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Abstract

This paper introduces a generalization of the partial derivatives of rational ex-
pressions, due to Antimirov, to rational expressions with multiplicity. We define the
derivation of a rational expression with multiplicity in such a way that the result is
a polynomial of expressions. This amount to interpreting the addition symbol at the
upper level in the semiring of coefficients.

Former result of Brzozoski and of Antimirov are then expressed in that framework
that allows to deal with rational power series, and automata and expressions with
multiplicity as well.

Résumé

Ce papier présente une généralisation des dérivées partielles d’expressions ra-
tionnelles, dues & Antimirov, aux expressions avec multiplicité. La derivation d’une ex-
pression rationnelle avec multiplicité est définie de sorte que la dérivée est un polynome
d’expressions. Ce qui revient a interpréter, le symbole d’addition, s’il est 1’'opérateur
externe de ’expression, comme 1’addition dans le semi-anneau des coefficient.

Les résultats antérieurs d’Antimirov et de Brzozowski, exprimés dans ce cadre,
peuvent se généraliser aux séries rationnelles, aussi bien qu’aux automates et aux
expressions avec multiplicité

1 Introduction

The purpose of this paper is to generalize the definition and constructions, due to V. An-
timirov ([1]), of the so-called partial derivatives — and that we shall call here derived
terms — from rational expressions and languages to rational expressions and languages
with multiplicity.

In 1964, J. Brzozowski defined the derivatives of a rational expression ([3]). He showed
that, modulo the axioms of associativity, commutativity, and idempotency of the addition
(on the set of words) — the ACI-properties — the set of derivatives of a given expression is
finite, yielding both a new proof for (one direction of ) Kleene’s Theorem and an algorithm
turning an expression into a deterministic finite automaton.

This problem (of turning an expression into a finite automaton) has attracted much
attention since the beginning of the theory ([7, 11]) and is an area of active research since
then. In 1995, V. Antimirov made a fundamental contribution by defining the “partial
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derivatives” of an expression ([1]). Using his own words, “the idea behind [his] construc-
tion is that it allows to take into account the ACI-properties of only those occurrences
of “4” in [rational] terms which appear at the very upper level”. Roughly speaking, the
derivation proposed by Antimirov has two effects. First, it performs the “normal” deriva-
tion and, second, it breaks the result into “parts”, hence the name partial derivatives, such
that this result is the sum of the parts. This construction, which still keeps “a touch of
magic”, has a number of outcomes: the number of partial derivatives is not only finite but
“small”: smaller than or equal to the number of letters in the expression; they are easier to
compute than the classical derivatives and they yield a non-deterministic finite automaton
with (almost) the same number of state; finally, the subset construction applied to that
automaton gives back the deterministic one computed by Brzozowski’s algorithm. The
computation of Antimirov’s automaton has been made really efficient in [5].

What is presented here is at the same time a formalizalion and a generalization of
Antimirov’s construction. We first define the rational expression with multiplicity in a
semiring K. For sake of simplicity in dealing with those expressions, we suppose that K
is commulative, although most of our construction and formulae are independent of this
assumption.

We then define the derivation of a K-expression with respect to a letter and then to
a word. The main feature of our definition, that indeed realizes Antimirov’s main idea,
is that the result of the derivation of a K-expression is not a K-expression anymore but a
polynomial of certain K-expressions (which we call derived terms) with coefficients in K.

The generalization of Antimirov’s results is then straightforward. The derived terms
are exactly the partial derivatives, and they are the state of an automaton — an automaton
with multiplicity, of course — which recognizes the series that is denoted by the expression.
In particular, let us note that this technique overcomes the problem that the addition is
not idempotent anymore, and that Brzozowski’s theorem does not hold in that setting.

This is an example of the interest in taking multiplicities and generalization to series
into account for a simplification and a better understanding of constructions and results

on languages.

Let us note that Caron and Flouret [4] have generalized the Glushkov construction to
expressions with multiplicity, yielding a K-automaton that plays the same role with respect
to ours as the so-called position automaton do with respect to Antimirov’s automaton in
the Boolean case.

In [9], Krob has considered the derivation of rational expressions with multiplicity (in
a commutative semiring) with another problem in mind. He has characterized the set of
axioms such that the derivatives of identities remain identities.

The paper is organized as follow: in the next sections we define rational expressions
with multiplicity, the series they denote and describe a set of “trivial” identities necessary
to allow reasonnable computation.

In section 3, after the definition of derivatives, we state the main theorem; it says that
the derivative of an expression with respect to a word is a linear combination of expressions
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taken in a finite set independant of this word. This allows to build, in the following part,
a finite automaton based on derivatives. The number of states of this automaton, aside

the initial state, is equal to the litteral length of the expression.

We study then a phenomenon that can arise if the coeflicients belong to a semiring
which is not positive; in this case, the computation may generate some useless derived
terms —called shadow terms. Finally, we give some variations on the definition of the

derivative that can prove to be more suitable in some cases.

2 Rational expressions with multiplicity

Let A be a finite alphabet and let K be a semiring. The addition of K, associative and

commutative, is denoted by @, its multiplication simply by concatenation.

Power series The semiring of formal power series over A* with multiplicity in K is
denoted by K({(A*)). The inherited commutative addition in K{A*)) is denoted by &, the
(Cauchy) product by concatenation. For (rational) power series, their definitions, their

notations, the related results, we refer to [2] which we basically follow.

But for one point: in [2], the semiring of coefficients is always equipped with the
discrete topology; as it can easily be seen, this is an unnecessary assumption and K may
well be equipped with any (metric or order) topology. For instance, in Q, with the usual
topology, (1/2)* =14 1/2+ (1/2)>+ --- =2 (cf. [10, 12]). The semiring K{A*)) is then
supposed to be equipped with the product topology derived from the topology on K.

The coefficient of a word f of A* in a series s of K{(A4*)) is denoted by <s, f> . The
constant term of s is the coefficient of the empty word 14« in s and is denoted by c(s).
A series is proper if c(s) = Og. The proper part of s is the proper series, denoted by s,,
which coincide with s on all words f different from 14+ and one can write s = c(s) L4« P s,.
The star of a proper series is always well defined. The star of a series which is not proper
may be defined or not, and the decision between the both cases is given by the following

proposition:

Lemma 1 [2, Exer 1.3.4]  The star of a series s is defined iff the star of c(s) is defined
(in K) and it holds:

s" = (c(s)"sp)"c(s)" . |

Rational expressions From now on, and for a reason we shall explain later, we suppose

that the semiring K is commutative.

The definition of rational expressions over K goes as the one of classical rational ex-

pressions: it amounts to the construction of a set of well-formed formulae.

Let {0,1,+, -, %} be a set of operations. Naturally, + and - are binary, * is unary, and 0
and 1 are “0-ary” operations, that is, they are constants. Moreover, for every k in K, there

is a unary operation, again denoted by k.
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i) 0, 1, and a, for every a in A, are rational expressions (the atomic expressions or
formulae).

ii) If E is a rational expression and k is in K, then (kK E) is a rational expression.
iii) If E and F then (E+ F), (E-F), and (E*) are rational expressions.
We denote by KRatE A* the set of rational expressions over A with multiplicity in K.

The complexity of a rational expression can be described by different parameters. The
litteral length, denoted by £(E), is the number of atomic formulae in E that are letters (e.g.
0((1/3 (a*)+1/6 (b%))*+(21)) = 2). Remark that £((E+ F)) = ¢((E-F)) = £(E) + ¢(F) and
that ¢((E*)) = £((kE)) = £(E). This is the parameter on which the automaton we build in
section 4 depends. Whereas, many of our proofs are actually by induction on the depth
of an rational expression. The depth! of an expression is inductively defined by:

d(0) =d(1
Vaec A d(a

d((kE)) = d((E")
d((E-F)) =d((E+F)

9

0
0,
1+

+d(E),

)
)
)
) =1+ max(d(E),d(F)).

The constant term of an expression E is defined by induction on the depth of the
expression E:

c((kE)) =kc(E), c((E+F))=c(E)De(F), c((E-F))=c(E)c(F)
and c((E™)) =c(E)" iff the latter is defined in K.

A rational expression E is a formula. It can either be wvalid and denotes a rational
series, or not. We say that an expression is valid if ¢(E) is defined.

The series denoted by a valid expression E, which we note as |E|, is defined by induction
on the depth of the expression E as well:

0] =0k, |1=14x, |a|=a, foreveryain A, |(kE)|=Ek|E|,
(E+F)=IEl&|Fl, |(E-F)l=IE[IF], and [(E")]=[E|".

Two valid expressions are equivalent if they denote the same series.

The definition of the constant term of an expression is consistent with the one of
series denoted by an expression. Actually, ¢(E) and |E| are defined by the same induction.
Moreover the constant term of an expression and the constant term of the series denoted
by this expression are identical on the atomic expressions. Hence c(E) is equal to c(|E|).
The last equation is besides made consistent by Lemma 1: |(E*)| is defined iff ¢(E)* is
defined thus iff (E*) is valid.

Remark that Lemma 1 allows to define the star of a series with a constant term denoted

by an expression E without requiring any information on the expression that denotes |E|,.

"We choose “depth ” rather than “height ” in order to avoid any confusion with the “star height » of
a rational expression (that we are dealing with in another paper).
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Examples 1 : In the forthcoming examples, A = {a,b} and K = Q.

i) By = (((éa*) + (% b*))*). Let Fy = ((% a*) + (% b*)) . It comes c(Fy) = % ,
hence ¢(Fy)* = 2. Thus, although |F;| is not proper, the series denoted by E; is well-
defined.

i) Ez=(aba+ (a(a—"ba))).

For simplicity, we write a b for (a-b), aba for ((¢-b)-a)and (a—ba) for (a+ (—1x (b-a))).
iii) Es=5((2ab)+((30)-(4(ab)*)))” (This is the running example in [4].) O

Trivial identities The following identities trivially hold on rational expressions with
multiplicity:

(k0)=0, (0xkE)=0, (0-E)=(0-E)0, (1)
0+E=E+0=E, (1xE)=E, (k1)-E=E-(k1)=(kE). (2)

The first reason why the semiring K has been supposed to be commutative is to keep the
definition of rational expressions with multiplicity simple enough, while the basic following
property still holds:

Proposition 2 A series of K{(A*)) is K-rational iff it is denoted by a rational expres-
ston with multiplicity in K. [ |

One can see the trivial identities as rewriting rules and it should be clear that every
rational expression is equivalent to an expression in “reduced form” which is unique and
which can be computed in a time proportional to the length of the expression, provided
the multiplication in K is seen as an operation with fixed cost.

Remark 1 Note that the trivial identities have nothing to do with the associativity
and commutativity axioms for the + operation: (a+(b+c)), ((a+b)+c) and (a+(c+b)) are
three different expressions, nor with the associativity of “.”, in spite of the simplifications

we have used in the examples.

3 Derivatives and derived terms

We now introduce polynomials of expressions and their derivatives. The set K(K RatE A*)
of linear combinations of rational expressions, or polynomials of expressions, is a K-
semimodule; the addition is commutative and the multiplication by an element of K is
distributive:

FE®KF=KFakE (3)
kE® K E =[kK]E (4)
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We define a multiplication law on the monomials (i.e. on the elements of the base of
the semimodule), which is generalized to polynomials by a distributivity axiom:

[k E][K'F] = [k K] (E - F) (5)
(E@E]-F)=(E-FaE-F), (E-[FeF])=E F)aE-F) (6)

In the following, [k E] or kK E is a monomial whereas (kE) is an expression.

The series denoted by a polynomial of rational expressions is obtained by extending
by linearity the interpretation defined on rational expressions.

Remark 2 If K is not commutative, the interpretation of the left handside and the
right handside of the identity (5) may differ. This is the main reason for our assumption
of commutativity. However this difficulty can be overcome, and it will be done in a
forthcoming work.

The set of polynomials of rational expressions is not a semialgebra. Actually, the
multiplication that we define is not associative:

[EI[F]I (6] = ((E-F)-G) # (E-(F-G)) = [E] [[F] [G]]

However, it does not cause any problem in the framework of derivatives.

3.1 Derivatives

Definition 1 & Notation Let E be in KRatE A* and let a be in A. The derivative of E
with respect to a, denoted by % E, is a polynomial of rational expressions with coefficients
in K, defined inductively by the following formulae.

%0—;@1—0
Vac A 8%@:1, a%b:o Voc A, b#a
SekE) =k S (7)
;Q(EJFF) i @%F (8)

da
(g eem 2
%(Ew:c(a (|s5e| @) (10)

The derivative of a polynomial of expressions is defined by linearity:

(% (@ EZ-> = (%EZ- (11)
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Implicitely, the (polynomial of) expressions are reduced by trivial identities (e.g.
if ¢(E) = Ok, then -%(E - F) is equal to ([:% E| - F) and not to ([ E] - F) & 0k & F). If
we compare the equations (7) to (10) to the classical ones, it is the replacement of a “+”
by a “@” in the right handside of (8) and (9) that realizes the generalization of the idea
of Antimirov. Equations (7), (10) and (11) are the natural ones that are necessary for
the generalization to expressions with multiplicity. Notice that equation (10) is defined

only if E is a valid expression.

Once again, let us stress on the fact that with these conventions, a derivative of an
expression with respect to a word is not an expression anymore, but a polynomial of
rational expressions (with coefficients in K).

Contrary to the Boolean case, the number of polynomials obtained by iterating the
derivative process can be infinite. Theorem 1 will state that all these different polynomials
are linear combination of a fixed finite number of expressions.

The derivative of an expression with respect to a word f is defined by induction on the

length of f (by convention, the derivation with respect to the empty word is the identity):

. o _ 0 (0

The derivative of an expression with respect to a word corresponds to the (left) quotient

of a series by a word. Recall that if s is a series in K({(A*)), the left quotient of s by a
word f in A* is the series f~1s defined by

Vg e A" <fls,g> = <s,fg>

The link between derivative and quotient is explained in the following proposition:
J
Proposition 3  Vfec A* W(E)l = [ E|

This result that can be proved directly will appear as a corollary of more precise
properties of the derivative of a rational expression.

The following properties are easily established, by induction on the length of the
word f:

J J J
. + & - i
Proposition 4 VfeA af(E—}—F) afE@afF u
0 0 J 0
L + _— . - | = . — —
Proposition 5 VfeA 8f(E F) [af E] F& f@h C(ﬁg E) o F| m
gEA*_,%EA‘*

Proposition 6 VfeAt

9 = c *ci c *ci —-c(E)*c 0 c(E)” O e e
FE) = D B clgq B B el BB el ) <) g
91,92, ,9n€AT

-~
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Although this last equation can be simplified in the commutative case, we choose to
write it in this form which is more relevant to the process of derivation.

Examples 1 (continued):

) g Ei=g () =250 (5a7) Fr o2 o (507) R =g (a7 Fr)
B =25, (GV) Fo=50"-F)
%El Saa((l Fl)—S(aa(Z) F1 EBSC((L)a (Fl)
:§(a*F1*)@%(a*F1*):%(a* Fl*)
abEl:%%(a Fl)—%(%a) F1 @%C(Q)%(Fl):%(bl:l)
GaEi=d e R =4 (o) P e ) L) = (R
0 _ 2 0 * *\ __ 2 a * * 2 * a *
= gy 0RO =3 () Fe 2w R
=2 (0" -F)@g (0-F) =7 (07 Fr7)
. 0 13}
ii) a—aEg_ba@(a—ba) (?_bEQ_
J 0 0
%EQ—%I)(Z@%((Z—I)G)—I
0 Eg:iba@i(a—ba):a@(—lﬂg)azo o

dab b b

3.2 Derived terms

We state now the main theorem that is a generalization of Antimirov’s result.

Theorem 1 Let E be in KRatE A*. There exist an integer m, m < ((E), and m

rational expressions Ky, Ko, ..., K, such thal for every word [ in AT, there exist m
coefficients in K, kif), kéf), oo, kY such that
9 i=m
— (f)
57E= P+ K;
=1

The following statement proves to be very convenient in order to establish Theorem 1
and some further results of this paper.
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Proposition 7 Let E be in KRatE A*. There exist an integer n, n < {(E), and n ratio-
nal expressions Ky, Ky, ..., K, such that for every letter a in A, there exist n coefficients,
k;“), kéa), oo, K and n? coefficients {z}‘})}me[n] in K such that

i) —E_@k

0
i) Viel[n] %Ki:@zgy K;.

J€[n]

We call the expressions K;, the existence of which is asserted in the proposition, the
derived terms of E. In the case where K = B, they are exactly what Antimirov called

“partial derivatives” of E, with the explication that they are “parts” of the derivatives

of E ([1]).2

Examples 1 (continued): The derived terms of Ey are (¢*-F;*) and (b* - F{™). m|

As we shall see in the proof of the Theorem 1, the expressions that appear in the
theorem are derived terms. However, it may happen that the numbers m and n are
different (m < n always holds). The derived terms that do not appear in the Theorem 1
are called shadow derived terms. Their significance will be better understood in the next
section. It is also easily seen that if K = B or, more generally, if K is a positive semiring,

there is no shadow term.3

Examples 1 (continued): There is no shadow expression among the derived terms
of E; whereas those of E; are ba, (¢ —ba), a and 1: a = ;—b(a —ba) is a shadow derived
term of E,. |

Proof of Proposition 7. By induction on the depth of the expression E (not on its
litteral length). The statement obviously holds for 0 and 1 and for E = a, a € A. We then
successively show:

a) If it is true for E, it is true for (KE), k¥ € K. Obvious from (7). The derived terms
of (kE) are the same as those of E.

b) If it is true for E and F, it is true for (E+ F) . It holds
a(E—|—F)—iE@—F—@k Kio @@L
da da pele]

with obvious notation. The set of derived terms of (E 4 F) is the union of those of E and F
and this set clearly satisfies the proposition.

2We consider this wording as rather unfortunate, since the derivatives of a rational expression are
already “partial” in essence as we have derivatives with respect to every letter of the alphabet, i.e. to
y P 1 Y p )
every (non commutative) unknown. Moreover, “partial derivative” is an established expression in the area
of mathematics, that has a definite relationship with the expression “derivative”.
®And this is the reason why this notion of shadow term does not appear in the work of Antimirov.
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c) If it is true for E and F, it is true for (E-F) . It holds
2(E-F) ~ (|2 €l .F @ c(E) Ip_ P (Ki-Fya @ (c(E) 1Y) L
da da da S0 ' P

The set of derived terms of (E-F) is the union of the set {(K; - F)};cp,) and of {L,},¢s

and one verifies that, for every 7 in [n] and every a in A, it holds:

J B a
8_Q(Ki F) =P 2 (K -F)a P (c(K) 1) L,
p€E[s]

J€[n]

d) If it is true for E, it is true for (E*) . It holds

S @) =@ (|58 - €)= B (e re) ki)

1€[n]

The set of derived terms of (E*) is {(K; - E*)};c[,)- And one verifies that, for every ¢ in [n]
and every a in A, it holds:

J€[n] J€[n]

Proof of Theorem 1. By induction on the length of f. If f is a letter, the theorem is

—

equivalent to the equality i) of the Proposition 7. For every f in AT and every a in A, it
holds:

O e 9 (0N D
(?faE_(?a((?fE)_g?]ki (?aK2

- P {@ 2 K]-] - D {@ (ko Z;j;.))] K; (13)
i€[n]

i€ln] i€ln] Li€ln]

One observes here the first benefit of Proposition 7: the proof of Theorem 1 goes by
induction on the length of f and not on the depth of E and the formulae involved keep
much shorter than they would with a direct proof. [

Remark 3 Indeed, Proposition 7 is not only a convenient statement to prove Theo-
rem 1; it describes the most natural algorithm in order to compute the derived terms of E.
The derived terms are computed by successive derivations, until their set does not grow
anymore.

The following makes the link between the coefficient of f in the series denoted by E
and the derivative of E by f.

,10,
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Theorem 2 Let E be in KRatE A*, let Ky, Kq, ..., K, be its derived terms and, for
every word [ in AT, let k;f), kéf), ..., kYY) be the coefficients defined in Theorem 1. It
then holds:
S (£) .
<IEL£> = clzrE) = D elky (14)

Proof. The proof goes by induction on the depth of the expression and makes use of
propositions 4, 5 and 6.

The result is true for 0 and 1: the derivation with respect to any word f in AT is null
and the coeflicient of f in the series 0 and 14+ is actually null.

Likewise, if the expression is reduced to a letter a in A, except if f = a. In this case,
the derived expression is 1 and the theorem holds.

For every k in K, and for every rational expressions E and F, for which the theorem

holds,

0 0
<IKENS> =k <|ELf> =k c(37E) = c(37(kE)
<[(E+F),f> = <|E,f> @& <[F|, f>
0 0
= (WE)@C(WF)
0
= c(57(E+F)
<|E-F), f> = <|E)|.f> <|Fl,10o> 5 P <|(E)l,g> <|(F)[,h>
gEf{:%éAJr
0 0 0
IC(WE) o(F) & f@h C(% E)e(57 F)
geA;%eAJr

9 9 _ 9
=c||—=E| F D By Sy
‘ [8f ] v G

gEA* heAt

= cl7(E-F)

All these equations, as well as the second equality of the theorem, directly follow from the

linearity of c(E). To prove the result on E*, in order to avoid an infinite sum, we use the

— 11 -
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Lemma 1 before applying the same arguments.

<|(E)N /> = <(c(E)*|E[,)" c(B)", /> = <(c(E)"[E[,)", f> <(E)"
= ) <c(E)*|El,, 91> ... <c(E)*|Elp, gn> c(E)*

f=g192+gn
91,92, gn€AT

= ) ¢(E)* <|Elp, 91> ...c(E)* <|Elp,gn> c(E)*
f=g192+gn
91,92, ,gn€AT

As the g; are all different from 14+, <|E|,,9:> = <|E|,g:>

AEN> = D B el ) e®) el E) <(E)
f=9192:gn g1 In
91,92, ,gn€AT
J J
=c c(B)* c(+— c(E)* |=— E*
D el el D) g ()
=g192°9n
91,92, gn€EAT
J
= E*
— (57 ) .
Proof of Proposition 3. The definition of the derivative of an expression E implies
that % E= ad { of } for every pair of words f and g in A*. Thus, for all f and g in A*,
8 J J
~'E = <|E = E| ) = <|—E
<S/7T'|El.g> = <[E|, fg> = C(af E)=c ar <|8f l,g> -

Remark 4 The derivative and the left quotient are right actions of A* on the set
of polynomials of rational expressions and the set of rational series respectively. Theo-
rem 1 says that the orbit of a rational expression with multiplicity under the action of A*
belongs to a finitely generated K-semimodule. The function which maps a polynomial
of expressions P onto the rational power series | P| is a morphism of actions. Therefore,
Theorem 1 implies that the orbit of a rational series under the action of A* belongs to
a finitely generated K-semimodule as well, and provides a new proof for this classical
result [2].

4 The automaton of derived terms

To any rational expression with multiplicity E in KRatE A*, we associate a K-automaton
(i.e. an automaton over the alphabet A with multiplicity in K) in the following way.
Let P = {K{,Ky, ... ,K,} be the set of the derived terms of E. Let Ky = E and let Pg be

- 12 -
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the union of P and Kg. The automaton of derived terms of E is the K-automaton Ag =

(Pe, A, Z,1,T) defined by:

Ox otherwise

1k it K; =K o
Ik, = { ’ 2K K; = @Z( la, Tk, = c(K;),

where the ZZ(“j) have been defined at Proposition 7.

Theorem 3 Let E be in KRatkE A*. The series realized by the automaton of derived
terms of E is equal to the series denoted by E:

| Ae| = [E|

Proof. The definition of the K-automaton Ag is indeed equivalent to the definition of a
“K-representation” (I,¢,T). This is a part of the proof of the so-called Kleene-Schiitzen-
berger Theorem (cf. [2]). In the representation (/,{,T), I and T are the two vectors of
dimension n (where n = Card(Fg)) with entries in K defined above and (: A* — K™ is
the morphism from A* into the monoid of n X n-matrices with entries in K defined by

Vae A, Vijeln]  (a)Gj= 2.

The series realized by the representation (I, ¢,7) (and thus by the automaton Ag) is, by
definition:

l[Ael= @I (f)¢-T) f.

fEA*
Now, (13) directly shows, by induction on the length of f, that
VEAY Vie]  (I-()Qi=k, (15)

K3

and then, by (14),

Vfe AT <|Ael, f> =Pk c(Ki) = <|El, [>. (16)
iln]

The theorem is then trivially verified, since the coefficient of the empty word is

<|Agl,14x > = c(Kg) = ¢(E). [

Examples 1 (continued): Figure 1 shows the automaton of derived terms of E;. O

Proposition 8 Let E be in KRatE A* and let Ag be its automaton of derived terms.
The K-automaton obtained from Ag by erasing the states that correspond to shadow derived
terms and by trimming the result realizes the same series | Ag| = |E|.

,13,
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Figure 1: The automaton of derived terms of E;

Proof. If K; is a shadow derived term, then, by (15):

kD =(I-()¢)i =0k

for every f in A* and this state can be erased in the representation (/,(,7") without
changing the realized series. The further trimming of the corresponding automaton does

not change the realized series either. ]

Example 1 (continued): Figure 2 a) shows the automaton of derived terms of Ej; b)
shows the effect of, first, the suppression of the state ¢ and then the trimming that erases
the state ba. a

(a) The automaton of derived terms of E; (b) The automaton of non-shadow derived terms of E;

Figure 2: An example with shadow derived terms.

The effectively computation of the shadow terms depends on the semiring of coeffi-
cients. In many cases —and in particular in all classical cases— this computation does not
bring any problem. On the one hand, if the semiring is positive, there is no shadow term.
For instance, Boolean semiring, sub-semirings of R, (max, +)-semirings, (P(A4*),U, .),etc.
are positive?. On the other hand, K; is a shadow term if and only if the series realized by
the automaton A; = ( Pe, A, Z, I,{K;}) is equal to zero. This can be easily decided if the

*Notice that not all idempotent semirings are positive: some may have zero divisors.
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Derivatives of rational expressions with multiplicity

semiring of coefficients is a sub-semiring of a field (¢f. [6], Equality theorem). Examples
of such semirings are N, Z, Q, Z[X], etc.

5 Variations

The definition of derivations and of derived terms has been chosen such a way they can
stand as a perfect generalization of those defined by Antimirov and, in particular, in order
to get the same bound on the number of states of the automaton of derived terms. But
as there are many different semirings, and for other developments, it may be interesting
to choose slightly different definitions for the derivatives.

Here are two of them, the first one leads to an automaton that may be smaller than the
automaton obtained by the basic definitions, the second one may yield a bigger automaton
whose structure is closer to the expression.

A convenient way to describe the modifications in the definition of derivatives is to
take another convention for the derivative with respect to the empty word. We recall that
until now, we suppose that the derivative with respect to the empty word is the identity

2]

on the set of rational expressions with multiplicity: T E = E. We shall see that this
A*

single modification implies deep differences between automata of derived terms.

5.1 Building the derivatives with unitary expressions

In the previous part we define the automaton of derived terms in which every state is
characterized by an expression. So E and (kE), which are of course distinct expressions
for k different from 1k, label two different states. We can define derivatives such that such
a pair of states will finally be merged in the automaton of derived terms.

With this intention, we assume that there exists another identity on rational expres-

(k (K'E)) = (kK] E) (17)

A consequence of the identity (17) is that any expression E in KRatE A* may be
written in a unique way as E = kM where M is what we call a unitary expression or, more
precisely the unitary expression in E if we refer to E. It is thus a letter or an expression
of the form: (E+F), (E-F) or (E*) — but not of the form (kE) — e.g. E; and E3 (cf.
Example 1) are unitary expressions, ((2ab)+ ((36)- (4 (ab)*)))* is the unitary expression
in Es.

Remark 5 The “extraction” of a unitary expression is not a process of factorization:
((2a) 4 (4b)) is unitary while (a 4 (2b)) is the unitary expression in (2 (a+ (2b))).

We define the derivative with unitary expressions whose result is a polynomial of
87
81A*
(kM) in KRatE A* (where M is the unitary expression in E) into the monomial & M.

unitary expressions. For this purpose, we define which maps every expression E =

,15,



Derivatives of rational expressions with multiplicity

We can then define the derivative with unitary expressions of E in KRatE A* with
respect to a as

o >0
50 5= 91 (7B (18)

The aim of this method is that the coefficients pop up as soon as possible. Applying
this, we give a modification to the equation (9):

o’ o’ o’ o’
—(E-F)={|=—E|- F E) —F 1
€0 (5 [ ]) oo i o
This modification is consistent with the equation (9) since alaA* F = F, for every F
in KRatE A*.
Let E be an expression in KRatE A*. Let P’ = {K{,K5,... K/} be the set of unitary

derived terms and ko K}, = —a{y E. Let {Z’E»“} | i,7 € [n],a € A} be elements of K such
A" !
that

The automaton of unitary derived terms of E is the K-automaton Ap = ( P'UK[, A, Z, I',T")
defined by:

3 ! __ !

.} ko if K!=Kj , . 1(a) 1 (K

K = herwi , KK =D %0 % K, = c(Kj)-
(1)d otherwise acA

The proof that the number of derived terms obtained by this method is still smaller
than the length of the expression and that the unitary derived terms automaton of E
realizes the series |E| is straightforward from the proof in the “classic” case. Their number
are even smaller or equal than the number of the derived terms.

Examples 1 (continued): Let F5 = ((2ab)4((3b)-(4(ab)*)))*; Es = (5 F3). We compute
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Derivatives of rational expressions with multiplicity

the derived terms (left column) and the unitary derived terms (right column):

Ko =E3 K,=Fs ko=5
iK =10(b-F3) = 10K gK’—Q(b-F)—QK’
9g 0= 3) = 1 Ja 0= 3) = 2K,
80—[) Ko =15 ((4 (ab)™) - F3) = 15Ky % Ko =12 ((ab)* - F3) = 12K}
J 0’
a_bKl =F5; = K; a—bK’1 =F3 = Kj,

0 0’

Pa Ky =4 ((b- (ab)*) -F3) &8(b-F3) %0 Ky, =((b- (ab)*) - F3) @2 (b-F3)
=4 K4 B 8K, =K, 3 2K]

0 N 0’ "

0

8_aK3 =2(b-F3) =2K,

J

a—ng :3 K2

ﬁK =((ab)*-F3) =K QK/—((IJ)*-F)—K/

gp 4T\ e = s gp 3\ T = e

.iKS =Ks & 2Ky

Jda

J

a_bKS :3 KQ

c(Ko) =5,¢(K1) =c(Ky) =0 c(Kp) =c(Kj) =1

c(Kq) =4,¢(K3) =c(K5) =1 c(K}) =c(K5) =0

Figure 3 a) shows the automaton of derived terms of E3 (which is isomorphic to the
Glushkov automaton computed in [4]); b) shows the automaton of unitary derived terms
of Es. O

@)

e a i ®
@)

120

(a) The automaton of derived terms of Es (b) The automaton of unitary derived terms

Figure 3: Two K-automata for Eg
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5.2 Breaking the derivatives

Another modification on the derivatives is to consider that the “4” operation of the
rational expressions is weak and that the derivative with respect to the empty word breaks
it. The breaking derivative of an expression with respect to the empty word is defined as
the identity on atomic expressions and on the rational operations except for “47:

877 877 877
E+F)= E F 21
The breaking derivative of an expression E with respect to a letter a is % E= 8613:1* (% E).
The derivative of the “-” is improved in the same way as for unitary derivatives:
877 877 677 877
—(E-F)={|=—E|- F E) —F 22
8(1( ) ([8(1 ] [GlA* ])@C( ) da (22)

Let E be an expression in KRatE A*. Let P = {K{,K%, ... ,K!'} be the set of broken
derived terms and P} the set of terms of % E. Let {2”5-3 | i, € [n],a € A} be elements
of K such that

C k= @ (23)

J€[n]

The automaton of broken derived terms of E is the K-automaton Af = (P"U P/, A, Z", 1", T")
defined by:

1 it K’e P/
1 7 (a)
I = { ' ; {(;',Ky = @Z”' & r’<’; c(Kj).

. i, 4
Ox otherwise g

With this convention, the bound on the size of the automaton of derived terms does
not hold anymore, but in some cases, the result of the algorithm may seem “closer” to the

expression.

Example 2 : Let Es = a* + b*. Figure 4 a) shows the automaton of derived terms
of Es, b) shows the automaton of its broken derived terms. O

- N <}

~@D) -

Qb\’%—
b

(a) The automaton of derived terms of Es (b) The automaton of broken derived terms of Es

Figure 4: Two K-automata for Es
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