1. Consider the function $f(x, y)=x^{2} y+e^{x-y}$ for parts (a),(b),(c) and (d).

4 marks

4 marks

2 marks
(a) Compute $f_{x}, f_{y}, f_{x y}$ and $f_{y x}$.

Solution:

$$
\begin{gathered}
f_{x}=2 x y+e^{x-y} \\
f_{y}=x^{2}-e^{x-y} \\
f_{x y}=f_{y x}=2 x-e^{x-y}
\end{gathered}
$$

(b) Compute the equation of the tangent plane to the graph of $z=f(x, y)$ at $(2,2,9)$.

Solution: The equation is given by

$$
z=f(2,2)+f_{x}(2,2)(x-2)+f_{y}(2,2)(y-2)
$$

Thus,

$$
z=9+9(x-2)+3(y-2)
$$

Simplifying, we get

$$
z=9 x+3 y-15
$$

(c) Use the previous part to approximate $f(2.1,1.9)$.

Solution:

$$
\begin{aligned}
f(2.1,1.9) & \approx 9+9(2.1-2)+3(1.9-2) \\
& =9+0.9-0.3 \\
& =9.6
\end{aligned}
$$

For reference, the actual value is approx 9.60040275816017
(d) Find a point (a, b, c) in the graph of $z=f(x, y)$ such that its tangent plane has the equation $3 x-z=1$. Hint: there is a solution such that $a=1$.

Solution: The general equation of the tangent plane at $(a, b, f(a, b))$ is

$$
z=f(a, b)+\left(2 a b+e^{a-b}\right)(x-a)+\left(a^{2}-e^{a-b}\right)(y-b)
$$

Rearranging we get:

$$
\left(2 a b+e^{a-b}\right) x+\left(a^{2}-e^{a-b}\right) y-z=-f(a, b)+b\left(a^{2}-e^{a-b}\right)+a\left(2 a b+e^{a-b}\right)
$$

We must have $a^{2}-e^{a-b}=0$ and $2 a b+e^{a-b}=3$. Following the hint we impose $a=1$. We must now have $1-e^{1-b}=0$ and $2+e^{1-b}=3$. The only possibility is $b=1$ which works. Replacing $(a, b)=(1,1)$ we get:

$$
3 x-z=-f(1,1)+3=1
$$

Which satisfies the requirements.

6 marks 2. (a) You maneuver a spaceship in a three dimensional space. At time t the position of the spaceship is given by the vector $\langle x(t), y(t), z(t)\rangle$. A proton star at the origin emits radiation in such a way that the perceived radiation at a point in space is given by the equation $R(x, y, z)=e^{-\left(x^{2}+y^{2}+z^{2}\right)}$.
Assume that at time $t=0$ the position of the spaceship is $\langle x(0), y(0), z(0)\rangle=\langle 1,1,1\rangle$ and that its velocity is $\left\langle x^{\prime}(0), y^{\prime}(0), z^{\prime}(0)\right\rangle=\langle 1,2,-4\rangle$. Determine the rate of change of the perceived radiation by the spaceship at time $t=0$.

Solution: Note that $R_{x}=-2 x e^{-\left(x^{2}+y^{2}+z^{2}\right)}, R_{y}=-2 y e^{-\left(x^{2}+y^{2}+z^{2}\right)}$ and $R_{z}=$ $-2 z e^{-\left(x^{2}+y^{2}+z^{2}\right)}$. In particular $R_{x}(1,1,1)=R_{y}(1,1,1)=R_{z}(1,1,1)=-2 e^{-3}$. By the chain rule,

$$
\begin{aligned}
R^{\prime}(x(0), y(0), z(0)) & =R_{x}(1,1,1) x^{\prime}(0)+R_{y}(1,1,1) y^{\prime}(0)+R_{z}(1,1,1) z^{\prime}(0) \\
& =-2 e^{-3}(1+2-4)=2 e^{-3} .
\end{aligned}
$$

2 marks (b) (Bonus marks) Construct an example of a function $f(x, y)$ such that every level curve is a single line of the form $c=2 x+y$ for some $c \in \mathbb{R}$ but whose graph is NOT a plane.

Solution: $f(x, y)=(2 x+y)^{3}$

Note that $(2 x+y)^{2}$ does not work, as the contour curves have two branches. Any odd power different than 1 also works.

