5 marks

1. (a) Describe the equation of the plane which contains the points $A=(0,0,1), B=$ $(1,1,3)$ and $C=(1,-3,1)$ in the form $a x+y+c z+d=0$. Note that we ask that the coefficient next to y is 1 .

Answer:

5 marks (b) What angle does the plane from (a) form with the plane given by the equation $x-y=0$? You may leave your answer in the form $\theta=\cos ^{-1}(\cdot)$.

Answer:

5 marks (c) The lines \vec{l}_{1} and \vec{l}_{2} are described by the equations $\vec{l}_{1}(t)=\langle 0,-2,1\rangle+t\langle 1,2,1\rangle$ and $\vec{l}_{2}(s)=\langle 2,2,3\rangle+s\langle 1,-1,2\rangle$. Give the equation of the line which has as a basepoint the intersection of \vec{l}_{1} and \vec{l}_{2} and is orthogonal to the plane spanned by \vec{l}_{1} and \vec{l}_{2}.

5 marks (d) Match the surfaces with the equations below. There is one equation which does not correspond to any surface.

2 marks (e) (Bonus marks) Let $\vec{u} \neq \overrightarrow{0}$ be a fixed vector. Describe the set of vectors \vec{v} which satisfy

$$
\|\vec{u}+\vec{v}\|=\|\vec{u}\|+\|\vec{v}\| .
$$

Answer:

This page has been left blank for your rough work and calculations.

