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LThe MIX problem

MIX

MIX = {w € {a; b; c}*||wl|s = |w|p = |w|c}
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The Bach language

» Bach (1981)
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The MIX language

» Marsh (1985)

Conjecture: MIX is not an indexed language.

m (the
names X an — pronounc € mix' an g miX were the

happy invention of Bill Marsh; ‘little mix’ is the scramble of (ab)*).
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MIX and Tree Adjoining Grammars

» Joshi (1985)

[MIX] represents the extreme case of the degree of free word order
permitted in a language. This extreme case is linguistically not
relevant. [...] TAGs also cannot generate this language although
for TAGs the proof is not in hand yet.
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MIX and Tree Adjoining Grammars

» Vijay Shanker, Weir, Joshi (1991)

R - 1 st e

case of free word order. It is not known yet whether TAG, HG, CCG and LIG can generate MIX.
This has turned out to be a very difficult problem. In fact, it is not even known whether an IG can

generate MIX.
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> a finite set of generators

> a finite set of defining equations E
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> a finite set of defining equations E
Word problem: given w in ¥, is w =g 1?7
Group language: {w € X* | w =g 1}
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LMIX as a group language

Group languages
Group finite presentation:
> a finite set of generators
> a finite set of defining equations E
Word problem: given w in ¥, is w =g 1?7
Group language: {w € X* | w =g 1}
» the word problem is in general undecidable (Novikov 1955,
Boone 1958)

» the languages of different representation of a group a
rationally equivalent

> relate algebraic properties of groups to language-theoretic
properties of their group languages
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LMIX as a group language

Group languages
Group finite presentation:
> a finite set of generators
> a finite set of defining equations E
Word problem: given w in ¥, is w =g 1?7
Group language: {w € X* | w =g 1}
» the word problem is in general undecidable (Novikov 1955,
Boone 1958)

» the languages of different representation of a group a
rationally equivalent

> relate algebraic properties of groups to language-theoretic
properties of their group languages

Example: a group language is context free iff its underlying group
is virtually free (Muller Schupp 1983)
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MIX as a group language

» Generators: {a; b; c}
» Defining equations: a~! = bc = cb, b~! = ac = ca,
cl=ab=ba

72 is the group that has this presentation.
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LMIX as a group language

Yet another presentation of Z2

Generators: {a;3; b; b}

Defining equations: a~! =3, b1 = b, ab
ab=ba ab=b3a

ba, ab = ba,

Ll
o

o

The

associated group language is

0> = {w € {a3 b b}*[|w|s = [w|z A\ [w]p = |wlg}
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LMIX as a group language

MIX and O, are rationally equivalent

The following transductions are due to Kanazawa:

» There is a ratignal transduction from O, to MIX:
let R = {a|blab}*, then MIX = h(O> N R) if h(a) = a
h(b) = b, h(3a) = c and h(b) = e.
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LMIX as a group language

MIX and O, are rationally equivalent

The following transductions are due to Kanazawa:

» Thereis a ratignal transduction from O, to MIX:
let R = {a|b[ab}*, then MIX = h(O> N R) if h(a) = a,

h(b) = b, h(3) = c and h(b) = e.

» There is a rational transduction from MIX to Os:
let R = {abab|cc|cbcb|aa}*, then Oy, then
0, = g Y(MIX N R) with g(a) = abab, g(a) = cc,

g(b) = cbecb g(b) = aa.
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LMIX as a group language

MIX and O, are rationally equivalent

The following transductions are due to Kanazawa:

» Thereis a ratignal transduction from O, to MIX:
let R = {a|b[ab}*, then MIX = h(O> N R) if h(a) = a,
h(b) = b, h(3) = c and h(B) =3

» There is a rational transduction from MIX to Os:
let R = {abab|cc|cbcb|aa}*, then Oy, then

0z = g~ }(MIX N R) with g(a) = abab, g(a) = cc,
g(b) = cbecb g(b) = aa.
NB: w € MIX N R iff |w|apap + [W|aa = |W|cbep +
‘W|abab = ‘W|cc + |W‘cbcb iff |W‘abab = |W‘cc and
‘W|cbcb = |W|aa-
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LMIX as a group language

MIX and O, are rationally equivalent

The following transductions are due to Kanazawa:

» There is a rational transduction from O, to MIX:
let R = {a|b|ab}*, then MIX = h(O, N R) if h(a) = a,
h(b) = b, h(3) = c and h(b) = e.
» There is a rational transduction from MIX to Os:
let R = {abab|cc|cbcb|aa}*, then Oy, then
0, = g Y(MIX N R) with g(a) = abab, g(a) = cc,

g(b) = cbecb g(b) = aa.

» Thus MIX belongs to a rational cone iff O, does.
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LMIX as a group language

MIX and O, are rationally equivalent

The following transductions are due to Kanazawa:

» There is a rational transduction from O, to MIX:
let R = {a|b|ab}*, then MIX = h(O, N R) if h(a) = a,
h(b) = b, h(3) = c and h(b) = e.
» There is a rational transduction from MIX to Os:
let R = {abab|cc|cbcb|aa}*, then Oy, then
0, = g Y(MIX N R) with g(a) = abab, g(a) = cc,

g(b) = cbecb g(b) = aa.

» Thus MIX belongs to a rational cone iff O, does.
» Thus MIX is a 2-MCFL iff O, is a 2-MCFL.
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|—MIX as a group language

MIX and computational group theory

» Gilman (2005)

It does
not even seem to be known whether or not the word problem of Z x Z is indexed.
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La grammar for Op

A 2-MCFG for O,

S(xy) < Inv(x,y)

Inv(xiy1, yoxo) < Inv
Inv(xixey1, y2) < Inv
Inv(y1, x1x2y2) + Inv
Inv(yixix2, y2) < Inv
Inv(y1, yax1x2) < Inv

x1,x2), Inv(y1, y2)
x1,x2), Inv(y1, y2)
x1,%2), Inv(y1, y2)
x1,%2), Inv(y1, y2)
x1,%2), Inv(y1, y2)

Inv(axi@, x2) < Inv(x1, x2)
X1, X2)
X1, X2)
X1,X2)
X1, X2)
X1, X2)

Inv(axy, xo@) + Inv
Inv(xic, @x2) < Inv
Inv(xia, xo@) < Inv
Inv(x1, axo@) < Inv

Inv(xiy1x2, y2) < Inv
Inv(x1, yixoy2) < Inv

x1,x2), Inv(y1, y2)
x1,%2), Inv(y1, y2)

A A A A A A A A A A

where o € {a; b}

)
)
)
)
)
)
)
Inv(axi, ax) < Inv
)
)
@)
)
)
)
)+

Inv(e, e



Multiple Context-free Grammars

La grammar for Op

A 2-MCFG for O,

S(xy) < Inv
Inv(xiy1, yoxo) < Inv
Inv(xixey1, y2) < Inv
Inv(y1, x1x2y2) + Inv
Inv(yixix2, y2) < Inv
Inv(y1, yax1x2) < Inv

Inv(axi@, x2) « Inv

) x,y)
)
)
)
)
)
)
Inv(axi, ax) < Inv
)
)
@)
)
)
)
)+

x1,x2), Inv(y1, y2)
x1,x2), Inv(y1, y2)
x1,%2), Inv(y1, y2)
)
)

x1,%2), Inv(y1, y2
x1,%2), Inv(y1, y2
X1, X2)
X1, %X2)
X1, X2)
X1,X2)
X1, X2)
X1, X2)
x1,x2), Inv(y1, y2)
x1,%2), Inv(y1, y2)

Inv(axy, xo@) + Inv
Inv(xic, @x2) < Inv
Inv(xia, xo@) < Inv
Inv(x1, axo@) < Inv
Inv(xiy1x2, y2) < Inv
Inv(x1, yixoy2) < Inv
Inv(e, e

A A A A A A A A A A

where o € {a; b}
Theorem: Given wy and ws such that wiws € Oz, Inv(wy, w) is derivable.
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A graphical interpretation of O,.

Graphical interpretation of the word @aabaabaabbbbbaabbabbbbaaaabbbbbbbbaaa:
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I—A grammar for Op

A graphical interpretation of O,.

Graphical interpretation of the word @aabaabaabbbbbaabbabbbbaaaabbbbbbbbaaa

NN

The words in O, are precisely the words that are represented as closed curves
babbababbabbabbababbaaabbbabbaaaabbabbbaba

]

-

]
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Parsing with the grammar

Rule Inv(axia, x2) < Inv(xi, x2)

Inv(abaabaaababbbabaaabbbabbbbaaaba, babbbbaaaaaababbaab)

Inv(baabaaababbbabaaabbbabbbbaaab, babbbbaaaaaababbaab)

[m]

=]

N
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Parsing with the grammar

Rule: Inv(xiy1, yax2) < Inv(xy, x2), Inv(y1, y2)

Inv(baabaaababbbabaaabbbabbbbaaab, babbbbaaaaaababbaab)

Inv(bbbabaaabbbabbbbaaab, babbbbaaaaaaba)

Inv(baabaaaba, bbaab)

N
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|—A grammar for Op

Parsing with the grammar

Rule Inv(x1, yixay2) < Inv(x1, x2), Inv(y1, y2)

Inv(bbbabaaabbbabbbbaaab, babbbbaaaaaaba)

Inv(bbbabaaabbbabbbbaaab, bbaaaaaa)

@

Inv(babb, ba)

N
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Parsing with the grammar

Rule: Inv(x1b, bxo) < Inv(x1, x2)

Inv(bbbabaaabbbabbbbaaab, bbaaaaaa)

Inv(bbbabaaabbbabbbbaaa, baaaaaa)
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|—A grammar for Op

Parsing with the grammar

Rule: Inv(bxy, bxo) < Inv(x1, x2)

Inv(bbbabaaabbbabbbbaaa, baaaaaa)

Inv(bbabaaabbbabbbbaaa, aaaaaa)
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|—A grammar for Op

Parsing with the grammar

Rule: Inv(xiy1, yax2) < Inv(x1, x2), Inv(y1, y2)

Inv(bbabaaabbbabbbbaaa, aaaaaa)

B8) |

Inv(bbabaaabbbabbbb, 333) Inv (222, 323)
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Parsing with the grammar

Rule: Inv(bxib,xp) + Inv(x1,x2)

Inv(bbabaaabbbabbbb, aaa)

h
i

Inv(babaaabbbabbb, 3aa)
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|—Proof of the Theorem

The proof of the Theorem

Theorem: Given wy and ws such that wiws € Oa, Inv(wi, we) is derivable.
The proof is done by induction on the lexicographically ordered pairs
(Iwiwa|, max(|wa, [wa])) .

There are five cases:

Case 1: wy or ws equal e
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LProof of the Theorem

The proof of the Theorem

Theorem: Given wy and ws such that wiws € Oa, Inv(wi, we) is derivable.

The proof is done by induction on the lexicographically ordered pairs

(Jwiwz], max(jwi|, [w2l)) .

There are five cases:

Case 1: wy or ws equal e

w.l.o.g., wy # €, then by induction hypothesis, for any v; and v, different from e such
that wi = viva, Inv(vi, v2) is derivable then:

Inv(vi,v2) Inv(e,€)

Inv(xixoyi, y2) < Inv(xi, x2), Inv(y1, y2)
Inv(vive = wi,€)
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I—Proof of the Theorem

The proof of the Theorem

Theorem: Given wy and ws such that wiws € Oa, Inv(wi, we) is derivable.

The proof is done by induction on the lexicographically ordered pairs
(Iwiwa|, max(|wa, [wa])) .
There are five cases:

Case 2: w1 = sywysy and wa = s3wjsy and for i,j € {1;2;3;4}, s.it. i #j, {si;isj} €

{{a:3}: {b: b} }:

u]

o)
I

i
it
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LProof of the Theorem

The proof of the Theorem

Theorem: Given wy and ws such that wiws € Oa, Inv(wi, we) is derivable.

The proof is done by induction on the lexicographically ordered pairs
(Iwiwa|, max(|wa, [wa])) .
There are five cases:

Case 2: w1 = sywysy and wa = s3wjsy and for i,j € {1;2;3;4}, s.it. i #j, {si;isj} €
{{aia}; {b; b}}:

eg.,ifi=1 j=2 s = aand s, = 3 then by induction hypothesis Inv(w;, wz) is
derivable and:

Inv(wy, wa)
————— Inv(ax13, x2) < Inv(x1, x2)
Inv(awia, wy)
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The proof of the Theorem

Theorem: Given wy and ws such that wiws € Oa, Inv(wi, we) is derivable.
The proof is done by induction on the lexicographically ordered pairs
(Iwiwa|, max(|wa, [wa])) .

There are five cases:

Case 3: the curves representing w; and wy have a non-trivial intersection point:
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The proof of the Theorem

Theorem: Given wy and ws such that wiws € Oa, Inv(wi, we) is derivable.

The proof is done by induction on the lexicographically ordered pairs
(Iwiwa|, max(|wa, [wa])) .
There are five cases:

Case 3: the curves representing w; and wy have a non-trivial intersection point:

Inv(vi,va) Inv(va,v3)
\/ Inv(vive = wi, vava = wp)

Q)
¢J
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The proof of the Theorem

Theorem: Given wy and ws such that wiws € Oa, Inv(wi, we) is derivable.
The proof is done by induction on the lexicographically ordered pairs
(Iwiwa|, max(|wa, [wa])) .

There are five cases:

Case 4: the curve representing wy or wy starts or ends with a loop:
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The proof of the Theorem

Theorem: Given wy and ws such that wiws € Oa, Inv(wi, we) is derivable.
The proof is done by induction on the lexicographically ordered pairs
(Iwiwa|, max(|wa, [wa])) .

There are five cases:

Case 4: the curve representing wy or wy starts or ends with a loop:

U1 V2

Inv(vi,e) Inv(vo, wy)

Inv(viva = wi, wa)
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The proof of the Theorem

Theorem: Given wy and ws such that wiws € Oa, Inv(wi, we) is derivable.

The proof is done by induction on the lexicographically ordered pairs
(Iwiwa|, max(|wa, [wa])) .
There are five cases:

Case 5: wj and w; do not start or end with compatible letters, the curve representing
then do not intersect and do not start or end with a loop.

u]
o)
I
i
it
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Case b

No other rule than

Inv(xiyixe, y2)
Inv(x1, y1x2y2) <

Inv(x1, x2), Inv(y1, y2)

Inv(x1, x2), Inv(y1, y2)
can be used.
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Case b

No other rule than

Inv(xiyixe, y2)
Inv(x1, y1x2y2) <

Inv(x1,x2), Inv(y1, y2)

Inv(x1, x2), Inv(y1, y2)
can be used.
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The relevance of case b

The word

abbaabaaabbbbaaaba

non-well-nested rules.

is not in the language of the grammar only containing the
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Solving case 5: towards geometry
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Solving case 5: towards geometry

or b,

» w.l.o.g. we may assume that wy and w» start and end with a
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Solving case 5: towards geometry

» w.l.o.g. we may assume that wy and w» start and end with a
or b,

» if we consider subwords wy and wj of wy and w, obtained by
erasing factors of wy and ws that are in O,, we have:

u]

o)
I

i
it
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Solving case 5: towards geometry

» w.l.o.g. we may assume that wy and w» start and end with a
or b,
» if we consider subwords wy and wj of wy and w, obtained by
erasing factors of wy and ws that are in O,, we have:
» wj and wj start or end with a or b,
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Solving case 5: towards geometry

» w.l.o.g. we may assume that wy and w» start and end with a
or b,

» if we consider subwords wy and wj of wy and w, obtained by
erasing factors of wy and ws that are in O,, we have:

» wy and wj start or end with a or b,
» the curve that represents wyw} is a Jordan curve,
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Solving case 5: towards geometry

» w.l.o.g. we may assume that wy and w» start and end with a
or b,

» if we consider subwords wy and wj of wy and w, obtained by

erasing factors of wy and ws that are in Oy, we have:
» wj and wj start or end with a or b,
» the curve that represents wjw; is a Jordan curve,
» if wj = v{wjV§ such that v{v4 and viw) are in O, then
wi = vivov3 so that vivz and vows are in Os.
» if wj = v{vjVv§ such that v{v4 and wjv} are in O, then
Wr = ViVoV3 SO that Viv3 and wiVvp are in 02.
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Solving case 5: towards geometry

» w.l.o.g. we may assume that wy and w» start and end with a
or b,

» if we consider subwords wy and wj of wy and w, obtained by
erasing factors of wy and ws that are in Oy, we have:

» wj and wj start or end with a or b,

» the curve that represents wjw; is a Jordan curve,

» if wj = v{wjV§ such that v{v4 and viw) are in O, then
wi = vivov3 so that vivz and vows are in Os.

» if wj = v{vjVv§ such that v{v4 and wjv} are in O, then
Wr = ViVoV3 SO that Viv3 and wiVvp are in 02.

» we will prove the existence of such v{, v§ and v} for any such
wy and wj.
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Solving case 5: a geometrical invariant

DA



Multiple Context-free Grammars
|—Proof of the Theorem

Solving case 5: a geometrical invariant

DA



Multiple Context-free Grammars
|—Proof of the Theorem

Solving case 5: a geometrical invariant

An invariant on the Jordan curve representing wywj:

o

! 11 ! 1!
wy = aw;’a and w, = aw;,

! 11 ! 1!
wy = aw;’a and w, = aw,’b

YA /1! A 1!
w; = aw;’a and w; = bw,’a

YA 1! A /
w; = aw;’a and wy = bwy'b

o

N
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Solving case 5: a geometrical invariant

An invariant on the Jordan curve representing wywj:

BN

! 1" ! 1!
w; = aw;’b and w, = aw;'b

! ! ! 1!
w; = aw;'b and w, = bw;'a

VA 1"
w; = aw;’a and

~

W.

N
Il
1)

VA " Y
wi =aw;’aand w; =b

N
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Solving case 5: a geometrical invariant

An invariant on the Jordan curve representing wywj:

! 1! A
wy = aw;’b and w;, = a

'\T—\—»

!’ ! e
wy = aw;’b and w; = b
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La Theorem on Jordan curves

On Jordan curves

Outside

Outside
Figure 13.1 Two Jordan curves.

illustration from: A combinatorial introduction to topology by Michael Henle (Dover Publications).
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La Theorem on Jordan curves

On Jordan curves

Qutside

OQutside
Figure 13.1 Two Jordan curves.

illustration from: A combinatorial introduction to topology by Michael Henle (Dover Publications).
Theorem: There is k € {—1; 1} such that the winding number of Jordan curve around

a point in its interior is k, its winding number around a point in its exterior is 0.
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La Theorem on Jordan curves

A theorem on Jordan curves

Theorem: If A and D are two points on a Jordan curve J such that there are two
points A’ and D’ inside J such that /ﬁ = A’D’, then there are two points B and C

pairwise distinct from A and D such that A, B, C, and D appear in that order on one
of the arcs going from A to D and ﬁ = R

-}
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Theorem: If A and D are two points on a Jordan curve J such that there are two
points A’ and D’ inside J such that /ﬁ = A’D’, then there are two points B and C

pairwise distinct from A and D such that A, B, C, and D appear in that order on one
of the arcs going from A to D and ﬁ = R
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A theorem on Jordan curves

Theorem: If A and D are two points on a Jordan curve J such that there are two
points A’ and D’ inside J such that /ﬁ = A’D’, then there are two points B and C

pairwise distinct from A and D such that A, B, C, and D appear in that order on one
of the arcs going from A to D and ﬁ = R
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La Theorem on Jordan curves

A theorem on Jordan curves

Theorem: If A and D are two points on a Jordan curve J such that there are two
points A’ and D’ inside J such that /ﬁ = A’D’, then there are two points B and C

pairwise distinct from A and D such that A, B, C, and D appear in that order on one
of the arcs going from A to D and ﬁ = R

Applying this Theorem solves case 5.
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A theorem on Jordan curves

Theorem: If A and D are two points on a Jordan curve J such that there are two
points A’ and D’ inside J such that /ﬁ = A’D’, then there are two points B and C

pairwise distinct from A and D such that A, B, C, and D appear in that order on one
of the arcs going from A to D and ﬁ = R

Applying this Theorem solves case 5.
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La Theorem on Jordan curves

A theorem on Jordan curves

Theorem: If A and D are two points on a Jordan curve J such that there are two
points A’ and D’ inside J such that /ﬁ = A’D’, then there are two points B and C

pairwise distinct from A and D such that A, B, C, and D appear in that order on one
of the arcs going from A to D and ﬁ = R

Applying this Theorem solves case 5.
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La Theorem on Jordan curves

Simple curves, translations, intersections and the complex
exponential

Let's suppose that D — A =1
let o - cC — C-{o0}
ety 2y glimz

number around 0.

o transforms arcs performing translation of k into arc that have k as winding




Multiple Context-free Grammars

La Theorem on Jordan curves

Simple curves, translations, intersections and the complex
exponential

Let's suppose that D — A =1 and that Ag = A’
{ CcC — C-{0}
let ¢ :

=0, A;
z - e21'7rz

=D'=1..., A=k

¢ sums up the winding number of a Jordan curve around the A;’s as the winding
number around p(Ag) = ¢(0) = 1.
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La Theorem on Jordan curves
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Let's suppose that D — A =1 and that Ag = A’
let ¢ :

=0,A =D
cC — C-{o0}
z - e2i'rrz .

Ak =k
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Simple curves, translations, intersections and the complex
exponential
Let's suppose that D —A=1andthat Ag=A' =0, Ay =D"=1,..., Ay =k
cC — C-{o0}
let:e ~  2imz -

Main Lemma: a simple arc J from A to D (resp. D to A) does not contain B
and C as required in the Theorem iff ¢(J) is a Jordan curve of C — {0} that
belong to the homotopy class 1 (resp. —1).

=
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> If ¢(J) contains a closed subarc J with wn(J,0) = k, then it corresponds to a
subarc of J going from a point E to E + k,
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Proof of the main Lemma

Main Lemma: a simple arc J from A to D (resp. D to A) does not contain B and C
as required in the Theorem iff ¢(J) is a Jordan curve of C — {0} that belong to the
homotopy class 1 (resp. —1).

Proof.

Let wn(J, z) be the winding number of a closed curve around z.
> If ¢(J) contains a closed subarc J with wn(J,0) = k, then it corresponds to a
subarc of J going from a point E to E + k,
> we cannot have k = 0 since J is simple,

» if k =1 we are done,
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Main Lemma: a simple arc J from A to D (resp. D to A) does not contain B and C
as required in the Theorem iff ¢(J) is a Jordan curve of C — {0} that belong to the
homotopy class 1 (resp. —1).

Proof.

Let wn(J, z) be the winding number of a closed curve around z.

>

>
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If ©(J) contains a closed subarc J' with wn(J,0) = k, then it corresponds to a
subarc of J going from a point E to E + k,

we cannot have k = 0 since J is simple,
if k =1 we are done,
if k > 1 then J' contains a subarc J” such that wn(J”,0) =1,
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Proof of the main Lemma

Main Lemma: a simple arc J from A to D (resp. D to A) does not contain B and C
as required in the Theorem iff ¢(J) is a Jordan curve of C — {0} that belong to the
homotopy class 1 (resp. —1).

Proof.

Let wn(J, z) be the winding number of a closed curve around z.
> If ¢(J) contains a closed subarc J with wn(J,0) = k, then it corresponds to a
subarc of J going from a point E to E + k,
we cannot have k = 0 since J is simple,
if k =1 we are done,
if k > 1 then J' contains a subarc J” such that wn(J”,0) =1,

if k < 0 then by suppressing J' from J, it winding number becomes strictly
greater than 1 and we conclude as in the preceding case.

vVvyyvyy
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Proof of the main Lemma

Main Lemma: a simple arc J from A to D (resp. D to A) does not contain B and C
as required in the Theorem iff ©(J) is a Jordan curve of C — {0} that belong to the
homotopy class 1 (resp. —1).

Proof.

Let wn(J, z) be the winding number of a closed curve around z.
> If ¢(J) contains a closed subarc J with wn(J,0) = k, then it corresponds to a
subarc of J going from a point E to E + k,
we cannot have k = 0 since J is simple,
if Kk =1 we are done,
if k > 1 then J' contains a subarc J” such that wn(J”,0) =1,

if k < 0 then by suppressing J' from J, it winding number becomes strictly
greater than 1 and we conclude as in the preceding case.

vVvyyvyy

O

Corollary: a simple path J from A to D (resp. D to A) does not contain B and C as
required in the Theorem iff ©(J) is a Jordan curve of C — {1} that belong to the
homotopy class 0 or 1 (resp. or —1).
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Proving the Theorem

Corollary: if J is a simple closed curve of C composed with two curves J; and J;
respectively going from A to D and D to A which do not contain points B and C as

required in the Theorem then |wn(¢(J), 1)| = |wn(p(J1), 1) + wn(p(h),1)] < 1.
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La Theorem on Jordan curves

Proving the Theorem

Corollary: if J is a simple closed curve of C composed with two curves J; and J;
respectively going from A to D and D to A which do not contain points B and C as
required in the Theorem then |wn(¢(J), 1)| = |wn(p(J1), 1) + wn(p(h),1)] < 1.

Lemma: if J is a simple closed curve of C composed with two curves J; and J»
respectively going from A to D and D to A such that 0 and 1 are in the interior of J,
then either |wn(p(J),1)| > 2.

The Theorem follows by contradiction.
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Conclusion

» we have showed that O, is a 2-MCFL exhibiting the first non-virtually free
group language that is proved to belong to an interesting class of language,

» this implies that contrary to the usual conjecture we have showed that MIX is a
2-MCFLs.
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Conjectures

Well-nestedness:

Well-nested
Inv(yixix2, y2) <= Inv(x1, x2), Inv(y1, y2)
Not well-nested

Inv(y1x1y2,x2) < Inv(xi, x2), Inv(y1, y2)
MCFG,,, are MCFGs with well-nested rules.

» MCFLw» coincide with non-duplicating 10/0l,
» MCFL is incomparable with 10 or Ol.
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Conjectures

Well-nestedness:

Well-nested

Inv(yixix2, y2) <= Inv(x1, x2), Inv(y1, y2)
Not well-nested

Inv(y1x1y2,x2) < Inv(xi, x2), Inv(y1, y2)

MCFG,,, are MCFGs with well-nested rules.

>
>

MCFLwn coincide with non-duplicating 10/0I,
MCFL is incomparable with 10 or OI.

Thus the following conjectures:

>

>
>
>

mildly context sensitive languages may well be, as advocated by Kanazawa,
MCFLy,

O, and MIX should not be a MCFL,,
semilinear rational cones included in Ol should be included in MCFL,
0O, and MIX should not be in Ol.

Open question:

>

Is O3 an MCFL?
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MCFL a natural class

MCTAG = MCFG = HR

= OUT(DTWT)

= yDT¢(REGT) = LUSCG = MG
— A\-CFLyjn(4) = A\-CFL;;,

MCFGyyp = 10ng = Olng
— CCFG = A-CFL;(3)
TAG = LIG = CCG = HG
2—MCFGy,

CFL = 1—MCFL = A-CFL;jn(2)

u]
o)

I

i
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)
»
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Yet an counter-intuitive class

» Joshi, Vijay Shanker, Weir (1991)

O SOOI ) ('S G capture only certain
kinds of dependencies, e.g., nested dependencies and certain limited kinds of crossing dependencies
(e.g., in the subordinate clause constructions in Dutch or some variations of them, but perhaps not

in the so-called MIX (or Bach) language, which consists of equal numbers of a’s, b’s, and c¢’s in

any order 4) languages in MCSL have constant growth property, i.e., if the strings of a language

MIX is a 2-MCFL(2)
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Yet an counter-intuitive class

» Groenink (PhD dissertation): finite pumpability

8-8 de/Enition: AEnite pumpability. A language L is FINITELY PUMPABLE if there is
a constant ¢ such that for any w € L with |w| > co, there are a finite number k and
strings ug, . .., u; and vy, ..., v such that w = ugviuyvous - - - ug—1viltg, and for each
i,1 <|vi| < co,and for any p > 0, uov/urvius - - - ug_1vFuy € L.

There is a 3-MCFL which is not finitely pumpable.
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Are MCFLs interesting for natural languages?

v

Minimalist Grammars precisely define MCFLs

v

It is a natural limit for a certain kind of descriptions of
languages

v

Poses natural questions on the recursive nature of NL

v

Are used in various (restricted) forms for NLP
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Are MCFLs of interest for mathematics/computer science?

v

They pose challenging problems

v

They shed some light on parsing techniques

v

They connect to group theory

v

They are related to some interesting computational models
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The last word. . .

» Chomsky (2004)

[BEHBEl The systems that capture other properties of language, for exam-
ple transformational grammar, hold no interest for mathematics. But I do
not think that that is a necessary truth. It could turn out that there would
be richer or more appropriate mathematical ideas that would capture
other, maybe deeper properties of language than context-free grammars
do. In that case you have another branch of applied mathematics which
might have linguistic consequences. That could be exciting.
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