Final 253
You have 150 min to solve $\mathbf{7}$ problems. Please note

- Write your name/student id clearly
- Write only on one side of the paper in the space design for it. Use the last few pages of the exam for calculations.

Good luck!

Name:

\qquad

Student ID:

1. Find the limit or show that it does not exist

$$
\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{x y+y z^{2}+x z^{2}}{x^{2}+y^{2}+z^{4}}
$$

2. (a) Compute the gradient of the function

$$
f(x, y)=\int_{x}^{y} \cos \left(t^{2}\right) d t
$$

(b) Use the gradient to approximate $f(0,0.1)$.
3. If $z=f(x, y)$ where $x=s+t$ and $y=s-t$ show that
(a)

$$
\left(z_{x}\right)^{2}-\left(z_{y}\right)^{2}=\left(z_{s}\right)\left(z_{t}\right)
$$

(b)

$$
4\left(z_{x}\right)\left(z_{y}\right)=\left(z_{s}\right)^{2}-\left(z_{t}\right)^{2}
$$

4. Find the direction in which the directional derivative of the function

$$
f(x, y)=y e^{-x y}
$$

at point $(0,2)$ has the value 1 .
5. a Find the critical points of the function

$$
f(x, y)=-\left(x^{2}-1\right)^{2}-\left(x^{2} y-x-1\right)^{2}
$$

b Explore the points and check if they are minima/maxima or saddle points
c In 3 lines or less, explain why the result you obtain does not have an equivalent when considering a function of a single variable.
6. Evaluate the integral

$$
\int_{0}^{4} \int_{\sqrt{x}}^{2} \frac{1}{y^{3}+1} d y d x
$$

7. Evaluate the integral

$$
I=\iint_{D} \frac{x-2 y}{3 x-y} d A
$$

where D is the domain enclosed by the lines

$$
x-2 y=0, \quad x-2 y=4, \quad 3 x-y=1 \quad \text { and } \quad 3 x-y=8
$$

Scrap Paper (we will not look here)

