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The DLR theorem

Theorem

Let X be a finite set of symbols. Let X C Y2 be a d-dimensional
subshift, ® an absolutely summable interaction on X, and fy an
associated energy observable.
@ (Dobrushin theorem)
Assume that X is D-mixing. Then, every shift-invariant Gibbs
measure for ® is an equilibrium measure for ®.
@ (Lanford—Ruelle theorem)
Assume that X is a subshift of finite type (SFT). Then, every
equilibrium measure for ® is a Gibbs measure for ®.
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For (0,x) € Q, finite AC G,u € ¥4,

1 —E 0(97X GVU) .
(o x)(U) = Za(0x) € A ! if Xpe V U € Xp,
' 0 otherwise
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Relative Boltzmann-Gibbs distribution:
For (6, x
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DLR Theorem on steroids

Theorem

Let G be a countable amenable group, ) a relative system with an
absolutely summable relative interaction ® on Q and v a
G-invariant measure on environment ©.

@ (relative Dobrushin theorem)
Assume that Q2 is D-mixing relative to v. Then, every
translation-invariant Gibbs measure for ® relative to v is an
equilibrium measure for ® relative to v.

@ (relative Lanford—Ruelle theorem)
Assume that Q has the weak topological Markov property
relative to v.
Then, every equilibrium measure for ® relative to v is a
(translation-invariant) Gibbs measure for ® relative to v.
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weak topological Markov property

A closed subset Y C ¥ satisfies the weak topological Markov
property (weak TMP) if for all finite A C G there exists a finite
“witness” B D A such that whenever y,y’ € Y satisfy

YB\A = Yp\a» then
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weak topological Markov property

A closed subset Y C ¥.© satisfies the weak topological Markov
property (weak TMP) if for all finite A C G there exists a finite
“witness” B D A such that whenever y,y’ € Y satisfy

YB\A = Y\ a0 then yaVygec €Y.
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weak topological Markov property

A closed subset Y C ¥ satisfies the weak topological Markov
property (weak TMP) if for all finite A C G there exists a finite
“witness” B D A such that whenever y,y’ € Y satisfy

O mYB\A= y‘,/g\A,ljhen ¥yVygeY.
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weak topological Markov property

A closed subset Y C ¥ satisfies the weak topological Markov
property (weak TMP) if for all finite A C G there exists a finite
“witness” B D A such that whenever y,y’ € Y satisfy

O OYB\A= y,’B\A,ljhen ¥Vyg €Y.
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weak topological Markov property

A closed subset Y C ¥ satisfies the weak topological Markov
property (weak TMP) if for all finite A C G there exists a finite

“witness” B D A such that whenever y,y’ € Y satisfy
O OYB\A~— Y,/g\A,ljhen nVv y,/gc evy.
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Remark: for subshifts, weak TMP is much weaker than SFT.




relative weak topological Markov property (relative weak

TMP)

Given a relative system 2 and a G-invariant measure v on
environment ©, Q satisfies the relative weak TMP, relative to v, if
for each finite A C G, there is a finite B O A such that for v-a.e.
0 € ©, II) salsfies weak TNZP withCB as a "witness” for A.
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LR: Relative Equilibrium implies Relative Gibbs

@ u : relative equilibrium measure on Q

@ Suppose p is not relative Gibbs. Goal: construct another
measure with larger relative entropy.

@ For some finite A C G,

Hu (€21 F6, €2°) < Hicuu(€Fo, 2.

@ By continuity of K, there is a finite B D A such that,

H, (6% Fo, 8 < Hicuu(€21Fo, 4.

e Find a set D of positive density, d(D), such that copies of B
centered at elements of D are disjoint.
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LR: Relative Equilibrium implies Relative Gibbs

o Let po =p, pi = Kapio1,  pyp = lim;
o Let & = Hy, (% Fo,2"") — Hu (¢4 Fo, £B\A). then
Hpu. (€71 Fo) — Hu(§"| Fo) > ed(D)|Fal + o(|Fal).

e Thus, h,, () — h,(Q2) > ed(D); a contradiction.
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LR: Relative Equilibrium implies Relative Gibbs

Let po = p,  pi = Kajpi-1,  py = limj
\
Let & = Hy,u (64| Fo, £27) — Hu (62| Fo, £B\A). then

Hu, (67| Fo) — Hu(€7|Fe) = ed(D)|Ful + o(|Fyl).

e Thus, h,, () — h,(Q2) > ed(D); a contradiction.
@ But T need not be G-invariant. Replace p, by any limit
point of
1 -1
ﬁ Z & “H+-

gGFm
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Measures of maximal pressure relative to a topological

factor map

o X,Y: G-subshifts

e n: X — Y: a topological factor map, i.e., a G-equivariant
continuous surjection from X onto Y.

@ v: G-invariant measure on Y

o (Ledrappier-Walters, 1978) Measure of maximal relative
entropy is a G-invariant measure p on X that has maximal
entropy, h(x) among all measures that project to v.

o (Alahbakhshi-Quas, 2013) For G = Z and X an SFT, any
measure of maximal relative entropy, in LW sense, is Gibbs
relative to v.

o View as a relative system:

o ©:=Y environment; X, :=n"1(y)
o Q= {(y,x):x € X,} relative system; Q <> X
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Measures of maximal pressure relative to a topological
factor map

Assume that X is a G-subshift that satisfies weak TMP. Then any
measure of maximal pressure relative to v, in LW sense, is Gibbs
relative to v.
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Measures of maximal pressure relative to a topological
factor map

Assume that X is a G-subshift that satisfies weak TMP. Then any
measure of maximal pressure relative to v, in LW sense, is Gibbs
relative to v.

Proof: Show that if X satisfies weak TMP, then € satisfies relative
weak TMP. Apply relative LR Theorem. O
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Subgroup-induced Slices

o View a Z2-subshift Y as a Z-relative system Q:
@ R:=row0
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Subgroup-induced Slices

o View a Z2-subshift Y as a Z-relative system Q:

@ R:=row0

e O := { valid configurations on R€ :}
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Subgroup-induced Slices

o View a Z2-subshift Y as a Z-relative system Q:
@ R:=row0

e © := { valid configurations on R< :}

0o Q:={0,x)e0xR:0vxeY}; QY

@ Z acts by the horizZihtal siift o@$Q. @
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Subgroup-induced Slices

o View a Z2-subshift Y as a Z-relative system Q:
e R:=row0

e O := { valid configurations on R€ :}

0o Q:={0,x)c0xR:0vxec Y}, QY

@ Z acts by the horizihtal sitft o@Q. @
i T = I = =

({ O D o (m
| B @/
$ o D o |
| @ @
9 a O | Xo
) o O o O o
) B = |
| @ m@ E @D @ \m
{ O D5
N I s [N s | = 1

14



Subgroup-induced Slices

o View a Z2-subshift Y as a Z-relative system Q:
@ R:=row0

e © := { valid configurations on R€ :}

0 Q:={0,x)eOxTR:0vxeY}; QY

@ Z acts by the horizihtal sitft o@Q. O

! O D o )=
) [ I
[ o D o 0
| @ @ @ )
6 i | Xo
[ B
\
)

O O o =]
{ D o
'O O HE D @@
) O o =
L @O @ @ @ @mig

14



Subgroup-induced Slices

o View a Z2-subshift Y as a Z-relative system Q:
@ R:=row0

e O := { valid configurations on R€ :}

0o Q:={0,x)c0xIR:0vxec Y}, QaY
@ Z acts by the horizihtal sitft o@Q. @
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o Given a Z%-invariant measure ;1 on Y, let v be projection of y
on ©.
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o Given a Z%-invariant measure z on Y, let v be projection of y
on ©.

@ Regard 1 as a Z-invariant measure on Q that projects to v.

o If 11 is a Z?-equilibrium measure, is it also a Z-relative
equilibrium measure?
@ VYes, if 2 satisfies relative weak TMP and relative D-mixing
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Subgroup-induced Slices

o Given a Z%-invariant measure 1 on Y, let v be projection of u
on ©.

@ Regard 1 as a Z-invariant measure on 2 that projects to v.

o If 11 is a Z?-equilibrium measure, is it also a Z-relative
equilibrium measure?

@ Yes, if (2 satisfies relative weak TMP and relative D-mixing
because:
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Subgroup-induced Slices

o Given a Z%-invariant measure ;1 on Y, let v be projection of y
on ©.

@ Regard 1 as a Z-invariant measure on (2 that projects to v.
o If 11 is a Z2-equilibrium measure, is it also a Z-relative
equilibrium measure?

@ Yes, if Q satisfies relative weak TMP and relative D-mixing

because:

non—relative LR
— Z2

@ Z>%-Equilibrium measure -Gibbs measure
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Subgroup-induced Slices

o Given a Z%-invariant measure ;. on Y, let v be projection of p
on ©.
@ Regard i as a Z-invariant measure on 2 that projects to v.

o If pisa Z2—equi|ibrium measure, is it also a Z-relative
equilibrium measure?

@ Yes, if  satisfies relative weak TMP and relative D-mixing
because:

@ Z’-Equilibrium measure
inherited

Qo Zz—Gibbim\easure = Z-relative Gibbs measure

S ~—

non—relative LR .
= Z2-Gibbs measure
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Subgroup-induced Slices

o Given a Z%-invariant measure ;1 on Y, let v be projection of y
on ©.

@ Regard 1 as a Z-invariant measure on Q that projects to v.

o If 11 is a Z?-equilibrium measure, is it also a Z-relative
equilibrium measure?

@ VYes, if € satisfies relative weak TMP and relative D-mixing
because:

non—relative LR
= Z2

@ Z’-Equilibrium measure -Gibbs measure

. inherited . .
@ Z°-Gibbs measure "==" Z-relative Gibbs measure
e -
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measure
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interchangeable patterns.
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Tom's Generalized LR Theorem

@ Weakened hypothesis: any subshift, instead of SFT,;
Weakened conclusion: Gibbs condition only on pairs of
interchangeable patterns.

@ Given a subshift X C X and finite A C G, patterns
u,v € YA are interchangeable in X if for every w € YC\A we
have uV w € X if and only if vV w € X.

e Tom's Generalized LR Theorem: For an arbitrary Z9-subshift
X, equilibrium measure p and interchangeable patterns
u,v € 4 in X and p-almost every x € [u] U [v],

(]| €4 (x) = u(V] | €% (%)
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Tom's Generalized LR Theorem

@ Weakened hypothesis: any subshift, instead of SFT,;
Weakened conclusion: Gibbs condition only on pairs of
interchangeable patterns.

e Given a subshift X C ¥¢ and finite A C G, patterns
u,v € XA are interchangeable in X if for every w € C\A we
have uvVw € X if and only if vV w € X.

@ Tom's Generalized LR Theorem: For an arbitrary Z9-subshift
X, equilibrium measure p and interchangeable patterns
u,v € T4 in X and p-almost every x € [u] U|[v],

n(w| ) x) (v ) (x)

o Emac(vxe) — —Eye(vVxe)
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Tom's Generalized LR Theorem

@ Weakened hypothesis: any subshift, instead of SFT,;
Weakened conclusion: Gibbs condition only on pairs of
interchangeable patterns.

e Given a subshift X C ¥¢ and finite A C G, patterns
u,v € XA are interchangeable in X if for every w € C\A we
have uvVw € X if and only if vV w € X.

@ Tom's Generalized LR Theorem: For an arbitrary Z9-subshift
X, equilibrium measure p and interchangeable patterns
u,v € T4 in X and p-almost every x € [u] U|[v],

n(w| ) x) (v ) (x)

e_EA\AE(uvaC) - e_EA|AC(V\/XAE)

@ Tom’s LR Theorem =- LR Theorem, i.e., it is a generalization.
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Relative Tom's Theorem

For a relative system, two finite patterns u, v € ¥4 are
interchangeable in Xy
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interchangeable in Xy if for every w € £\A we have uV w € Xy
if and only if vV w € Xy.

Oy, :={0 € © : u, v are interchangeable in Xy}

Theorem (Relative version of Meyerovitch's theorem)

Let Q) be a relative system, with © a standard Borel space. Let v
be an invariant probability measure on © and & a relative
absolutely summable interaction on €2. Let u be an equilibrium
measure for ® relative to v. Then, for u,v € YA, and p-almost
every (0,x) € [ulU[v] s.t. 0 € ©,,

(o] €° v Fo)(#.x)  pu(v|€ v Fo)(6,x)

- A|AC(07L’VXAG) o e_EA‘AU(evVVXAC)

e




Relative LR -vs- Relative Tom

@ Relative Tom's Theorem implies relative LR: in the same way
that Tom’s Theorem implies LR Theorem.
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Relative LR -vs- Relative Tom

@ Relative Tom's Theorem implies relative LR: in the same way
that Tom’s Theorem implies LR Theorem.

@ Relative LR implies relative Tom!
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@ Given a closed subset Y C ¥C and a finite set A C G.



Mixing set

@ Given a closed subset Y C ¥C and a finite set A C G.
o A Mixing set for Ain Y is a finite set B O A such that:

Bl Tl [ T[]

T —————
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@ Given a closed subset Y C ¥.¢ and a finite set AC G.
@ A Mixing set for Ain Y is a finite set B D A such that:
o for every y,y’ € Y, there exists z € Y satisfying za = ya,
2G\B = yé;\B-
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Mixing set

@ Given a closed subset Y C ¥C and a finite set A C G.

@ A Mixing set for Ain Y is a finite set B O A such that:

e for every y,y' € Y, there exists z € Y satisfying z4 = ya,
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Mixing set

@ Given a closed subset Y C ¥C and a finite set A C G.
@ A Mixing set for Ain Y is a finite set B D A such that:
o for every y y' € Y, there exists z € Y satisfying z4 = ya,
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