Star Height of Reversible Languages
and Universal Automata

Sylvain Lombardy and Jacques Sakarovitch

Laboratoire Traitement et Communication de 'Information (CNRS / ENST)
Ecole Nationale Supérieure des Télécommunications
46, rue Barrault 75634 Paris Cedex 13, France
{lombardy,sakarovitch}@enst.fr

Abstract. The star height of a regular language is an invariant that
has been shown to be effectively computable in 1988 by Hashiguchi. But
the algorithm that corresponds to his proof leads to impossible com-
putations even for very small instances. Here we solve the problem (of
computing star height) for a special class of regular languages, called
reversible languages, that have attracted much attention in various areas
of formal language and automata theory in the past few years. These
reversible languages also strictly extend the classes of languages consid-
ered by McNaughton, Cohen, and Hashiguchi for the same purpose, and
with different methods.

Our method is based upon the definition (inspired by the reading of
Conway’s book) of an automaton that is effectively associated to every
language — which we call the universal automaton of the language —
and that contains the image of any automaton that accepts the language.
We show that the universal automaton of a reversible language contains
a subautomaton where the star height can be computed.

Key words: Finite automata, regular expressions, star height, reversible au-
tomata, reversible languages, universal automata.

Introduction

Among all invariants attached to regular languages, the star height introduced
by Eggan in 1963 proved to be the most puzzling one. The formal definition
of star height will be recalled below but, in one word, one can say that the
star height of a (regular) language K is the minimum of nested star operations
that has to be used in order to describe K by a regular expression. As this star
operation is the only! regular operation that goes from finite to infinite, star
height is a very sensible complexity measure.

In a manner of a parallel to Kleene’s theorem, Eggan ([7]) showed that the
star height of a rational expression is related to another quantity that is defined

! Regular languages are closed under complement but complement is not considered
as a regular operation.

on a finite automaton which produces the expression, a quantity which he called
rank and which was later called loop complerity. And he stated the following
two problems:

i) Does there exist, on a fixed finite alphabet, regular languages of arbitrary
large star height?

ii) Is the star height of a regular language computable?

The first problem was solved, positively, in 1966 by Dejean and Schiitzenberger
([6])- Soon afterwards, in 1967, McNaughton ([14]) gave a conceptual proof of
what Dejean and Schiitzenberger had established by means of combinatorial vir-
tuosity (one of the “jewels” of formal language theory, as stated in [17]). He
proved that the loop complexity, and thus the star height, of a pure-group lan-
guage, i.e. a language whose syntactic monoid is a finite group, is computable.
And that this family contains languages of arbitrary large loop complexity (the
languages considered by Dejean and Schiitzenberger were — of course (?) —
pure-group languages).

In addition, McNaughton’s gave simple evidence of the fact that the star
height of a regular language is not a syntactic invariant, or, which is roughly
equivalent, the minimal automaton of a language is not of minimal loop com-
plexity. As we explain below, the work of McNaughton was pushed further on,
and, to some extend, our present result can be seen as its ultimate stage, which
is reached by new methods.

Before that, we have to mention first that the second problem (the com-
putability of star height) remained open for long and was considered as one of
the most difficult in the theory of automata. It was eventually solved (positively)
by Hashiguchi in 1988 ([10]). The method of Hashiguchi is completely different
from the previous work and can be (briefly) described as follow. Given an ex-
pression FE that denotes a language L on A*, a bound M (super-exponential in
the size of E) is computed. If L is of star height 1, it is denoted by an expression
of height 1 which is shorter than M. If no such expression denotes L, then all
languages denoted by those expressions are taken as letters of a new alphabet;
and if L is of star height 2, it is denoted by an expression of star height 1 on
this new alphabet and which is shorter than M. And so on. The process stops
at the latest when the star height of E is reached.

Although very impressive and recognized as a tour de force, this solution
presents unsatisfactory aspects and this opinion can be explained in two ways.
First, the algorithm that this solution embodies is not only of high complexity
(it is known to be PSPACE-hard) but also leads to computations that are by
far impossible, even for very small examples. For instance, if L is accepted by a
4 state automaton of loop complexity 3 (and with a small 10 element transition
monoid), then a very low minorant of the number of languages to be compared
with L for equality is:

. 101010
(10") (107)) .

Second, and this is not independent from the previous observation, the algo-
rithm does not deal with any structural aspect of the language, i.e. the data
are just numbers, here the number of elements of the syntactic monoid, but not
the monoid itself, nor the automaton, whose form or properties could be taken
into account. This is the reason why we think that the problem deserves to be
considered again.

We address here the problem of computing the star height of the family
of reversible languages, that are a very natural generalization of pure-group
languages. A regular language is reversible if it is recognized by a reversible
automaton. An automaton is reversible if every letter, and thus every word,
induces a 1-1 partial mapping on the set of states of the automaton, i.e. if its
transition function is both deterministic and co-deterministic. These reversible
languages have already attracted much attention in automata theory, and more
widely in theoretical computer science. They have been studied in connexion
with inverse monoids (Silva [18]) and for their topological properties (Pin [15],
Héam [13]).

It is noteworthy that the minimal automaton of a reversible language is not
necessarily a reversible automaton — a part of the originality and the intricacy
of our result lays in that discrepancy. Pin has shown in [15] that it is decidable
whether a regular language is reversible or not. This makes the study of reversible
languages meaningful.

The starting point of our work is the definition of the universal automaton
of a language. The universal automaton Uy, of a language L is finite if and only
if L is regular (if the minimal automaton of L has n states, Uz, is effectively
computable and has between n and 2" states) and has the property that any
automaton A4 which recognizes L has a morphic image in Ur. Somehow, Uy,
plays the same role with respect to any automaton which recognizes L as the
role played by the minimal automaton of L with respect to any deterministic
automaton which recognizes L. In particular, i/} contains as a subautomaton
any minimal automaton (even non-deterministic ones) that recognizes L. The
definition of the universal automaton is directly derived from the one of the
factor matriz of a language, given by Conway in [5, Chap. 6]. The definition of
the universal automaton has also been mentionned in [1].

The aim of this paper is the presentation and the proof of the following result.

Theorem 1. The universal automaton of a reversible language K contains a
subautomaton of minimal loop complezity that recognizes K.

As the universal automaton Uk is effectively computable, this result directly
yields, by means of a simple inspection of all its subautomata and their loop
complexity, an algorithm computing the star height of K which is far more
faster than the one derived from Hashiguchi’s method. The mere statement of
that algorithm yields a procedure which has a doubly exponential complexity in
the number of the states of the minimal automaton recognizing K.

Theorem 1 clearly extends the new version we have given to McNaughton’s
theorem by means of the universal automaton ([12]). Along the same line as

McNaughton, star height was shown to be computable by Cohen [3] for “(special)
reset-free events” and by Hashiguchi [9] for “reset-free events” in general. As
reset-free events are reversible languages whose minimal automaton is reversible
(the special ones are those for which this minimal automaton has only one final
state), Theorem 1 stricly encompasses these developments as well. It should
be noted also that the way Theoreml is proved is reverse to the one used in
McNaughton’s or Hashiguchi’s proofs. They start from an automaton which has
the desired properties (it is the minimal automaton of the language) and they
show they are able to build from it an automaton of minimal loop complexity for
the language. We do not (need to) know explicitely the reversible automaton that
accepts the language but we show that an automaton of minimal loop complexity
can be found in an automaton that we can compute from the language (it is the
universal automaton).

The paper is organized as follow. We first recall the definitions of star height
and loop complexity, and give in Section 2 the one of universal automaton of a
language. In Section 3, we present McNaughton result on pure-group languages
within our framework, as it is an introduction to the main theorem. In the next
section, we define the reversible languages and state the main property of their
universal automaton by means of the subset expansion. The proof of Theorem1l
is given in the last section. Due to space limitation, proofs are somewhat sketchy.

1 From Star Height of Expressions to Loop Complexity
of Automata

We follow [8] for the standard definitions and notation for automata.

Regular expressions (over A*) are the well-formed formulae built from the
atomic formulae that are 0, 1 and the letters of A and using the binary opera-
tors “+” and “-” and the unary operator “x” . The star height of an expression E,
denoted by h(E), is defined recursively by:

ifE=0,E=10orE=ac€ A, h(E) =0,
ifE=E+E"orE=FE-E", h(E) = max(h(E’),h(E”)),
if E=F*, h(E) =1+ h(F) .

Ezample 1. The expressions (a+1)(a®+b)*a+1 and (b*a+1) (ab*a)* have star
height 1 and 2 respectively. As they both denote the language K; accepted by
the automaton Ay, this shows that two equivalent expressions may have different
star heights.

Definition 1. The star height of a regular language K of A*, which we note
as h(K), is the minimum of the star height of the expressions that denote? the

> We write |E| for the language denoted by the expression E. Similarly, we write |.A|
for the language accepted by the automaton .A.

Fig. 1. The automaton A;

language K :
h(K) = min{h(E) | E€ RatA* |E|=K}.

The star height of an expression reflects also a structural property of an
automaton (more precisely, of the underlying graph of an automaton) which
corresponds to that expression. In order to state it, we define the notion of a ball
of a graph: a ball in a graph is a strongly connected component that contains at
least one arc.

Definition 2. The loop complexity® of a graph G is the integer Ic(G) recursively
defined by:

Ic(G) =0 if G contains no ball (in particular, if G is empty);
Ic(G) = max{lc(P) | P ball of G} if G is not a ball itself:
Ic(G) =1+ min{lc(G \ {s}) | s vertez of G} if G is a ball.

As Eggan showed, star height and loop complexity are the two faces of the
same notion:

Theorem 2. [7] The star height of a language K is equal to the minimal loop
complexity of an automaton that recognizes K.

In a previous paper [12], we showed an even stronger connection between
star height of an expression and loop complexity of an automaton.

Proposition 1. The loop complexity of a trim automaton A is equal to the
infimum of the star height of the expressions that are obtained by the different
possible runs of the McNaughton-Yamada algorithm on A.

Theorem 2 allows to deal with automata instead of expressions, and to look
for automata of minimal loop complexity instead of expressions of minimal star
height. This is what we do in the sequel.

3 Eggan [7] as well as Cohen [3] and Hashiguchi [9] call it “cycle rank”, Bchi calls
it “feedback complexity”. McNaughton [14] calls loop complexity of a language the
minimum cycle rank of an automaton that accepts the language. We have taken this
terminology and made it parallel to star height, for “rank” is a word of already many
different meanings.

2 The Universal Automaton of a Language

Let A = (Q,M,E,I,T) be an automaton* over a monoid M. For any state g
of A let us call “past of ¢ (in A) 7 the set of labels of computations that go from
an initial state of A to ¢, let us denote it by Past(q); i.e.

Pasta(q) ={me M |Jiel i%}q}.

In a dual way, we call “future of ¢ (in A)” the set of labels of computations that
go from ¢ to a final state of A, and we denote it by Fut4(q); ¢.e.

Futa(g) ={meM|IteT q%t}.

For every ¢ in () it then obviously holds:
[Past4(q)] [Futa(q)] € |A].- (1)

Moreover, if one denotes by Trans 4(p, q) the set of labels of computations that
go from p to ¢, it then holds:

[Past4(p)] [Trans.(p, q)] [Futa(q)] C | Al - (2)

It can also be observed that a state p of A is initial (resp. final) if and only if 14+
belongs to Past 4(p) (resp. to Fut4(p)).

Hence, if K is the subset of M recognized by A, every state of A induces a
subfactorization of K: this is how equation (1) will be called. It is an idea due
to J. Conway [5, chap. 6] to take the converse point of view, that is to build an
automaton from the factorizations of a subset (in any monoid).

More specifically, let K be any subset of a monoid M and let us call fac-
torization of K a pair (L, R) of subsets of M such that L R C K and (L, R) is
mazimal® for that property in M x M. We denote by Q k the set of factorizations
of K and for every p,q in Qg the factor F, , of K is the subset of M such that

LpFpqRy C K

and F, 4 is mazimal for that property in M. If a: M — N is a morphism that
recognizes K, i.e. Kaa™! = K, and if (L, R) is a factorization and F is a factor
of K then:

i) L=Laa™! , R=Raa™!,and F = Faa™!;

ii) (La, Ra) is factorization and Fa is factor of Ka ;
or, in other words, factorizations and factors are syntactic objects with respect
to K. As a consequence, Qg is finite if and only if K is recognizable.

In [5], the F,, are organized as a Q x X @ g-matrix of subsets of A*, called
the factor matriz of the language K. A further step consists in building an

4 An automaton over M is a labelled graph where the label of edges are taken in M.
% In the partial order induced by the inclusion in M.

automaton, which we call the universal automaton of K, denoted by Uk, and
based on the factorizations and the factors of K:

Uk = (Qk,A,Ex, Ik, Tk) ,
where In={p€eQkr|1lar €Ly}, Tk ={¢€Qk|1la € Ry}
and Ex ={(p,a,q) € Qr x AXx QK |p,q € Qr, a € Fp 4},

and, obviously, |Ux| = K . What makes Uk universal is expressed in the follow-
ing result.

Theorem 3. [16] If A = (Q,A,E,I,T) is a trim automaton that accepts K,
then there exists an automaton morphism from A into Uk, and Uk is minimal
for this property.

In particular, Uk contains as a subautomaton ev-
ery minimal automaton (deterministic, or non de-
terministic) that recognizes K.

Example 2. The factorizations of K; = |A]
are (they have to be computed in the syntactic
monoid):
(a*, (1 +b*a)(ab*a)"),
(a*b*(a® + b)*, (a® + b)*a),
(1+ a*b*(a® + b)*a, (ab*a)*). Fig. 2. The universal
automaton of K

The universal automaton of K; is shown opposite.

3 The Star Height of Pure-Group Languages

Before dealing with reversible languages in whole generality, we present the state-
ment and the proof of McNaughton’s theorem on pure-group languages by means
of the universal automaton (cf. [12] for a complete exposition).

Theorem 4. The universal automaton of a pure-group language K contains a
subautomaton of minimal loop complexity that recognizes K.

For any automaton B that recognizes a language K — and in particular for
one of minimal loop complexity — there exists a morphism from B into Uk.
If an (automaton) morphism were preserving loop complexity or, at least, were
not increasing it, the theorem would follow immediately, and not only for group
languages but for any language. But this is not the case, by far. With that idea
in mind, one has to consider morphisms of special kind.

Definition 3. A morphism ¢: B = A is said to be conformal® if any computa-
tion in A is the image of (at least) one computation in B.

5 McNaughton call them “pathwise” (in [14]) but his definition of morphism is slightly
different from ours.

Theorem 5. [14, Theorem 8] If ¢: B — A is a conformal morphism, then the
loop complexity of B is greater than or equal to the one of A: 1c(B) > Ic(A). O

Even in the case of a pure-group language K, the morphism ¢ from an
automaton B (that recognizes K) into Uk is not necessarily conformal. The
proof of Theorem 5 boils down to show that, nevertheless, ¢ is conformal on
those balls of B that are crucial for the loop complexity. This is proved wvia the
following two results, and this is where our method differs from McNaughton’s
proof.

Proposition 2. The balls of the universal automaton of a pure-group language
are deterministic and complete’ .

The result follows from the fact that every state of Uk can be identified with
a subset of the syntactic group G of K. The balls of Uk are exactly the orbits
of these subsets under the action of the group G.%

Lemma 1. Let K be a language of A* whose syntactic monoid is a group G. For
every g in G, let H, be the set of words whose image in G is g and let W = H;,.
Let Ak = (Q, A, E, {i},T) be the minimal automaton of K and B any equivalent
automaton.

For every g in the image of K in G, there exists a state r in B such that:

i) W N Pastg(r) # 0 and Hy N Futg(r) #0 .

ii) For every loop®, labelled by a word y, around the initial state i in Ak,
there exists a loop, labelled by a word xy z, around r in B, where x is in W.

Proof. Let k be the order of G and n the number of states of B. Let | be an
integer and C; the set of words of length smaller than [and labelling a loop
around ¢ in Ag. Let w; be the product of all k-th power of words in Cj:

w; = H’Uk.

veC)

Every v* is in W and so is w;. The image of w; in G is 1g. Therefore, for every u

in Hy, wi™u is in the language K. Hence, there is a successful computation,

labelled by w;™u in B. As B has only n states, there is a loop labelled by a power

of w; around a state r; of B. For r;, i) holds and ii) holds for y shorter than .

If we consider the infinite sequence rg, r1, 72, ... , we can find a state r that
occurs infinitely often. Thus i) and ii) are met by this state r. O
7 i.e. for every state p in every ball, there exists for every letter of the alphabet exactly
one transition whose origin is p, that is labelled by a, and whose end belongs to the
same ball as p.

8 Let us note that we give here a statement which is sligtly different from the corre-
sponding lemma (Lemma 6) in [12]. The forthcomming Lemma 3 appears thus as a
natural generalization of Lemma 1 for reversible languages.

9 We call loop around s any path whose origin and end are s.

Proof. (of Theorem 4) Let ¢ be a morphism from B into Uk, C, the ball of B
containing r and D, the ball of Uk containing r¢. Proposition 2 and Lemma 1
imply together that the restriction of ¢ to C, is conformal and surjective onto Dy
and that D, accepts all words in H,. The union of the D, for g in the image
of K in G recognizes K and its loop complexity is smaller than or equal to the
one of B (which could have been chosen of minimal loop complexity). O

4 Reversible Languages and their Universal Automata

Definition 4. An automaton (on a free monoid) is reversible if its transition
function is deterministic and codeterministic. A regular language is reversible if
it is accepted by a finite reversible automaton.

The minimal automaton of a reversible
language is not necessarily reversible,
¢f. on Fig. 3, the minimal automaton
of the reversible automaton A;.
However, it is decidable whether a given
regular language is reversible by per-
forming some computations on its syn-
tactic monoid (cf. [15]).

Fig. 3. The minimal automaton of A;

By comparison, the “reset-free events” of Hashiguchi ([9]) are those reversible
languages whose minimal automaton is reversible and the “speciall® reset-free
events” of Cohen ([3]) are those for which this minimal automaton has only one
final state.

As for group languages, the proof of Theorem 1 will be based on a property
of universal automata.

Proposition 3. The balls of the universal automaton of a reversible language
are reversible.

The proof of Proposition 3 is far more elaborate than the corresponding
property for group language. It is first based on the construction of a (good)
approximation of Uk from an automaton A which accepts K without computing
its transition monoid. The states of this new automaton will be sets of subsets
of the state set of A.

Let A =(Q,A,E,I,T) be an automaton that accepts K and (A, u,v) the
corresponding Boolean representation:

X € B9 is a row vector: AMp=1l&pel,
v € B is a column vector: v=1&peT,

and p: A* — B*?Q is a morphism: (ap),, =1 < (p,a,q) € E.

10 They are not called special in [3] for they are the only ones considered.

For every u in A*, A-up is a (row) vector of B2 and thus represents a subset
of Q. A set of vectors, i.e. a set of subsets of (), is an antichain if its elements
are incomparable (for the inclusion order). For instance, the set of antichains

in BEO2) is {{(0,0)},{(1,0)}, {0, D}, {1, D}, {(1,0), 0, 1)} }

One can associate to any factorization (L, R) of K, indeed to L, an antichain
of P(BY): if u and v are in L and R respectively, then: \up-vp-v = 1; if u'
is such that A-v'u = A-up, then ' € L since (L, R) is maximal. Moreover,
if A-up C A-u'p, then o' is in L as well and therefore L is characterized by an
antichain.

Definition 5. Let (\, u,v) be the Boolean representation of an automaton A
on A*. Let S be the set of subsets of \-A*u that are antichains. We call subset
expansion of A the automaton V4 = (S, A, F, J,U) defined by

J={YeS|HeY €CA, U={XeS|V9eX 6v=1)}
F={(X,a,Y) e SxAxS|Vhe X, IeY (Chap}.

It is immediate that V4 is equivalent to A, and the following lemma, is not
difficult to prove.!!

Lemma 2. If an automaton A accepts K, Uk is a subautomaton of V4. O

Fig. 4. The subset expansion of A;

11 It can be noted that the definition of the subset expansion does not come completely
out of the blue: in the case where A is the minimal automaton of a language K,
Va4 is “the subset automaton of order 0 of K” described by Cohen and Brzozowski
in [4].

Proposition 4. The balls of the subset expansion of a reversible automaton are
deterministic.

Proof. Let V4 be the subset expansion of A represented by (A, u,v) of dimen-
sion Q. Let X and Y be two states in a given ball of V4. There exist then u
in Transy, (X,Y) and v in Transy (Y, X). Recall that X and Y are sets of sub-
sets of @); we denote by X; (resp. by Y;) the subset of elements of X (resp. of)
which contain ¢ states of ().

Claim: for every integer i, there is a bijection from X; into Y; (resp. from Y;
into X;) induced by u (resp. by v). Suppose the claim does not hold and let i be
the smallest integer such that u does not induce a bijection from X; into Y;.

i) If there exists 6 in X; such that 6-up is not in Y;, there exist j < i, £ in
Y; and 6’ in X; such that §-up = £ C f-up. As up is a 1-to-1 mapping, §' C 6,
which is a contradiction because 6 and 6’ are incomparable. Thus u induces a
function from X; into Y;.

ii) If there exist 6 and 6’ in X; such that 8-uy = 6'-upu, then, again since uy is
a 1-to-1 mapping, # = #'. Thus u induces an injective function from X; into Y;.

iii) For the same reason, v induces an injective function from Y; into X;.
Thus both v and v induce a bijection between X; and Y;.

Therefore, the state that can be reach in a ball by a path labelled by u
from a state X is completely defined by {6-upu | 8 € X}. The balls of V4 are
deterministic.

Proposition 3 is then the direct consequence of Lemma, 2 and of Proposition 4.
Indeed, if the balls of V 4 are deterministic, so are those of Uk . If K is reversible,
K, the mirror image of K is reversible as well, and the balls of U, which are
the transposed of those of Uk, are deterministic. Therefore, the balls of Uk are
codeterministic, thus reversible. O

5 Star Height of Reversible Languages

We can now proceed to the proof of Theorem 1. We begin with a property which
is the equivalent of Lemma 1 for reversible languages. In order to state that
property, we define a decomposition of a language according to an automaton
that accepts it; this is an adaptation of a method devised by Hashiguchi in [9].

Let A=(Q,A,E,I,T) be an automaton that accepts K. Every computation
in A can be decomposed, in a unique way, into a sequence:

. Vo u1 V1 Us Um—1 Um Um
{ D1 Q1 j2) q2 Im—1 Pm m t

where ¢ (resp. t) is an initial (resp. final) state, p; (resp. ¢;) is the first (resp. the
last) state of the 4-th ball crossed by the path, the words v; label paths between
balls and the words u;, possibly empty, label paths in balls.

Let W, be the set of words whose image in the transition monoid of A
is an idempotent and that label a loop around p;; let G; be the set of words
whose image in this monoid is the same as u;, and let H; = W), G;. The lan-
guage vo Hy v1 Hs . . .vp—1 Hp, vy, is a subset of K that consists of words which

label paths with the same “behaviour” in the automaton. We call such a set
an A-constituent of K. The states p1, g1, p2, --- ,gm are the markers of this
A-constituent. There are finitely many distinct A-constituents of K and their
union is equal to K.

We are now in a position to state the generalization of Lemma 1.

Lemma 3. Let A be a reversible automaton and B any equivalent automaton.
Let vo Hyvi Hy . ..vpm—1 Hp vy, be any A-constituent of | Al = K and p1, q1, p,
., Gm its markers. Then there exist m states r1, T2, ... ,ry in B such that:

i) vo Wy, N Pastp(r1) # 0, H,, vy NFutp(ry) #0,
and, Vi€ [1;m—1] (H; v; Wy,)NTransp(r;,r; + 1) # 0.
i1) For every i in [1;m)], for every loop around p; labelled by a word v, there
exists a loop around r;, labelled by a word uwvw, where u is in Wp, and w in A*.

Proof. There exists an integer k such that, for every word v € A*, the image
of v* in the transition monoid of A is an idempotent. Let n be the number of
states of B. Let [be an integer that will silently index the sets we define now.
For every i € [1;m], let C; be the set of words of length smaller than [that label
a loop around p; in A. Let w; be the product of all k-th power of words in C;:

w; = H Uk -
veC;

For every vouivy - - - vp, in the A-constituent,
w = vo(wy) uyv1 (W) Ug-.. (W) " U U

is in the A-constituent as well. Hence, there is a successful computation labelled
by w in B. As B has only n states, this path contains, for every 7, a loop labelled
by a power of w; around a state r; of B. The m-tuple r' = (ry,7y,... ,7.,) veri-
fies 1) and ii) for y shorter than I. If we consider the infinite sequence r(V), (), ...
we can find an m-tuple that occurs infinitly often and that verifies the lemma.
O

n—i1—ji

i1

)

w1t urv1wy’ @ W U
P T _.C >—.<)_,

Fig.5. A witness word for a .A-constituent.

Proof. (of Theorem 1, Sketch) Let A be a reversible automaton that accepts K,
B an equivalent automaton with minimal loop complexity, and Ux the universal
automaton of K.

For every A-constituent of X — with markers p1, ¢1, p2, ..., ¢m —, there
exist m states ry, ra, ..., 7, in B verifying the Lemma 3 and a morphism ¢
from B into Uk that maps r1, 72, ..., Ty, ONtO S1, S2, ... , Sy

S)
S (L
5O

A, reversible B, minimal loop complexity U, universal

Fig. 6. Proof of Theorem 1

For every 14, let S; be the ball of Ux that contains s;. For every path of §;,
there exists a loop around s; that contains this path and that is labelled by an
idempotent'? y.

As Uk is a subautomaton of V4, s; can be seen as a set of subsets of Q.
One of these subsets contains p;. Since there is a bijection from these sets into
themselves induced by y, and as y is an idempotent, this bijection is an identity.
Therefore, there is a loop labelled by y around p;.

By Lemma 3, there is a loop in B labelled by z y z around r;, with = idem-
potent. The image by ¢ of this loop is a loop around s; in Uk. Since z is an
idempotent, it labels a loop around s; (in ;) by itself; thus, there is a path in S;,
beginning in s; and labelled by y which is the image of a path in the ball of r;.
As the balls of Uk are deterministic, this path is the one which contains the
path chosen in S; which is therefore the image by ¢ of a path of the ball of r;.

Hence, the morphism ¢ is conformal from the ball of r; onto S;, whose loop
complexity is smaller than or equal to the loop complexity of the ball of r;.

Then it can easily be verified that there exists a state t; in S; such that: i)
H; is a subset of Transy, (s;,t;); ii) if i < m, there is a path in Ux without any
loop between t; and s;41 labelled by v;, and if i = m, t; is terminal.

This establishes that every A-constituent is accepted by a subautomaton
of Uk with a loop complexity smaller than or equal to the minimal loop com-
plexity for K and this subautomaton contains entire balls of /. Thus, the union
of these subautomata in Uk accepts K with minimal loop complexity. O

12 of the transition monoid of A.

6 A word about complexity

Theorem 1 yields naturally an algorithm which computes the star height of a
reversible language.

As the size of the universal automaton of a language K can be exponential
in the size of the minimal automaton of K, this algorithm can not be of a
lower complexity than exponential. For reasons we shall briefly explain below,
the algorithm is indeed doubly exponential. However, the properties that have
been established in order to prove Theorem 1 may be taken into account in
order to avoid expensives operations (such as, for instance, the enumeration of
all subautomata of the universal automaton).

Theorem 1 can be restated as follows: the universal automaton Uk of a
reversible language K contains a subautomaton

i) which recognizes K,

ii) of minimal loop complexity,

ii) whose balls are balls of Uy .

And this statement can be translated into the following algorithm.

First start from Ag, the minimal automaton of K with n states and test
whether K is reversible or not; this operation has polynomial complexity [15].
Next, build the universal automaton Uy, identify every ball of Uk and compute
the loop complexity of each of them.

Let k be the loop complexity of Ak . For every integer i from 1 to k, build
the largest subautomaton D; of Ui which contains no state of any ball of Ug
of loop complexity larger than ¢, and test whether D; accepts K. The first ¢ for
which this condition holds is the star height of K.

There are two critical sections in that algorithm. The first one is the com-
putation of the loop complexity of the balls of Uk . The size of the balls can be
exponential in n and the computation of the loop complexity of an automaton is
exponential in the size of the automaton. The second critical section is the test
for equivalence of D;. This requires a priori the determinization of D;, which is
already of exponential size.

References

1. ARNOLD A., DickKy A., AND NIVAT M., A Note about Minimal Non-deterministic
Automata. Bull. of E.A.T.C.S. 47 (1992), 166-169.

2. BUcHI J. R., Finite Automata, their Algebras and Grammars: Toward a Theory
of formal Expressions. D. Siefkes (Ed.). Springer-Verlag, 1989.

3. CoHEN R., Star height of certain families of regular events. J. Computer System
Sci. 4 (1970), 281-297.

4. CoHEN R. AND Brzozowskl R., General properties of star height of regular
events. J. Computer System Sci. 4 (1970), 260—280.

5. CoNnwAy J. H., Regular algebra and finite machines. Chapman and Hall, 1971.

6. DEJEAN F. AND SCHUTZENBERGER M. P., On a question of Eggan. Inform. and
Control 9 (1966), 23-25.

7. EGGAN L. C., Transition graphs and the star-height of regular events. Michigan
Mathematical J. 10 (1963), 385-397.

10.

11.

12.

13.
14.
15.
16.

17.
18.

EILENBERG S., Automata, Languages and Machines vol. A, Academic Press, 1974.
HasHIGUCHI K., The star height of reset-free events and strictly locally testable
events. Inform. and Control 40 (1979), 267-284.

K. HAsHIGUCHI, Algorithms for determining relative star height and star height.
Inform. and Computation 78 (1988), 124-169.

LOMBARDY S., On the construction of reversible automata for reversible languages,
submitted.

LOMBARDY S. AND SAKAROVITCH J., On the star height of rational languages:
a new version for two old results, Proc. 3rd Int. Col. on Words, Languages and
Combinatorics, (M. Ito, Ed.) World Scientific, to appear. Available at the URL:
www.enst.fr/~jsaka.

Hitam P.-C., Some topological properties of rational sets. J. of Automata, Lang.
and Comb., to appear.

MCNAUGHTON R., The loop complexity of pure-group events. Inform. and Con-
trol 11 (1967), 167-176.

PIN J.-E., On reversible automata. In Proc. 1st LATIN Conf., (I. Simon, Ed.),
Lecture Notes in Comput. Sci. 583 (1992), 401-416.

SAKAROVITCH J., Eléments de théorie des automates. Vuibert, to appear.
SALOMAA A., Jewels of formal language theory. Computer Science Press, 1981.
SiLvA P.; On free inverse monoid languages Theoret. Informatics and Appl. 30
(1996), 349-378.

