 = {〈•, A〉| A ∈ FG

∧ A = c1(A1, . . . cn(An, C) . . .)

∧ A1 = c′1(C1, . . . c
′
n(Cn, C) . . .)

∧ c′1 = c1 ∧ 1 < i ≤ n⇒ c′i = ci
∧ C ∈ Cat}

Here τM (〈•, A〉) is α1 → · · · → αn → [• ⊢ A] where α1 = [• ⊢ C1] and αi = [Ai ⊢ Ci]

when 1 < i ≤ n; and:

LG(〈•, A〉) = λx1 . . . xnz1 . . . zn.z1 x1(x2 z2) . . . (xn zn)

A constant 〈•, A〉 of Cconst 2 is used to construct a derivation of a sequent of the form

Γ ⊢ A with Γ being lexical and whose head is a variable.

CV ar 1 = {〈C,A〉1| A ∈ FG ∧B ∈ FG

∧ A = c1(A1, . . . cn(An, B) . . .)

∧ C = c1(C1, . . . cn(Cn, B) . . .)

∧ B ∈ Cat}

For that set we let τG(〈C,A〉1) = α1 → · · · → αn → [C ⊢ A] with αi = [Ai ⊢ Ci], and

also:

LG(〈C,A〉1) = λx1 . . . xnz0 . . . zn.z0(x1 z1) . . . (xn zn)

The constants 〈C,A〉1 of the set CV ar 1 serve to construct derivations of sequents of

the form C ⊢ A whose head is the hypothesis C.

CV ar 2 = {〈C,A〉2| A ∈ FG ∧B ∈ FG

∧ A = c1(A1, . . . cn(An, B) . . .)

∧ A1 = c′1(C1, . . . c
′
n(Cn, B) . . .)

∧ c′1 = c1 ∧ 1 < i ≤ n⇒ c′i = ci
∧ B ∈ Cat}

Finally we let τG(〈C,A〉2) = α1 → · · · → αn → [C ⊢ A] such that α1 = [C ⊢ C1] and

for 1 < i ≤ n, αi = [Ai ⊢ Ci]; and

LG(〈C,A〉2) = λx1 . . . xnz0 . . . zn.z1(x1 z0)(x1 z2) . . . (xn zn)

The constants 〈C,A〉2 of CV ar 2 are used to construct proofs of sequents of the form

C ⊢ A whose head is the first hypothesis introduced to construct A.

The constants that are declared in the signature ΣDer G cover all the cases that

we identified in the sub-section 4.1 in order to build a grammatical analysis. It is thus

a routine to check that there is a grammatical analysis in G that is represented by the

term M if and only if there is a closed term N in Λ
[•⊢S]
ΣDer G

such that LG(N) =βη M .

It is then clear that the language of the ACG GG is exactly the set of λ-terms that

represent exactly the set of λ-terms that represent the grammatical analyses of G. Note

that the size of ΣDer G and the size of LG are quadratic with respect to the size of G.

11

5 An example

We now give an example of our construction. In this example we use an NL-grammar

with the lexical entries:

– aime : (np\S)/np,

– Philippe,Rachel : np,

– qui : (np/np)\(np/S),

– dort : np\S

We show how to represent the following grammatical derivation as an abstract term of

the second order ACG that encodes this grammar:

Philippe ⊢ np

qui ⊢ ((np\np)/(np\S))

x ⊢ x : np

aime ⊢ (np\S)/np Rachel ⊢ np

(aime,Rachel) ⊢ aime Rachel : S

(x, (aime,Rachel)) ⊢ aime Rachelx : np\S

(aime,Rachel) ⊢ λx.aime Rachelx : np\S

(qui, (aime,Rachel)) ⊢ qui(λx.aime Rachelx) : np\np

(Philippe, (qui, (aime,Rachel))) ⊢ qui(λx.aime Rachelx)Philippe : np dort ⊢ np\S

((Philippe, (qui, (aime,Rachel))),dort) ⊢ dort(qui(λx.aime Rachelx)Philippe) : np

In order to represent the term that encodes this grammatical analysis, we will use the

following constants of the abstract vocabulary of the ACG we would obtain from our

construction:

– 〈dort, np\S, S〉 : [• ⊢ np] → [• ⊢ S],

– 〈aime, (np\S)/np, np\S〉 : [np ⊢ np] → [• ⊢ np] → [• ⊢ np\S],

– 〈qui, ((np\np)/(np\S)), np〉 : [• ⊢ np] → [• ⊢ np\S] → [• ⊢ np],

– 〈Philippe, np, np〉 : [• ⊢ np],
– 〈Rachel, np, np〉 : [• ⊢ np],

– 〈np,np〉1 : [np ⊢ np]

Those constants are mapped as follows λ-terms by the lexicon L:

– L(〈dort, np\S, S〉) = λx.dortx,

– L(〈aime, (np\S)/np, np\S〉) = λxyz.aimex (y z),

– L(〈qui, ((np\np)/(np\S)), np〉) = λx1x2.quix1 x2,

– L(〈Philippe, np, np〉) = Philippe,

– L(〈Rachel, np, np〉) = Rachel,

– L(〈np,np〉1) = λz.z

Thus the term representing the proof is (in a tree-like notation):

〈dort, np\S, S〉

〈qui, ((np\np)/(np\S)), np〉

〈aime, (np\S)/np, np\S〉

〈np, np〉1 〈Rachel, np, np〉

〈Philippe, np, np〉

One can easily check that L maps this tree to the λ-term dort(qui(λx.aime Rachelx)Philippe).

12

6 Outcomes of the construction

6.1 Syntax/semantics interface

We have seen in section 4 that the ACG GG that we associate to the NL-grammar

G has as language the set of λ-terms representing the grammatical analyses of G.

Furthermore we outlined in section 3 how to transform, with the linear lexicon Y, those

the grammatical analyses (represented as λ-terms) into the analysed string. Following

the usual Montagovian approach, these λ-terms representing grammatical analyses are

turned into a semantic representation with a homomorphism we will note Lsem. Then

we may construct the interface between syntax and semantic as described in the picture

below:

ΣDer G

ΣG

ΣW ΣSem

LG

Y LSem

Thanks to the closure of lexicons by composition, we may define this interface with two

synchronized ACGs (using a non-linear ACG for the semantics). To sum up standard

ACG provide a natural framework to implement the usual syntax/semantics interface

of NL.

6.2 Context-freeness of NL

.The lexicon that is obtained by composing LG with Y is somewhat complicated in

the sense that it does not obviously show that the language recognized by G is context

free. This can be fixed by remarking that we can define a lexicon Lsym from ΣDes G to

ΣW that maps exactly the terms of the abstract language to the string of which they

represent a grammatical analysis. The lexicon Lsym may be defined by:

1. Lsyn([• ⊢ A]) = ∗ → ∗,

2. Lsyn([C ⊢ A]) = ∗ → ∗,
3. Lsyn(〈c, F,A〉) = λx1 . . . xpy1 . . . yn.((. . . (((. . . (c+c1

x1) . . .)+cpxp)+c′
1

y1) . . .)+c′n

yn) if F = c′1(E1, . . . c
′
p(Ep, c1(C1, . . . cn(Cn, B) . . .)) . . .) and A = c1(A1, . . . cn(An, B) . . .),

4. Lsyn(〈•, A〉) = λx1 . . . xn.x1 + · · · + xn if A = c1(A1, . . . cn(An, B) . . .),

5. Lsyn(〈C,A〉1) = λx1 . . . xn.x1 + . . .+ xn when A = c1(A1, . . . cn(An, B) . . .),

6. Lsyn(〈C,A〉2) = λx1 . . . xn.x1 + . . .+ xn when A = c1(A1, . . . cn(An, B) . . .)

The definition of Lsyn is based on the fact that terms of type [• ⊢ A] represent proofs

of the form Γ ⊢ A where Γ is lexical. Such terms give the analysis of the fact that

the phrase Γ is of category A. Meanwhile terms of type [C ⊢ A] show that if the

empty string is considered of type C then it can be considered as being of type A.

Hence, Lsyn operates on the yields of the lexical contexts as NL-calculus does. And,

13

as opposed to the composition of LG with Y, Lsyn ignores the functional complexity

induces by the order of the categories typing strings. As a consequence, this give this

simpler formulation.

6.3 Parsing complexity

It was showed in [4] that ACG like (ΣDer G, ΣW ,Lsyn, [• ⊢ S]) exactly define a context

free language recognized by a context free grammar of the same size. As context free

grammar can be parsed in time O(mn3) where m is the size of the grammar (the

number of occurrences of symbols in the rules of the grammar) and n is the number of

word in the parsed sentence, our construction shows that NL-grammars can be parsed

in O(m2n3) with m being the size of the NL-grammar (the number of symbols in the

lexicon) and n3 being the size of the considered sentence. The quadratic dependence

of the complexity comes from the fact that the ACG that we obtain has a size that is

quadratic in the size of the original NL-grammar.

7 Conclusion

We defined a faithful embedding NL-grammars into second order ACGs. Our proposal

accounts easily for the interface between syntax and semantics for those grammars in

the ACG framework. Besides the resolution of this open question, the construction we

propose gives alternative proofs to already known properties of NL-grammars.

Indeed, we obtain a one-to-one representation of the grammatical analyses of an NL-

grammar as a set of local trees. This fact could be derived from the results of [10] which

shows that the set of grammatical analyses represented as normal natural deduction

trees of a given NL-grammar could be seen as a regular set of trees. Nevertheless,

as far as we know our construction is different and easily shows that the size of the

automaton that recognizes this set is quadratic with respect to the size of the original

NL-grammar.

We can also see that this local set of trees as the parse trees of a context free

grammar that is equivalent to the original NL-grammar. From these fact, we also get

a new proof, different from the one in [5], that NL-grammars can be parsed in time

O(m2n3) where m is the size of the grammar and n is the size of the sentence, which

shows that the universal membership problem is polynomial for NL-grammars.

The investigation we have undertaken tries to relate the relation between ACGs

and elder categorial formalisms. This line of research tends to develop the connections

between formal language theory in the spirit of [10]. In the near future we shall explore

with similar methods related categorial systems like: NL-grammars with product, NL-

grammars with non-logical axioms and the associative Lambek Calculus. Furthermore

we have seen that the homomorphism Lsyn yields to a simpler description of the

language of the NL-grammar than the composition of LG with Y. This raises the

question of possible automation of simplification of lexicons and also the problem of

deciding whether they are equivalent. This last question has already received an answer

in [11], since such homomorphisms may be seen as deterministic MSO-transductions.

It nevertheless remains to see in which cases such a problem is tractable.

14

References

1. Stabler, E.: Derivational minimalism. In Retoré, C., ed.: Logical Aspects of Computational
Linguistics, LACL‘96. Volume 1328 of LNCS/LNAI., Springer-Verlag (1997) 68–95

2. Muskens, R.: Lambda Grammars and the Syntax-Semantics Interface. In van Rooy, R.,
Stokhof, M., eds.: Proceedings of the Thirteenth Amsterdam Colloquium, Amsterdam
(2001) 150–155

3. Morawietz, F.: Two-Step Approaches ot Natural Language Formalisms. Studies in Gen-
erative Grammar. Mouton de Gruyter, Berlin · New York (2003)

4. de Groote, P., Pogodalla, S.: On the expressive power of abstract categorial grammars:
Representing context-free formalisms. Journal of Logic, Language and Information 13(4)
(2004) 421–438

5. Capelletti, M.: Parsing with Structure-Preserving Categorial Grammars. PhD thesis,
UIL-OTS, Universiteit Utrecht (2007)

6. Barendregt, H.P.: The Lambda Calculus: Its Syntax and Semantics. Volume 103. Studies
in Logic and the Foundations of Mathematics, North-Holland Amsterdam (1984) revised
edition.

7. Huet, G.: Résolution d’équations dans des langages d’ordre 1,2,...,ω. Thèse de doctorat
es sciences mathématiques, Université Paris VII (1976)

8. de Groote, P.: Towards abstract categorial grammars. In for Computational Linguistic,
A., ed.: Proceedings 39th Annual Meeting and 10th Conference of the European Chapter,
Morgan Kaufmann Publishers (2001) 148–155

9. Lambek, J.: On the calculus of syntactic types. In Jakobson, R., ed.: Studies of Language
and its Mathematical Aspects, Proceedings of the 12th Symposium of Applied Mathemat-
ics. (1961) 166–178

10. Tiede, H.J.: Deductive Systems and Grammars: Proofs as Grammatical Structures. PhD
thesis, Indiana University (1999)

11. Engelfriet, J., Maneth, S.: The equivalence problem for deterministic mso tree transducers
is decidable. Inf. Process. Lett. 100(5) (2006) 206–212

