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The DLR theorem

Theorem

Let Σ be a finite set of symbols. Let X ⊆ ΣZd be a d-dimensional
subshift, Φ an absolutely summable interaction on X, and fΦ an
associated energy observable.

1 (Dobrushin theorem)
Assume that X is D-mixing. Then, every shift-invariant Gibbs
measure for Φ is an equilibrium measure for Φ.

2 (Lanford–Ruelle theorem)
Assume that X is a subshift of finite type (SFT). Then, every
equilibrium measure for Φ is a Gibbs measure for Φ.
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Example of Relative System

Fix θ ∈ Θ, fill open sites with {−,+}.

0 0
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0 0 0
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0 0

Hard constraints: ⇐⇒ 0, ⇐⇒ − or +.
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Example of Relative System (continued)

Θ = {◦, •}Z2

θ ∈ Θ

Xθ ⊆ {0,−,+}Z
2

x ∈ Xθ
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Relative Boltzmann-Gibbs distribution:

For (θ, x) ∈ Ω, finite A ⊂ G , u ∈ ΣA,

π(θ,x)(u) :=
{

1
ZA(θ,x)e

−EA|A{ (θ,xA{∨u) if xA{ ∨ u ∈ Xθ,
0 otherwise

}

θ

A

xA{
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DLR Theorem on steroids

Theorem
Let G be a countable amenable group, Ω a relative system

with an
absolutely summable relative interaction Φ on Ω and ν a
G-invariant measure on environment Θ.

1 (relative Dobrushin theorem)
Assume that Ω is D-mixing relative to ν. Then, every
translation-invariant Gibbs measure for Φ relative to ν is an
equilibrium measure for Φ relative to ν.

2 (relative Lanford–Ruelle theorem)
Assume that Ω has the weak topological Markov property
relative to ν.
Then, every equilibrium measure for Φ relative to ν is a
(translation-invariant) Gibbs measure for Φ relative to ν.
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weak topological Markov property

A closed subset Y ⊂ ΣG satisfies the weak topological Markov
property (weak TMP) if

.
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weak topological Markov property

A closed subset Y ⊂ ΣG satisfies the weak topological Markov
property (weak TMP) if for all finite A ⊂ G there exists a finite

“witness” B ⊇ A such that whenever y , y ′ ∈ Y satisfy
yB\A = y ′B\A, then yA ∨ y ′Bc ∈ Y .
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Remark: for subshifts, weak TMP is much weaker than SFT.
7



relative weak topological Markov property (relative weak
TMP)

Given a relative system Ω and a G-invariant measure ν on
environment Θ, Ω satisfies the relative weak TMP, relative to ν, if
for each finite A ⊂ G , there is a finite B ⊇ A such that for ν-a.e.
θ ∈ Θ, Xθ satisfies weak TMP with B as a “witness” for A.

A

Bθ

θ

y

y ′
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LR: Relative Equilibrium implies Relative Gibbs

µ : relative equilibrium measure on Ω
Suppose µ is not relative Gibbs. Goal: construct another
measure with larger relative entropy.
For some finite A ⊂ G ,

Hµ(ξA|FΘ, ξ
AG\A) < HKAµ(ξA|FΘ, ξ

AG\A).

By continuity of KA, there is a finite B ⊃ A such that,

Hµ(ξA|FΘ, ξ
B\A) < HKAµ(ξA|FΘ, ξ

AB\A).

Find a set D of positive density, d(D), such that copies of B
centered at elements of D are disjoint.
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LR: Relative Equilibrium implies Relative Gibbs
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AB
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LR: Relative Equilibrium implies Relative Gibbs

Let µ0 = µ, µi = KAiµi−1, µ+ = limi µi

Let ε = HKAµ(ξA|FΘ, ξ
AB\A)− Hµ(ξA|FΘ, ξ

B\A). then

Hµ+(ξFn |FΘ)− Hµ(ξFn |FΘ) ≥ εd(D)|Fn|+ o(|Fn|).

Thus, hµ+(Ω)− hµ(Ω) > εd(D); a contradiction.
But µ+ need not be G-invariant. Replace µ+ by any limit
point of

1
|Fm|

∑
g∈Fm

g−1µ+.
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Measures of maximal pressure relative to a topological
factor map

X ,Y : G-subshifts

η : X → Y : a topological factor map, i.e., a G-equivariant
continuous surjection from X onto Y .
ν: G-invariant measure on Y
(Ledrappier-Walters, 1978) Measure of maximal relative
entropy is a G-invariant measure µ on X that has maximal
entropy, h(µ) among all measures that project to ν.
(Alahbakhshi-Quas, 2013) For G = Z and X an SFT, any
measure of maximal relative entropy, in LW sense, is Gibbs
relative to ν.
View as a relative system:

Θ := Y environment; Xy := η−1(y)
Ω = {(y , x) : x ∈ Xy} relative system; Ω↔ X

12



Measures of maximal pressure relative to a topological
factor map

X ,Y : G-subshifts
η : X → Y : a topological factor map, i.e., a G-equivariant
continuous surjection from X onto Y .

ν: G-invariant measure on Y
(Ledrappier-Walters, 1978) Measure of maximal relative
entropy is a G-invariant measure µ on X that has maximal
entropy, h(µ) among all measures that project to ν.
(Alahbakhshi-Quas, 2013) For G = Z and X an SFT, any
measure of maximal relative entropy, in LW sense, is Gibbs
relative to ν.
View as a relative system:

Θ := Y environment; Xy := η−1(y)
Ω = {(y , x) : x ∈ Xy} relative system; Ω↔ X

12



Measures of maximal pressure relative to a topological
factor map

X ,Y : G-subshifts
η : X → Y : a topological factor map, i.e., a G-equivariant
continuous surjection from X onto Y .
ν: G-invariant measure on Y

(Ledrappier-Walters, 1978) Measure of maximal relative
entropy is a G-invariant measure µ on X that has maximal
entropy, h(µ) among all measures that project to ν.
(Alahbakhshi-Quas, 2013) For G = Z and X an SFT, any
measure of maximal relative entropy, in LW sense, is Gibbs
relative to ν.
View as a relative system:

Θ := Y environment; Xy := η−1(y)
Ω = {(y , x) : x ∈ Xy} relative system; Ω↔ X

12



Measures of maximal pressure relative to a topological
factor map

X ,Y : G-subshifts
η : X → Y : a topological factor map, i.e., a G-equivariant
continuous surjection from X onto Y .
ν: G-invariant measure on Y
(Ledrappier-Walters, 1978) Measure of maximal relative
entropy is a G-invariant measure µ on X that has maximal
entropy, h(µ) among all measures that project to ν.

(Alahbakhshi-Quas, 2013) For G = Z and X an SFT, any
measure of maximal relative entropy, in LW sense, is Gibbs
relative to ν.
View as a relative system:

Θ := Y environment; Xy := η−1(y)
Ω = {(y , x) : x ∈ Xy} relative system; Ω↔ X

12



Measures of maximal pressure relative to a topological
factor map

X ,Y : G-subshifts
η : X → Y : a topological factor map, i.e., a G-equivariant
continuous surjection from X onto Y .
ν: G-invariant measure on Y
(Ledrappier-Walters, 1978) Measure of maximal relative
entropy is a G-invariant measure µ on X that has maximal
entropy, h(µ) among all measures that project to ν.
(Alahbakhshi-Quas, 2013) For G = Z and X an SFT, any
measure of maximal relative entropy, in LW sense, is Gibbs
relative to ν.

View as a relative system:
Θ := Y environment; Xy := η−1(y)
Ω = {(y , x) : x ∈ Xy} relative system; Ω↔ X

12



Measures of maximal pressure relative to a topological
factor map

X ,Y : G-subshifts
η : X → Y : a topological factor map, i.e., a G-equivariant
continuous surjection from X onto Y .
ν: G-invariant measure on Y
(Ledrappier-Walters, 1978) Measure of maximal relative
entropy is a G-invariant measure µ on X that has maximal
entropy, h(µ) among all measures that project to ν.
(Alahbakhshi-Quas, 2013) For G = Z and X an SFT, any
measure of maximal relative entropy, in LW sense, is Gibbs
relative to ν.
View as a relative system:

Θ := Y environment; Xy := η−1(y)
Ω = {(y , x) : x ∈ Xy} relative system; Ω↔ X

12



Measures of maximal pressure relative to a topological
factor map

X ,Y : G-subshifts
η : X → Y : a topological factor map, i.e., a G-equivariant
continuous surjection from X onto Y .
ν: G-invariant measure on Y
(Ledrappier-Walters, 1978) Measure of maximal relative
entropy is a G-invariant measure µ on X that has maximal
entropy, h(µ) among all measures that project to ν.
(Alahbakhshi-Quas, 2013) For G = Z and X an SFT, any
measure of maximal relative entropy, in LW sense, is Gibbs
relative to ν.
View as a relative system:

Θ := Y environment; Xy := η−1(y)

Ω = {(y , x) : x ∈ Xy} relative system; Ω↔ X

12



Measures of maximal pressure relative to a topological
factor map

X ,Y : G-subshifts
η : X → Y : a topological factor map, i.e., a G-equivariant
continuous surjection from X onto Y .
ν: G-invariant measure on Y
(Ledrappier-Walters, 1978) Measure of maximal relative
entropy is a G-invariant measure µ on X that has maximal
entropy, h(µ) among all measures that project to ν.
(Alahbakhshi-Quas, 2013) For G = Z and X an SFT, any
measure of maximal relative entropy, in LW sense, is Gibbs
relative to ν.
View as a relative system:

Θ := Y environment; Xy := η−1(y)
Ω = {(y , x) : x ∈ Xy} relative system;

Ω↔ X

12



Measures of maximal pressure relative to a topological
factor map

X ,Y : G-subshifts
η : X → Y : a topological factor map, i.e., a G-equivariant
continuous surjection from X onto Y .
ν: G-invariant measure on Y
(Ledrappier-Walters, 1978) Measure of maximal relative
entropy is a G-invariant measure µ on X that has maximal
entropy, h(µ) among all measures that project to ν.
(Alahbakhshi-Quas, 2013) For G = Z and X an SFT, any
measure of maximal relative entropy, in LW sense, is Gibbs
relative to ν.
View as a relative system:

Θ := Y environment; Xy := η−1(y)
Ω = {(y , x) : x ∈ Xy} relative system; Ω↔ X

12



Measures of maximal pressure relative to a topological
factor map

Theorem
Assume that X is a G-subshift that satisfies weak TMP. Then any
measure of maximal pressure relative to ν, in LW sense, is Gibbs
relative to ν.

Proof: Show that if X satisfies weak TMP, then Ω satisfies relative
weak TMP. Apply relative LR Theorem. 2
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View a Z2-subshift Y as a Z-relative system Ω:
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Subgroup-induced Slices

Given a Z2-invariant measure µ on Y , let ν be projection of µ
on Θ.

Regard µ as a Z-invariant measure on Ω that projects to ν.
If µ is a Z2-equilibrium measure, is it also a Z-relative
equilibrium measure?
Yes, if Ω satisfies relative weak TMP and relative D-mixing
because:

1 Z2-Equilibrium measure non−relative LR=⇒ Z2-Gibbs measure
2 Z2-Gibbs measure inherited=⇒ Z-relative Gibbs measure

Xθθ

3 Z-relative Gibbs measure relative D=⇒ Z-relative equilibrium
measure
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Tom’s Generalized LR Theorem

Weakened hypothesis: any subshift, instead of SFT;
Weakened conclusion: Gibbs condition only on pairs of
interchangeable patterns.

Given a subshift X ⊆ ΣG and finite A ⊂ G , patterns
u, v ∈ ΣA are interchangeable in X if for every w ∈ ΣG\A, we
have u ∨ w ∈ X if and only if v ∨ w ∈ X .
Tom’s Generalized LR Theorem: For an arbitrary Zd -subshift
X , equilibrium measure µ and interchangeable patterns
u, v ∈ ΣA in X and µ-almost every x ∈ [u] ∪ [v ],

µ
(
u
∣∣ ξA{)(x)

e−EA|A{ (u∨xA{ ) =
µ
(
v
∣∣ ξA{)(x)

e−EA|A{ (v∨xA{ )

Tom’s LR Theorem ⇒ LR Theorem, i.e., it is a generalization.
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Relative Tom’s Theorem

For a relative system, two finite patterns u, v ∈ ΣA are
interchangeable in Xθ

if for every w ∈ ΣG\A, we have u ∨ w ∈ Xθ
if and only if v ∨ w ∈ Xθ.

Θu,v := {θ ∈ Θ : u, v are interchangeable in Xθ}

Theorem (Relative version of Meyerovitch’s theorem)
Let Ω be a relative system, with Θ a standard Borel space. Let ν
be an invariant probability measure on Θ and Φ a relative
absolutely summable interaction on Ω. Let µ be an equilibrium
measure for Φ relative to ν. Then, for u, v ∈ ΣA, and µ-almost
every (θ, x) ∈ [u] ∪ [v ] s.t. θ ∈ Θu,v ,

µ
(
u
∣∣ ξA{ ∨ FΘ

)
(θ, x)

e−EA|A{ (θ,u∨xA{ ) =
µ
(
v
∣∣ ξA{ ∨ FΘ

)
(θ, x)

e−EA|A{ (θ,v∨xA{ )
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Relative LR -vs- Relative Tom

Relative Tom’s Theorem implies relative LR: in the same way
that Tom’s Theorem implies LR Theorem.

Relative LR implies relative Tom!
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Given a closed subset Y ⊆ ΣG and a finite set A ⊂ G .
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