5 marks

1. (a) Describe the equation of the plane which contains the points $A=(0,0,1), B=$ $(1,1,3)$ and $C=(1,-3,1)$ in the form $a x+y+c z+d=0$. Note that we ask that the coefficient next to y is 1 .

Solution: Use A as a base point and form the vectors $\overrightarrow{A B}=\langle 1,1,3\rangle-\langle 0,0,1\rangle=$ $\langle 1,1,2\rangle$ and $\overrightarrow{A C}=\langle 1,-3,1\rangle-\langle 0,0,1\rangle=\langle 1,-3,0\rangle$. Use both vectors to compute a normal vector to the plane using the cross product $\overrightarrow{A B} \times \overrightarrow{A C}$. Now, $\overrightarrow{A B} \times \overrightarrow{A C}=$ $\langle 6,2,-4\rangle$, so the solution is of the form $6 x+2 y-4 z+d=0$. Plugging any of the three points yields that $d=4$. Dividing by 2 we get $3 x+y-2 z+2=0$.

Answer: $3 x+y-2 z+2=0$.
5 marks

5 marks
(b) What angle does the plane from (a) form with the plane given by the equation $x-y=0$? You may leave your answer in the form $\theta=\cos ^{-1}(\cdot)$.

Solution: A vector which is normal to the plane $x-y=0$ is $\vec{n}=(1,-1,0)$. A normal vector to the first plane is $\vec{m}=(3,1,-2)$. We can use the dot product formula to obtain that $\cos \theta=\frac{\vec{n} \cdot \vec{m}}{\|\vec{n}\|\|\vec{m}\|}=\frac{2}{\sqrt{2} \sqrt{14}}$.

Answer: $\theta=\cos ^{-1}\left(\frac{1}{\sqrt{7}}\right)$
(c) The lines \vec{l}_{1} and \vec{l}_{2} are described by the equations $\vec{l}_{1}(t)=\langle 0,-2,1\rangle+t\langle 1,2,1\rangle$ and $\vec{l}_{2}(s)=\langle 2,2,3\rangle+s\langle 1,-1,2\rangle$. Give the equation of the line which has as a basepoint the intersection of $\overrightarrow{l_{1}}$ and \vec{l}_{2} and is orthogonal to the plane spanned by \vec{l}_{1} and $\overrightarrow{l_{2}}$.

Solution: First we solve $\langle 0,-2,1\rangle+t\langle 1,2,1\rangle=\langle 2,2,3\rangle+s\langle 1,-1,2\rangle$. We obtain the equations $t=2+s,-2+2 t=2-s$ and $1+t=3+2 s$. Which admit the unique solution $s=0$ and $t=2$. Thus the intersection is $\langle 2,2,3\rangle$. A vector orthogonal to both lines is $\langle 1,2,1\rangle \times\langle 1,-1,2\rangle=\langle 5,-1,3\rangle$. Thus the equation is $\vec{l}_{3}(r)=\langle 2,2,3\rangle+r\langle 5,-1,3\rangle$.

$$
\text { Answer: } \vec{l}_{3}(r)=\langle 2,2,3\rangle+r\langle 5,-1,-3\rangle .
$$

5 marks (d) Match the surfaces with the equations below. There is one equation which does not correspond to any surface.

(A) $z^{2}=x^{2}+y^{2}$,
(B) $z=x+2 y^{2}$,
(C) $x^{2}+y^{2}+z^{2}=1$,
(D) $z=x^{2}+y^{2}$,
(E) $2 x+3 y-z=4$.

2 marks (e) (Bonus marks) Let $\vec{u} \neq \overrightarrow{0}$ be a fixed vector. Describe the set of vectors \vec{v} which satisfy

$$
\|\vec{u}+\vec{v}\|=\|\vec{u}\|+\|\vec{v}\| .
$$

Solution: For $\vec{v}=C \vec{u}$ for some non-negative constant C.
Answer: For $\vec{v}=C \vec{u}, C \geq 0$.

