The University of British Columbia

MATH 253

Midterm 2
13 November 2013

Time: 50 minutes

LAST NAME: \qquad FIRST NAME: \qquad

STUDENT \#: \qquad INSTRUCTOR'S NAME: \qquad

This Examination paper consists of 9 pages (including this one). Make sure you have all 9.

INSTRUCTIONS:
No memory aids allowed. No calculators allowed. No communication devices allowed.

MARKING:

Q1		8
Q2		8
Q3		10
Q4		9
TOTAL		35

MATH 253 Midterm 2 - 13 November 2013 - p. 2 of 9

Q1 [8 points]
Consider the integral

$$
\iint_{T} \sqrt{3} d A
$$

where T is the triangle in the $x y$-plane with vertices $(0,0),(2,0)$, and $(1, \sqrt{3})$.
(a) [2 points] Write the integral as an iterated integral where you integrate x first. Do not evaluate the integral (yet!).
(b) [2 points] Write the integral as an iterated integral where you integrate y first. Hint: you may write this integral as the sum of two integrals. Do not evaluate the integral (yet!).

$$
\text { MATH } 253 \text { Midterm } 2 \text { - } 13 \text { November } 2013 \text { - p. } 3 \text { of } 9
$$

(c) [2 points] Write the integral as an iterated integral in polar coordinates. Do not evaluate the integral (yet!).
(d) [2 points] Evaluate the integral using any method.

MATH 253 Midterm 2 - 13 November 2013 - p. 4 of 9

Q2 [8 points]

Consider the following iterated integral.

$$
\int_{x=0}^{1} \int_{y=1-\sqrt{1-x^{2}}}^{1+\sqrt{1-x^{2}}} x \sin \left(\pi\left(1-y^{2}+\frac{y^{3}}{3}\right)\right) d y d x
$$

(a) [3 points] Sketch the domain of integration on the graph provided below.

(b) [5 points] Compute the integral.
[blank page]

MATH 253 Midterm 2 - 13 November 2013 - p. 6 of 9

Q3 [10 points]

The following is the contour plot of a function $f(x, y)$ with domain $\{(x, y): 0 \leq x \leq 20,0 \leq$ $y \leq 20\}$. The values of the contours are spaced evenly. You may make reasonable assumptions about the function: the gradient does not vanish along an entire contour, the function does not fluctuate wildly on a scale smaller that shown by the contours. As indicated below, The gradient of f at the point $(11,15)$ is given by $\langle 0,-3\rangle$. Answer the questions on the following page.

MATH 253 Midterm 2 - 13 November 2013 - p. 7 of 9

(a) (4 points.) Find the coordinates of the critical points of f on the interior of its domain. Classify each critical point as a local maximum, a local minimum, a saddle point, or "other".
(b) (2 points.) Find the coordinates of the global maximum of f and the global minimum of f.
(c) (1 point.) Let $u=\left\langle\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle$. Is the value of $\left(D_{u} f\right)(1,2)$ positive, negative, or zero? Circle the correct answer.
(d) (1 point.) Is the value of $f_{x x}(7,7)$ positive, negative, or zero? Circle the correct answer.
(e) (1 point.) The direction of the gradient of f at the point $(10,5)$ is given by which of the following (circle the correct answer):
i) $\frac{1}{\sqrt{2}}\langle 1,1\rangle$
ii) $\frac{1}{\sqrt{2}}\langle 1,-1\rangle$
iii) $\frac{1}{\sqrt{2}}\langle-1,1\rangle$
iv) $\frac{1}{\sqrt{2}}\langle-1,-1\rangle$
(f) (1 point.) Let $g(x, y)=40-5 y+2 x$. Find the approximate coordinates of the point which maximizes $f(x, y)$ subject to the constraint $g(x, y)=0$.

MATH 253 Midterm 2 - 13 November 2013 - p. 8 of 9

Q4 [9 points]

A trapezoidal enclosure is to be constructed by a fence with three sides and an existing wall. Two of the fence sides are the same length x and the third side is length y and is to be parallel to the existing wall. Let z be the distance from the wall to the parallel wall (see the picture). The area of the enclosure is required to be $3 \sqrt{3}$ square meters and we wish to determine the fence which uses as little fencing material as possible. Find the values of the side lengths x and y and the distance z for the fence which has the minimal total length of fence. You may assume that $y>0$ and that $x>z$.

$$
\text { MATH } 253 \text { Midterm } 2 \text { - } 13 \text { November } 2013 \text { - p. } 9 \text { of } 9
$$

[blank page]

