5 marks

1. In each box mark $T$ or $F$ if the affirmation is true or false respectively. No justification is needed. Assume all functions below are continuous and that $D$ is a bounded and closed fixed set.

$\square$
If $f(x, y)=g(x, y)-h(x, y)$ then

$$
\iint_{D} f(x, y) \mathrm{d} A=\iint_{D} g(x, y) \mathrm{d} A-\iint_{D} h(x, y) \mathrm{d} A .
$$

$\square$ If $\iint_{D} f(x, y) \mathrm{d} A=\iint_{D} g(x, y) \mathrm{d} A$ then $f(x, y)=g(x, y)$ for each $(x, y) \in D$.If $\iint_{D} f(x, y) \mathrm{d} A \geq 0$ then $f(x, y) \geq 0$ for each $(x, y)$ in $D$.If $f(x, y) \geq 0$ in $D$ then $\iint_{D} f(x, y) \mathrm{d} A \geq 0$.If $\iint_{D} f(x, y) \mathrm{d} A \leq 0$ then $f(x, y) \leq 0$ for some $(x, y) \in D$.
5 marks
2. Compute the volume of the solid on the first octant $(x, y, z \geq 0)$ bounded by the planes $y=x, x=1$ and $z=x+y$.
3. Compute the integral

$$
I=\int_{0}^{1} \int_{y}^{1} e^{x^{2}} \mathrm{~d} x \mathrm{~d} y
$$

5 marks
4. Find the area between the curve $r=2+\sin (\theta)$ and the circle of radius $r=3$

2 marks 5. (Bonus marks) Find the volume enclosed by the cylinders $z=x^{2}+y^{2}, y=x^{2}+z^{2}$ and $x=y^{2}+z^{2}$.

This page has been left blank for your rough work and calculations.

