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The pumping Lemma for CFL

Ogden’s pumping Lemma for CFL

I Ogden (1967)
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The pumping Lemma’s proof
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The pumping Lemma for CFL

A characterization of the recursive power of CFL

I Berstel (1979)

Theorem
Let L ⊆ X ∗ be an algebraic language, and let π be a
non-degenerated iterative pair in L. For any algebraic grammar
generating L there exists an iterative pair π̄ deduced from π and
grammatical with respect to G.
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The pumping Lemma for MCFLwn

Generalization of pumbability: k -pumpability
Definition (pumpability)
A language L is pumpable if there is K such that for all w such that |w | > K , w =
uxvyw with:

I xy 6= ε

I for all n ∈ N, uxnvynw is in L

Definition (k -pumpability)
A language L is k -pumpable if there is K such that for all w such that |w | > K , w =
v1x1v2x2. . .vk xk vk+1 with:

I x1 . . . xk 6= ε

I for all n ∈ N, v1xn
1 v2xn

2 . . .vk xn
k vk+1

I pumpability = 2-pumpability
I k -pumpability⇒ k + 1-pumpability
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The pumping Lemma for MCFLwn

Iteration of the derivation tree

A

A

A

A

A

A

A
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(x1x1v1x2x2, x3x3v2x4x4)
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Uneven pump



Multiple Context-free Grammars

The pumping Lemma for MCFLwn

Iteration of the derivation tree

A

A

A

A

A

A

A

(v1, v2)

(v1, v2)

(x1x1v1x2x2, x3x3v2x4x4)

(x1x1v1x2v2x3x2x4x3, x4)

(x1v1x2, x3v2x4)

(x1v1x2v2x3, x4)

Even pump

Uneven pump



Multiple Context-free Grammars

The pumping Lemma for MCFLwn

Even m-pump

Definition
A rule of a m-MCFG:
A(s1, . . . , sk )← B1(x1

1 , . . . , x
1
k1

), . . . ,Bn(xn
1 , . . . , x

n
kn

)

is m-proper in the i th premiss when k = ki = m and sj = w1x i
j w2.

A(y1x1y2, x2)← B(x1, x2), C(y1, y2)

A

A

(v1, . . . , vm)

(x1v1y1, . . . , xmvmym)

Even m-pump

π1

πk
only m-proper rules
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The pumping Lemma for MCFLwn

Deviding the problem

I Strings that have a derivation tree containing an even
m-pump are 2m-pumpable.

I The set of derivation trees that contain an even m-pump is
recognizable.

I From a m-MCFGwn, G, we can construct two grammars G1
and G2, such that:

I L(G) = L(G1) ∪ L(G2)
I the derivation trees of G1 all contain an even m-pump
I no derivation tree of G2 contains an even m-pump

I It remains to show that L(G2) is 2m-pumpable.
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The pumping Lemma for MCFLwn

Kanazawa’s Lemma

I Kanazawa (2010)

Lemma
An m-MCFGwn whose derivation trees do not contain even
m-pumps as an equivalent m − 1-MCFGwn.
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The pumping Lemma for MCFLwn

Proof of the Lemma

Proof.
I eliminate m-proper rules by unfolding
I Make rules deriving non-terminal of arity m have no premise of arity m (relies on

well-nestedness):

A(s1, . . . , sm) ← B(x1, . . . , xm), Γ

A(t1, . . . , tm) ← D(y1, . . . , yp), Γ1

D(u1, . . . , up) ← B(x1, . . . , xm), Γ2

I Unfold the rules of non-terminal of arity m

The resulting grammar defines the same language and does not use non-terminals of
arity m: it is an m − 1-MCFGwn

Thus by induction on m (the case where m = 1 is the CFL case), L(G2) is

2(m − 1)-pumpable and therefore m-pumpable.
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The pumping Lemma for MCFLwn

Kanazawa’s Theorems

I Kanazawa (2010)

Theorem
m-MCFLwn are 2m-pumpable.

Theorem
2-MCFL are 4-pumpable.
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Weak pumping Lemma for MCFL

Seki et al. pumping lemma

I Seki, Matsumura, Fujii, Kasami

Theorem
In a infinite m-MCFL L, there is a string w that is 2m-pumpable
in L.
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Weak pumping Lemma for MCFL

Proof of the Theorem

A

A

A

A

A

A

(x1, . . . , xk )

Take an ordered grammar.

Iterate the pump until the variables are
fixed.

Now iterating the pump results in an itera-
tion on the string.
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Weak pumping Lemma for MCFL

An example

The pump:

(u1x1u2x2u3,u4)

One iteration:

(u1u1x1u2x2u3u2u4u3,u4)

The variables are fixed.
Second iteration:

(u1 u1u1x1u2x2u3u2u4u3 u2u4u3,u4)
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No strong pumping Lemma for MCFL

A mythic pumping Lemma

I Radzinski (1991)

I has then been assumed to hold: Groenink 1997, Kracht 2003
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No strong pumping Lemma for MCFL

Constructing a counter-example

I We must take a m-MCFL so that m > 2
I It must not contain proper rules

H(x2) ← G(x1, x2, x3)

G(ax1, y1cx2cdy2dx3, y3b) ← G(x1, x2, x3) G(y1, y2, y3)

G(a, ε,b) ←
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No strong pumping Lemma for MCFL

The language and binary trees

H(x2) ← G(x1, x2, x3)

G(ax1, y1cx2cdy2dx3, y3b) ← G(x1, x2, x3) G(y1, y2, y3)

G(a, ε, b) ←

Let ϕ be a morphism such that ϕ(a) = ϕ(b) = ε and leaves the other letter unchanged.

Lemma
ϕ(L(H)) is the CFL described by the grammar V → cVcdVd | ε
The language L(V ) represent binary trees.
The language L(H) can be seen as:

k l
w1 w2

al cw1cdw2dbk
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No strong pumping Lemma for MCFL

3-MCFL are not finitely pumpable

I Kanazawa, Kobele, S., Yoshinaka 2011

Theorem
L(H) is not k-pumpable for any k

Proof.
Every string representing complete binary tree is not
k -pumpable in L(H) for any k .
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MCFLwn and mild context sensitivity

MCFLwn and cross serial dependencies

I Joshi’s informal notion

I(x1y1, y2x2)← J(x1, x2), K (y1, y2)

I(x1y1, x2y2)← J(x1, x2), K (y1, y2)

A(x1z1, z2x2y1, y2y3x3)← B(x1, x2, x3) C(y1, y2, y3) D(z1, z2)

A(z1x1, y1x2z2y2x3, y3)← B(x1, x2, x3) C(y1, y2, y3) D(z1, z2)
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MCFLwn and mild context sensitivity

MCFLwn and cross serial dependencies
I Joshi, Vijay Shanker, Weir (1991)

Conjecture: MIX is not a MCFLwn
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MCFLwn and cross serial dependencies

I Groenink (PhD dissertation): finite pumpability

k -MCFLwn are 2k -pumpable.
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MCFLwn and mild context sensitivity

MCFLwn and cross serial dependencies

I Kallmeyer (course Düsseldorf): finite copying

For every k ∈ N, {wk | w ∈ T ∗} is a k -MCFLwn.
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MCFLwn and mild context sensitivity

MCFLwn and constant growth property

I Vijay Shanker, Weir, Joshi (1987)

Theorem
The language defined by an MCFGwn is semilinear.
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MCFLwn and mild context sensitivity

MCFLwn Polynomial parsing

Membership Universal Membership
m-MCFG LOGCFL-complete NP-complete (when m ≥ 2)

m-MCFGwn LOGCFL-complete P-complete
MCFG LOGCFL-complete PSPACE-complete/

EXPTIME-complete
MCFGwn LOGCFL-complete PSPACE-complete/

??
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