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ABSTRACT

A mixed graph is a simple graph in which a subset of the edges have been assigned

directions to form arcs. For non-negative integers j and k, a (j, k)−mixed graph is a

mixed graph with j types of arcs and k types of edges. The collection of (j, k)−mixed

graphs contains simple graphs ((0, 1)−mixed graphs), oriented graphs ((1, 0)-mixed

graphs) and k−edge-coloured graphs ((0, k)−mixed graphs).

A homomorphism is a vertex mapping from one (j, k)−mixed graph to another

in which edge type is preserved, and arc type and direction are preserved. An

m−colouring of a (j, k)−mixed graph is a homomorphism from that graph to a target

with m vertices. The (j, k)−chromatic number of a (j, k)−mixed graph is the least m

such that an m−colouring exists. When (j, k) = (0, 1), we see that these definitions

are consistent with the usual definitions of graph homomorphism and graph colour-

ing. Similarly, when (j, k) = (1, 0) and (j, k) = (0, k) these definitions are consistent

with the usual definitions of homomorphism and colouring for oriented graphs and

k−edge-coloured graphs, respectively.

In this thesis we study the (j, k)−chromatic number and related parameters for dif-

ferent families of graphs, focussing particularly on the (1, 0)−chromatic number, more

commonly called the oriented chromatic number, and the (0, k)−chromatic number.

In examining oriented graphs, we provide improvements to the upper and lower

bounds for the oriented chromatic number of the families of oriented graphs with

maximum degree 3 and 4. We generalise the work of Sherk and MacGillivray on the

2−dipath chromatic number, to consider colourings in which vertices at the ends of
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a directed path of length at most k must receive different colours. We examine the

implications of the work of Smoĺıková on simple colourings to study of the oriented

chromatic number of the family of oriented planar graphs.

In examining k−edge-coloured graphs we provide improvements to the upper and

lower bounds for the family of 2−edge-coloured graphs with maximum degree 3. In

doing so, we define the alternating 2−path chromatic number of k−edge-coloured

graphs, a parameter similar in spirit to the 2−dipath chromatic number for oriented

graphs. We also consider a notion of simple colouring for k−edge-coloured graphs,

and show that the methods employed by Smoĺıková for simple colourings of oriented

graphs may be adapted to k−edge-coloured graphs.

In addition to considering vertex colourings, we also consider incidence colourings

of both graphs and digraphs. Using systems of distinct representatives, we provide

a new characterisation of the incidence chromatic number. We define the oriented

incidence chromatic number and find, by way of digraph homomorphism, a connection

between the oriented incidence chromatic number and the chromatic number of the

underlying graph. This connection motivates our study of the oriented incidence

chromatic number of symmetric complete digraphs.
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Chapter 1

Introduction and Preliminaries

The story of vertex colourings of mixed graphs begins, independently, with Gallai,

Roy, Hasse, and Vitaver.

Theorem 1.1 ([19] Gallai, [44] Roy, [26] Hasse, [55] Vitaver). The chromatic number

of G is the least m such that there exists an acyclic orientation of G in which the

longest path has m vertices.

Though this celebrated result does not construct colourings of oriented graphs

that take into account the orientation of the arcs, it does welcome oriented graphs

into the fold of graph colourings. To find a definition of proper vertex colouring of

oriented graphs that takes into account the orientation of the arcs, we must turn to

graph homomorphism. By translating the link between graph colouring and graph

homomorphism into the language of oriented graphs, we arrive at a reasonable defini-

tion of vertex colouring for these graphs. Using this same idea we arrive at a definition

of vertex colouring for graphs that have different sorts of adjacency within the same

graph, including different arc types and edge types.

In this thesis, we study colourings of such graphs, called (j, k)−mixed graphs. We

examine the (j, k)−chromatic number and related colouring parameters, focussing

mainly on (1, 0)−mixed graphs (oriented graphs) and (0, k)−mixed graphs (k−edge-
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coloured graphs).

In Chapter 2, we consider colourings of oriented graphs whose underlying graphs

have maximum degree 3 and 4. We consider a useful adjacency property for targets of

homomorphisms from these oriented graphs. Using these targets, we find new upper

bounds for the oriented chromatic number of the family of oriented graphs whose

underlying graphs have maximum degree 3 and the family of oriented graphs whose

underlying simple graphs have maximum degree 4.

Simple colourings of oriented graphs arise from considering homomorphisms from

oriented graphs to target graphs in which loops are present at each vertex. Previous

work in this area has shown for some families of oriented graphs that the simple chro-

matic number is equal to the oriented chromatic number. In Chapter 4 we examine

the implications of this fact for planar graphs. Additionally, we consider an easing

of some of the requirements for a simple oriented colouring to arrive at a reasonable

definition of simple 2−dipath colouring for oriented graphs. We give some prelimi-

nary results for this new colouring parameter, as well as consider the complexity of

determining if a given graph has a simple 2−dipath colouring using two colours.

In the second condition of an oriented colouring (see Definition 1.17) an interesting

situation arises when v = x. In this case, this condition implies vertices at the ends of

a directed path of length two receive different colours. Motivated by this connection,

many authors have studied colourings of oriented graphs in which vertices at the

ends of a 2−dipath, as well as adjacent vertices, must receive different colours ([12],

[33]). Using the notation first introduced by Griggs and Yeh for graphs [22], and then

adapted to digraphs by Chang and Liaw [11], and to oriented graphs by Gonçalves

et al. [21], we may consider these to be L(1, 1) labellings of oriented graphs. In

Chapter 3 we examine a generalisation of 2−dipath colourings of oriented graphs.

Using ideas similar to [33], we construct a homomorphism model for colourings that
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require vertices at the end of a directed path of length at most k, for fixed k, receive

different colours. Additionally, we consider the complexity of determining if a given

oriented graph has a k−dipath colouring using no more than m colours, for fixed

values of m and k.

In Chapter 5 we examine colourings of k−edge-coloured graphs. We find a lower

bound for the chromatic number of the family 2−edge-coloured graphs with maximum

degree 3 by considering a new colouring parameter for these graphs, which requires

that adjacent vertices and vertices at the end of a path of length 2 where each of the

edges have different colours receive different colours. We find an upper bound for the

chromatic number of the family 2−edge-coloured graphs with maximum degree 3 by

constructing a pair of targets for graphs in this family.

In the final chapter, we consider colourings of graphs and digraphs that assign

colours to incidences, rather than vertices. In Chapter 6, we find a new characterisa-

tion of the incidence chromatic number using systems of distinct representatives, as

well as introduce a directed version of this parameter. Using digraph homomorphism,

we find the oriented incidence chromatic number of a directed graph is closely related

to the chromatic number of its underlying simple graph. This motivates our study of

the oriented incidence chromatic number of symmetric complete graphs.

We now present definitions and notation regarding various types of graphs, as well

as relevant results and commentary that give context to the work presented in later

chapters. Special definitions and notation defined and used exclusively in the context

of a single chapter are defined in that chapter. A glossary of the colouring parameters

used in this thesis appears as an appendix. For all other commonly-used terms and

notation we refer to [7].

Definition 1.1. A k−edge-coloured graph is a simple graph, G, together with a
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function Σ : E(G)→ {1, 2, 3, . . . , k}. For 1 ≤ i ≤ k, we let

Σi = {e ∈ E(G)|Σ(e) = i}.

We refer to a k−edge-coloured graph using the notation (G,Σ). When the context is

clear, we may refer to (G,Σ) simply as G.

Definition 1.2. If G is a simple graph, then we obtain an orientation of G by as-

signing to each of the edges a direction to obtain a digraph. If a digraph D is obtained

in this manner we say that D is an oriented graph.

For simplicity, when referring to arcs and the arc set of a oriented graph, G, we

use uv to refer to an arc from u to v and E(G) to refer to the set of arcs of G.

Definition 1.3. A j−arc-coloured graph is a oriented graph, G, together with a

function α : E(G)→ {1, 2, 3, . . . , j}. For 1 ≤ i ≤ j, we let

αi = {uv ∈ E(G)|α(uv) = i}.

We refer to a j−arc-coloured graph using the notation (G,α). When the context is

clear, we may refer to (G,α) simply as G.

Definition 1.4. If G is an oriented graph, the converse of G is the oriented graph

formed by reversing the direction of each arc.

Definition 1.5. An oriented graph, G, is self-converse if G admits an isomorphism

to the converse of G.

Let G = (V,E) be a directed graph.

Definition 1.6. If u, v ∈ V (G) and uv ∈ E(G), then we call v an out-neighbour of

u and u an in-neighbour of v. The out-neighbourhood of v ∈ V (G), denoted N+(v),
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is the set of all out-neighbours of v. The in-neighbourhood of v ∈ V (G), denoted

N−(v), is the set of all in-neighbours of v. The cardinality of N+(v), denoted d+(v),

is called the out-degree of v. The cardinality of N−(v), denoted d−(v), is called the

in-degree of v. A vertex, s, is called a source if d−(s) = 0 and d+(s) 6= 0. A vertex,

t, is called a sink if d+(t) = 0 and d−(t) 6= 0. A source or sink is called universal if

it adjacent to every vertex in G, other than itself.

Definition 1.7. For u, v ∈ V (G) let
−→
dG(u, v) be the number of arcs in a shortest

directed path from u to v, or ∞ if no such path exists. When context allows, we write

d(u, v). The distance between u and v is the least k such that there exists a directed

path of length k from u to v, or from v to u. If no such directed path exists we write

−→
dG(u, v) =∞.

For brevity we refer to a directed path of length k as a k−dipath.

Definition 1.8. If for all u, v ∈ V (G) at least one of
−→
dG(u, v) and

−→
dG(v, u) 6= ∞,

then the weak diameter of G is the least integer k such that for all pairs, u, v ∈ V (G),

the distance between u and v is no more than k. Otherwise, the weak diameter of G

is defined to be ∞.

Definition 1.9. If G has no directed cycle, we say that G is acyclic.

Definition 1.10. The directed girth of G is the length of the shortest directed cycle

in G. If G is acyclic then the directed girth of G is defined to be ∞.

Definition 1.11. A mixed graph, G = (V,E,A), is a triple, where V is a set of

vertices, E a set of edges and A a set of arcs, so that for all uv ∈ E(G), uv, vu /∈ A(G)

and for all uv ∈ A(G), uv /∈ E(G). We may view a mixed graph as a simple graph

in which a subset of the edges have been oriented.

Mixed graphs capture both graphs and oriented graphs. We extend this definition

to capture k−edge-coloured graphs, and j−arc-coloured graphs.
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Definition 1.12. For a pair of non-negative integers (j, k) 6= (0, 0), a (j, k)−mixed

graph, is

• a k−edge-coloured graph, (G,Σ), when j = 0 and k 6= 0;

• a j−arc-coloured graph (G,α), when j 6= 0 and k = 0; and

• a triple (G,α,Σ), where G = (V,E,A) is a mixed graph, ((V (G), A(G)), α)

is a j−arc-coloured graph, and ((V (G), E(G)),Σ) is a k−edge coloured graph,

otherwise.

When the context is clear, we refer to (G,α,Σ) as G, and the simple graph underlying

(G,α,Σ) as U(G).

Definition 1.13. A family of mixed-graphs, F , is complete if for all F1, F2 ∈ F

there exists G ∈ F containing both F1 and F2 as subgraphs.

Using (j, k)−mixed graphs we define a notion of homomorphism that is common

to simple graphs, mixed graphs, oriented graphs and k−edge-coloured graphs.

Definition 1.14. Let (G,αG,ΣG) and (H,αH ,ΣH) be (j, k)−mixed graphs. We say

that (G,αG,ΣG) admits a homomorphism to (H,αH ,ΣH), denoted (G,αG,ΣG) →

(H,αH ,ΣH) or, when the context is clear, G→ H, if there exists φ : V (G)→ V (H)

such that

• if k > 0, then for all uv ∈ ΣG
i , φ(u)φ(v) ∈ ΣH

i (1 ≤ i ≤ k), and

• if j > 0, then for all uv ∈ αGi , φ(u)φ(v) ∈ αHi (1 ≤ i ≤ j).

If φ is such a mapping, we say that φ is a homomorphism, or that φ is an H−colouring

of G, and we write φ : G→ H. If H has order m, we say that φ is an m−colouring

of G. For a family, F , of (j, k)−mixed graphs we say that a (j, k)−mixed graph, H,

is a universal target for F if for all F ∈ F , we have F → H.
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Definition 1.15. The (j, k)−chromatic number of a (j, k)−mixed graph, denoted

χj,k(G), is the least m such that there exists a (j, k)−mixed graph, H, with m vertices

so that G→ H. If F is a family of (j, k)−mixed graphs with bounded (j, k)−chromatic

number then we define χj,k(F) to be the least m such that for all F ∈ F , χj,k(F ) ≤ m.

1.1 Graph Colouring

When considering the case (j, k) = (0, 1), we see that the definitions given above for

homomorphism and colouring match the usual definitions for graphs. In fact, the

definition for colouring of (j, k)−mixed graphs is motivated by the relationship be-

tween graph colouring and graph homomorphism. A comprehensive study of various

aspects of graph homomorphisms is given by [27].

1.1.1 (j, k)−colouring

Though (j, k)−colouring generalises proper colouring of graphs, in general there is

no relationship between the (j, k)−chromatic number of a graph and the chromatic

number of the underlying graph. It is easy to construct (j, k)−mixed graphs for which

the difference between these two parameters is arbitrarily large [49].

Recall that an acyclic colouring of a graph is a proper vertex colouring where

the subgraph induced by any pair of colour classes is acyclic. Surprisingly, there is

a connection between the acyclic chromatic number and the (j, k)−mixed chromatic

number.

Theorem 1.2 (Nešetřil and Raspaud [41]). If G is a (j, k)−mixed graph for which

the acyclic chromatic number of the underlying undirected graph is at most m, then

χj,k(G) ≤ m(2j + k)m−1.
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This result unifies previous results for oriented graphs [43] and k−edge-coloured

graphs [2]. Here the authors construct a universal target for the family of (j, k)−mixed

graphs for which the underlying graph has acyclic chromatic number at most m.

In general, however, it is not the case that a family, F , of (j, k)−mixed graphs

has a universal target with χj,k(F) vertices. For example, consider the family of

tournaments with n vertices. Each of these oriented graphs has (1, 0)−chromatic

number n, however a universal target for this family has at least 2
n
2 vertices [37].

Families of (j, k)−mixed graphs for which a universal target exists on χj,k(F) vertices

may be found amongst complete families of (j, k)−mixed graphs.

Proposition 1.3 (Sopena [49]). If F is a complete family of (j, k)−mixed graphs,

then there exists a universal target for F , H, such that |V (H)| = χj,k(F).

Those (j, k)−mixed graphs, G, for which χj,k(G) = |V (G)| are of particular in-

terest. For (j, k) = (0, 1), these are just the complete graphs. Motivated by this, we

consider the concept of a (j, k)−clique.

Definition 1.16. A (j, k)−mixed graph, G, is a (j, k)−clique if χj,k(G) = |V (G)|.

Such cliques have been studied for both (1, 0)−mixed graphs (called oriented

cliques, or ocliques) ([47], [29], [18] [30]) and (0, 2)−mixed graphs (called signified

cliques, or scliques) ([32], [28]).

1.1.2 (1, 0)−mixed graphs

For the case (j, k) = (1, 0) our definitions for homomorphism and colouring match

exactly those for homomorphism of oriented graphs and oriented colouring. And so

rather than using χ1,0 and referring to the (1, 0)−chromatic number, we use the more

conventional notion of χo as well as the phrase oriented chromatic number.
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When considering oriented graphs, the homomorphism definition of colouring has

an equivalent vertex-labelling definition.

Definition 1.17. Let G be an oriented graph. An oriented colouring of G using m

colours is a mapping c : V (G)→ {1, 2, . . . ,m} such that:

• c(u) 6= c(v) for all uv ∈ E(G),

• for all uv, xy ∈ E(G) if c(u) = c(y), then c(v) 6= c(x).

That this definition of oriented colouring is equivalent to the homomorphism of

oriented colouring follows by observing that if the head and tail of an arc are coloured

with a and b, then there is an arc ab in the target. Since the target is an oriented

graph, if ab is an arc of the target, then ba is not an arc of the target. This implies

that no arc will have its tail coloured with b and its head coloured with a. To see the

other half of the equivalence, observe that from an oriented colouring that satisfies

the vertex labelling definition the target for a homomorphism can be constructed by

taking the vertex set to be the set of colours, and for an arc ij to exist in the target

there must be an arc in the coloured oriented graph with its tail coloured i and its

head coloured j.

Oriented colourings (then called good colourings) were used by Courcelle as an

example in the monadic second-order logic of graphs [13]. He studied locally-injective

oriented colourings of planar graphs and k−trees. He showed that every oriented

planar graph G with d−(x) ≤ 3 for every x ∈ V (G) has a good colouring that uses

at most 43 · 363 colours, which is injective on in-neighbourhoods. This bound was

improved by Raspaud and Sopena using the connection between acyclic colouring

and oriented colouring later utilised by Nešetřil and Raspaud.

Theorem 1.4 (Raspaud and Sopena [43]). If a connected graph G has acyclic chro-

matic number at most m, then the oriented chromatic number of any orientation of



10

G is at most m · 2m−1.

Observe that this is exactly Theorem 1.2 for j = 1 and k = 0. The converse, that

every family of graphs with bounded oriented chromatic number has bounded acyclic

chromatic number, was shown later by Kostochka, Sopena and Zhu [31].

Oriented colourings have been studied for a wide variety of families of graphs ([52],

[31], [14]). In addition to oriented colouring, various weakenings of the requirements

of oriented colourings have led to other colouring parameters for oriented graphs,

including 2−dipath colouring [33], simple colouring [48], and push colouring [30]. A

survey on the study of oriented colourings was given by Sopena in 2001 [50] and

updated in 2015 [51].

Though the bound given in Theorem 1.4 is known to be tight, when applied to

families of graphs defined by properties other than their acyclic chromatic number

this bound is weak. In particular, this bound may be improved for families of oriented

graphs with bounded degree [31] and it is expected that it may be improved for the

family of orientations of planar graphs.

1.1.3 (0, k)−mixed graphs

For the case (j, k) = (0, k) our definitions for homomorphism and colouring match

exactly those for homomorphism and colouring of k−edge-coloured graphs. And

so rather than using χ0,k, we use the notation χk. Similar to the case for oriented

graphs, the homomorphism colouring definition can be equivalently stated as a vertex-

labelling definition.

Definition 1.18. If (G,Σ) is a k−edge-coloured graph and c : V (G)→ {1, 2, 3, . . . ,m},

then c is an m−colouring of G provided that the following conditions are met:

• for all uv ∈ E(G), c(u) 6= c(v), and
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• for all 1 ≤ i ≤ k where uv ∈ Σi, and xy ∈ E(G), if c(u) = c(x) and c(v) = c(y),

then xy ∈ Σi.

As with oriented graphs, a connection exists between the acyclic chromatic number

of the underlying graph and the chromatic number of the k−edge-coloured graph.

Theorem 1.5 (Alon and Marshall [2]). If G is a k−edge-coloured graph for which

the acyclic chromatic number of the underlying graph is at most m, then

χk(G) ≤ m · km−1.

Observe that this is exactly Theorem 1.2 when j = 0. Chronologically this result

comes between that of Raspaud and Sopena (Theorem 1.4) and that of Nešetřil and

Raspaud (Theorem 1.2). In [2] the authors note the similarity in the flavour of their

result and method to that of Raspaud and Sopena. But also note that they see no

way to derive one set of results from the other.

An early mention of 2−edge-coloured graphs (also called signed graphs, or signified

graphs) was in 1953 by Harary ([25] and [10]). Here he studied the structure of cycles

of 2−edge-coloured graphs arising from a problem in the social sciences. A notion of

colouring of these graphs, different to the one presented herein, is given by Zaslavsky

[58]. More recently, 2−edge-coloured graphs appear in the theses of Brewster [8] and

Sen [47], as well as in work by many others ([36], [39], [40]).

1.2 Incidence Colourings

Incidence colouring arose in 1993 when Brualdi and Massey first defined the incidence

chromatic number of a simple graph (then called the incidence colouring number) [9].

In this paper they gave upper and lower bounds for the incidence chromatic number
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based on maximum degree. These authors used their results as a method to improve a

bound for the strong chromatic index of bipartite graphs. Since then, bounds for the

incidence chromatic number have been investigated for a variety of families of graphs,

including planar graphs, k−trees, k−regular graphs, toroidal grids and k−degenerate

graphs ([15], [54], [53], [56]). This topic is discussed in further detail in Chapter 6.
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Chapter 2

Oriented Colourings of Bounded De-

gree Graphs

In this chapter we consider oriented colourings of oriented graphs whose underlying

graphs have maximum degree 3 or 4. For the case ∆ ≤ 3, we improve the upper bound

given by Sopena and Vignal [52] by constructing 9−vertex targets for such oriented

graphs. For the case ∆ ≤ 4 we improve the upper bound implied by Theorem 1.4. In

this latter case we note that room for improvement certainly exists.

2.1 Background and Preliminaries

When restricted to (j, k) = (1, 0), the definition for homomorphism and colouring

given in Chapter 1 give the following.

Definition 2.1. Let G and H be oriented graphs. We say that G admits a homomor-

phism to H, denoted G→ H, if there exists φ : V (G)→ V (H) such that if uv ∈ E(G),

then φ(u)φ(v) ∈ E(H). We call φ a homomorphism and we write φ : G→ H.

Definition 2.2. Let G be an oriented graph. The oriented chromatic number of G,

denoted χo(G), is the least integer m such that there exists an oriented graph H with
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|V (H)| = m and a homomorphism φ : G → H. We call φ an oriented m−colouring

of G, or an oriented colouring of G using m colours. If F is a family of oriented

graphs with bounded oriented chromatic number, then we define χk(F) to be the least

m such that χk(G) ≤ m for all F ∈ F .

Recall the vertex labelling definition for colouring of oriented coloured graphs.

Definition 2.3. Let G be an oriented graph. An oriented colouring of G using m

colours is a mapping c : V (G)→ {1, 2, . . . ,m} such that:

• c(u) 6= c(v) for all uv ∈ E(G),

• for all uv, xy ∈ E(G) if c(u) = c(y), then c(v) 6= c(x).

For proper colourings of graphs a simple argument based on graph degeneracy

gives an upper bound of ∆ + 1 for the chromatic number of a graph with maximum

degree ∆. Brooks’ Theorem refines this idea and tightens the upper bound to exactly

∆ for all graphs other than odd cycles and complete graphs. In the proofs of these

results, vertices are being added one at a time to the graph so that at each step there

is an available colour for the newly-added vertex. In trying to replicate this procedure

with oriented graphs, a difference arises between the oriented and unoriented case.

Consider the partially coloured oriented graph in Figure 2.1. The uncoloured

vertex cannot be coloured with colours 0 or 1. Trying to colour this vertex with

another colour, say 2, will also fail, as there would be an arc with its tail labelled 0

and its head labelled 2, as well as an arc with its tail labelled 2 and its head labelled 0.

Consider trying to extend the homomorphism given in Figure 2.2, where the oriented

graph on the right is the target and the oriented graph on the left is partially coloured.

We wish to extend the homomorphism to include the uncoloured vertex. In the target

we are looking for a vertex that is an in-neighbour of 0 and an out-neighbour of both

1 and 2. By inspection we see that no such vertex in the target fits this description.
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10 0

Figure 2.1: A colouring that cannot be extended.

The colouring given by this homomorphism cannot be extended without adding a

new vertex to the target graph. Though the uncoloured vertex has degree strictly

smaller than the order of the target, this homomorphism cannot be extended. These

small examples imply, regardless of the size of the palette of available colours, it is

not guaranteed a colouring of a partially coloured oriented graph can be extended.

This second situation leads us to desire the following property in the target of a

homomorphism from an oriented graph with bounded degree.

Property Pi,j. A tournament, G, has property Pi,j if for every subset X ⊂ V (G)

of size i and for every sequence (z1, z2, . . . , zi), where zk ∈ {0, 1} (1 ≤ k ≤ i), there

exist j distinct vertices in V (G) \ X, {y1, y2, . . . , yj}, such that for all 1 ≤ ` ≤ j,

xiy` ∈ E(G) if and only if zi = 1.

Property Pi,j relates closely to the subject of n−existentially closed tournaments

(see [4], [5] and [6]). We discuss a version of this property for 2−edge coloured graphs

in Chapter 5.

A well-studied family of oriented graphs with property Pi,j is the non-zero quadratic

residue tournaments, or Paley tournaments (see [4]). Let q be a prime power such
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Figure 2.2: Another colouring that cannot be extended.

that q ≡ 3 mod 4, and let F×q be the field of order q. The non-zero quadratic residue

tournament on q vertices, QRq, is the oriented graph with:

• V (QRq) = {0, 1, . . . , q − 1}, and

• E(QRq) = {uv|v − u is a non-zero quadratic residue in F×q }.

The oriented graph in Figure 2.3 is QR7.

We call an oriented graph, G, subcubic if ∆(G) ≤ 3 and there exists v ∈ V (G)

such that d(v) < 3. To see how this property Pi,j is useful, consider trying to extend

a colouring of a subcubic graph to a target, P , with property P2,2. Let H be an

orientation of subcubic graph with at least two non-adjacent vertices of degree 2 and

let φ : H → P be a homomorphism. Let u and v be non-adjacent vertices of degree

2 in H and let H∗ be the oriented graph formed from H by adding a new vertex z

together with the arcs uz and zv. Let α be the restriction of φ to H \ {u, v}. Since

P has property P2,2, α can be extended such that β(u) 6= β(v). Since P has property
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Figure 2.3: The non-zero quadratic residue tournament on 7 vertices.

P2,2, β can be extended to include z. Strictly speaking, we may not have extended

φ to be a homomorphism from H? to P , as it may be that φ(u) 6= δ(u). However,

starting from φ we have successfully constructed a homomorphism δ : H? → P .

The first upper bound on the oriented chromatic number of oriented graphs with

bounded degree was given by Sopena.

Theorem 2.1 (Sopena [49]). An orientation of a graph with maximum degree ∆ has

oriented chromatic number at most (2∆− 1)22∆−2.

Using the probabilistic method, this result was later improved by Kostochka,

Sopena and Zhu.

Theorem 2.2 (Kostochka, Sopena and Zhu [31]). An orientation of a graph with

maximum degree ∆ has oriented chromatic number at most 2∆22∆.
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Figure 2.4: An oriented clique on 7 vertices

2.2 Oriented Cliques with Bounded Degree

Definition 2.4. An oriented graph, G, is an oriented clique or oclique if χo =

|V (G)|.

As discussed in Chapter 1, oriented cliques have been studied by a variety of

authors. Here we find oriented cliques with bounded maximum degree.

Theorem 2.3. The order of a largest oriented clique in the family of orientations of

graphs with maximum degree 3 is 7.

Proof. Suppose G is an oriented clique whose underlying graph has maximum degree

3. If U(G) has a vertex of degree 2, then G has at most 7 vertices. As such, we may

assume that U(G) is 3−regular. Every vertex of G is the centre vertex of at most

two 2−dipaths. Since G is an oriented clique, each vertex has a 2−dipath to each of
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its non-neighbours in one direction or the other. Therefore the number of 2−dipaths

in G is at least n(n−4)
2

. This implies

2n ≥ n(n− 4)

2
.

In turn, this implies n ≤ 8.

The two cubic graphs on eight vertices are given in Figure 2.5. Consider orienting

each of them to be an oclique. Without loss of generality we may assume that we

have the arcs 23 and 34, as there must be a 2−dipath from 2 to 4. We note that

generality is not lost here, as if an oriented graph is an oclique, then its converse is

also an oclique. This implies we have the arc 34, as there must be a 2−dipath from

3 to 5. Continuing with this line of reasoning we see that the outer cycle must be a

directed cycle. However, if this is the case we cannot successfully orient the edge 26

so that there is a 2−dipath between 2 and 5 and one between 2 and 7.

Figure 2.4 gives an oriented clique on 7 vertices. A similar technique for orien-

tations of graphs with maximum degree 4 yields the following result, which we state

without proof.

Theorem 2.4. The order of a largest oriented clique in the family of orientations of

graphs with maximum degree 4 is no more than 13.
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Figure 2.5: Cubic graphs with diameter 2.
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2.3 Oriented Colourings of Graphs with Maximum

Degree Three

For the family, F3, of orientations of connected graphs with maximum degree 3,

Theorem 2.2 gives χo(F3) ≤ 144. However, for F3 we can get a better bound by

considering the acyclic chromatic number of the underlying graphs. Cubic graphs

have acyclic chromatic number at most 4 [23], and so, by Theorem 1.4 in Chapter 1,

χo(F3) ≤ 4 · 24−1 = 32.

A series of incremental improvements ([49], [52]) has led to the following upper

bound for χo(F3).

Theorem 2.5 (Sopena and Vignal [52]). An orientation of a graph with ∆ ≤ 3 has

oriented chromatic number at most 11.

Since the oriented graph given in Figure 2.4 is a member of F3, we have directly

that χo(F3) ≥ 7.

In their proof of Theorem 2.5 the authors show that QR11 is a universal target

for F3. To improve this bound we show that every oriented subcubic graph that does

not contain a subgraph with a particular structure admits a homomorphism to QR7.

We begin by observing some useful properties of QR7.

Property 2.6. QR7 is arc-transitive and vertex-transitive.

Paley tournaments are a type of Cayley tournament. Since Cayley tournaments

are known to be vertex-transitive, it follows that QR7 is vertex transitive. To see

that QR7 is arc transitive, observe that for any pair of arcs uv, wx ∈ E(QR7), the
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mapping φ, defined by

φ(z) =
x− w
v − u z + w − ux− w

v − u (mod 7),

is an automorphism that maps uv to wx.

Property 2.7. QR7 is self-converse.

To prove Property 2.7 observe that the arc set of the converse of QR7, QRc
7 is

given by

E(QRc
7) = {uv|v − u /∈ {0, 1, 2, 4}}.

The mapping that sends x ∈ V (QR7) to y ∈ V (QRc
7) such that

x+ y ≡ 0 (mod 7)

is an isomorphism, as if i− j ∈ {1, 2, 4}, then j − i ∈ {3, 5, 6}.

Property 2.8 ([5]). QR7 has property P2,1.

Property 2.9. For every x ∈ V (QR7) and every sequence (zu, zv) ∈ {0, 1}2 there

exists a pair of arcs u1v1, u2v2 ∈ E(QR7) such that the edge between x and yi, y ∈

{u, v}, i ∈ {1, 2}, is oriented as xyi if and only if zy = 1.

Property 2.10. For a given arc ij, there exist vertices k1 6= k2 such that ijk1 and

ijk2 are directed 3−cycles.

Property 2.11. For a given arc ij, there are exactly three pairwise distinct vertices,

k1, k2, k3 ∈ V (G) such that

• ik1, jk1 ∈ E(G),

• k2i, k2j ∈ E(G), and
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Figure 2.6: Oriented graphs that do not admit a homomorphism to QR7.

• ik3, k3j ∈ E(G).

By Property 2.6, these last three properties can be verified by considering the

neighbourhood of 0 and the arc 01.

Property 2.12. Let G be an oriented graph with a cut arc uv. The oriented graph

G admits a homomorphism to QR7 if and only if each component of G \ {uv} admits

a homomorphism to QR7.

This follows directly from the vertex transitivity of QR7.

In [49] the author conjecture that 7 colours suffice for an oriented colouring of

any member of F3. However it is not the case that QR7 is a universal target for this

family of oriented graphs. Let Z be the set of oriented graphs given in Figure 2.6

together with the oriented graphs formed by reversing all of the arcs in any pictured

graph.

Proposition 2.13. No oriented graph in Z admits a homomorphism to QR7.

Proof. Let G be an oriented graph in Z such that there exists φ : G → QR7. For

each Z ∈ Z it must be that φ(z1) 6= φ(z2). By Property 2.11, φ(z3) = φ(z4). But
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then z3 and z4 are the ends of a 2−dipath, a contradiction.

Corollary 2.14. Any oriented subcubic graph that contains a subgraph from Z does

not admit a homomorphism to QR7.

Consider the family, R, of oriented graphs formed from graphs Z by

• adding a pair of vertices r1 and r2,

• adding in the arcs r1z3 and z4r2, and

• deleting z5.

For any R ∈ R, observe that identifying r1 and r2 into a single vertex gives the

oriented graph from Z that was used to generate R.

Since no subcubic oriented graph in Z admits a homomorphism to QR7, in any

subcubic oriented graph that contains a copy of an oriented graph fromR that admits

a homomorphism to QR7 it must be that r1 and r2 are assigned different colours.

Consider the following reduction to those subcubic graphs in F3 that contain a copy

of an oriented graph from R.

Reduction. Let G be a subcubic oriented graph such that G contains a subgraph

R ∈ R. The subcubic graph GR is obtained from G by

• deleting the vertices corresponding to z1, z2, z3, z4 and, if it exists, z6;

• adding a vertex r together with the arcs rr1 and r2r.

We call an oriented subcubic graph reducible if it may be reduced and an oriented

subcubic graph reduced if it cannot be reduced. Since each oriented graph in R

contains either a source or a sink of degree 3, if an oriented subcubic graph has no

source and no sink of degree 3, then it is reduced.
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Lemma 2.15 (The Reduction Lemma). Let G be a reducible oriented subcubic graph.

Then G admits a homomorphism to QR7 if and only if GR admits a homomorphism

to QR7.

Proof. Let G be a reducible oriented subcubic graph that admits a homomorphism,

φ, to QR7. Let xi be the vertex corresponding to zi in the copy of Z ∈ Z formed

by identifying r1 and r2 in G. Since φ is a homomorphism to QR7 it must be that

φ(x1) 6= φ(x2). By Property 2.11 of QR7, we have directly that that φ(x3) = φ(x4),

which in turn implies that φ(r1) 6= φ(r2). Restricting this homomorphism to the

vertices that are common to GR and G, and colouring r using property P2,1 yields a

homomorphism from GR to QR7.

Assume now that GR admits a homomorphism, β, to QR7. By Property 2.6 of

QR7, we may assume that β(r) = 0. If the vertex x6 does not exist in G, we see that

β can be used to colour G by colouring each of x3 and x4 with 0 and then colouring

the remaining vertices using Property 2.8. Consider now the case that x6 does exist.

Since G is subcubic and x6 is adjacent with both x1 and x2 we must consider the

colour of a potential third neighbour, s, of x6 in G. Since s ∈ GR, let β(s) = k.

We wish to extend β to all vertices of G in such a way that the arc between β(s)

and β(x6) in QR7 is oriented the same way as the arc between s and x6 in G. As

in the case where x6 did not exist, we can extend β to colour the vertices x3 and

x4 each with colour 0. By Property 2.7 we may, without loss of generality, assume

that the arcs between x1 and x3, and x1 and x4 are oriented such that x3x1 is an

arc. Observe that the colours in the set {1, 2, 4} may be assigned to the vertices x1

and x2. Therefore colours in the set {2, 3, 5, 6} may appear on the vertex x6. Every

vertex in QR7 appears as an out-neighbour (respectively in-neighbour) of a vertex in

the set {2, 3, 5, 6}. And so the colouring may be extended to be consistent with the

colour of s.
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Figure 2.7: A graph that reduces to a graph containing a member of Z with a single
reduction.

Consider those oriented graphs, G, with the property that a single reduction

produces an oriented graph from Z. In GR the vertex r corresponds to, without loss

of generality, z5. Therefore there exist vertices of G that are configured as in the

subgraph shown in Figure 2.7, or the graphs formed by replacing one or both of the

2−dipaths x4x5x3 and y4y5y3 with a single arc from the start of the 2−dipath to the

end of the 2−dipath. In this figure, the direction of the undirected edges can take

orientations as the oriented graphs in Z.

Our goal in the remainder of this section is to prove that every connected oriented

cubic graph has an oriented colouring that uses no more than 9 colours. First we

show that any reduced oriented subcubic graph that does not have a subgraph from

Z admits a homomorphism to QR7.
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Lemma 2.16. Every reduced connected oriented subcubic graph that does not contain

a subgraph isomorphic to an oriented graph in Z admits a homomorphism to QR7.

Proof. Let G be a minimum counter-example with respect to number of vertices and

subject to that with respect to the number of arcs. Since G is minimum there exists

a vertex of degree 2, z, with neighbours u and v such that uzv is a 2−dipath. Further

in every homomorphism from G \ {z} to QR7, u and v receive the same colour, as

otherwise z may be coloured using Property 2.8 of QR7. Notice that if either u or v

have degree 1 in G \ {z}, then u and v need not receive the same colour as G \ {z}

has a cut arc and QR7 is vertex transitive. Let u1, u2 (respectively v1 and v2) be the

neighbours of u (respectively v) in G\{z}. We proceed by proving various properties

about G that eventually allow us to conclude that G does not exist.

Claim 1. G does not contain a cut arc.

This follows directly from Property 2.12 of QR7 and the minimality of G.

Claim 2. If {e1, e2} is an edge cut in G\{z}, then e1 and e2 have a common endpoint

of degree 2.

Assume the contrary.

Case I: e1 and e2 have a common endpoint of degree 3. Let a be a common

endpoint of e1 and e2 such that a has degree 3 in G. Let b be the neighbour of a that

is not incident with e1 or e2. It follows directly that ab is a cut arc of G \ {z}. This

violates Claim 1.

Case II: e1 and e2 do not have a common endpoint. Since neither e1 nor e2 is a

cut edge, G \ {z, e1, e2} has exactly two components. Let a1 and b1 be the endpoints

of e1 and a2, and let b2 be the endpoints of e2 such that a1 and a2 are in the same

component, A, of G \ {z, e1, e2}. Let B = G \ A.
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Case II.i: u and v are in different components of G \ {z, e1, e2}. Let u be in the

same component as a1 and a2 in G \ {z, e1, e2}. We proceed by examining homomor-

phisms φA : A → QR7 and φB: B → QR7 and the direction of the arcs between A

and B. By the minimality of G, such homomorphisms must exist.

If there exist homomorphisms φA : A → QR7 and φB: B → QR7 such that

φA(a1) 6= φA(a2) and φB(b1) 6= φA(b2), then we construct a homomorphism G→ QR7

as follows. Since G is arc transitive, we may assume that φA(a1) = 0 and φA(a2) = 1.

Further, since φB(b1) 6= φB(b2) we may assume the existence of an arc, in some

direction, between b1 and b2. If such an arc does not exist we may add it such that

it is oriented the same as the arc between φB(b1) and φB(b2) in QR7. The graphs

in Table 2.1 give the possibilities for the arcs between A and B. Since QR7 is arc

transitive, we may construct a pair homomorphisms φ, φ′ : G\{z} → QR7 as follows.

• For all a ∈ V (A), φ(a) = φ′(a) = φA(a).

• For all b ∈ V (B), φ(b) = αB(b) and φ′(b) = α′B(b), where each of αB and α′B are

homomorphisms from B to QR7 (See Table 2.1). Since QR7 is arc transitive,

there is an automorphism of QR7 that induces a map from αb to α′b.

Observe that in each of these cases, the automorphism of QR7 that maps the arc

αB(b1)αB(b2) to the arc α′B(b1)α′B(b2) (or αB(b2)αB(b1) to the arc α′B(b2)α′B(b1) ) does

not fix any vertex of QR7. Therefore, if φ(u) = φ(v), then φ′(u) 6= φ′(v) And so, one

of φ and φ′ may be extended to include z.

Assume for all homomorphisms φA : A→ QR7 and φB: B → QR7 that φA(a1) =

φA(a2) and φB(b1) = φA(b2). If the arcs between A and B are both oriented to

have their head in A (respectively B), then, since QR7 is vertex transitive, a homo-

morphism may be constructed from G \ {z} to QR7 such that u and v are assigned

different colours, as the oriented graph produced by identifying a1 and a2, and b1 and
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a1

a2

b1

b2 a2

b1

b2

a1

a2

b1

b2

a1

b1

b2

a1

a2

b1

b2

a1

a2

b1

b2

a1

a2

1. 2. 3.

6.5.4.

1. αB α′B
b1 4 1
b2 2 6

2. αB α′B
b1 1 2
b2 2 3

3. αB α′B
b1 3 6
b2 2 5

4. αB α′B
b1 5 6
b2 2 3

5. αB α′B
b1 2 4
b2 4 6

6. αB α′B
b1 2 1
b2 0 6

Table 2.1: Colourings for Claim 2
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b2 admits a homomorphism to QR7 and contains a cut arc.

Therefore we may assume, without loss of generality, that a1 is the head of e1 and

b2 is the head of e2. Consider constructing A? from A by adding a vertex, a, together

with the arcs a2a and aa1. It cannot be that A? admits a homomorphism to QR7,

as otherwise such a homomorphism would be one in which a1 and a2 are assigned

different colours. By minimality, A? contains a copy of a graph from Z or a copy of a

graph from R. It must be that a is in this copy. Since a has degree 2, we can assume

that it corresponds to either z5 or z6 in either case. By symmetry we may assume

that it corresponds to z6. If A contains a copy of a graph from Z, observe that the

vertex corresponding to z5 is a cut vertex. This contradicts that G \ {z} has no cut

arc. Therefore A? contains a copy of a graph from R and, when reduced, contains a

copy of a graph from Z. We note that by the minimality of G, a single reduction in

A? yields a copy of a graph from Z. Therefore A? contains a copy of the graph given

in Figure 2.7, where a corresponds to a vertex of degree 2. However if this is the case

we notice that G \ {z} is reducible. This is a contradiction.

Finally, assume for all homomorphisms φA : A→ QR7 that φA(a1) = φA(a2) and

for all homomorphisms φB: B → QR7 that φB(b1) 6= φA(b2). Since φB(b1) 6= φB(b2),

we may assume the existence of an arc, in some direction, between b1 and b2. If such

an arc does not exist we may add it such that it is oriented the same as the arc

between φB(b1) and φB(b2) in QR7. By identifying a1 and a2 into a single vertex and

by applying Property 2.9 of QR7 we obtain a homomorphism from G \ {z} to QR7

in which u and v are assigned different colours.

Case II.ii: u and v are in the same component of G \ {z, e1, e2}.

Let u and v be in A. By the minimality of G, observe that B admits a homo-

morphism to QR7. Construct Az by adding the vertex z together with the arcs uz

and zv to A. By the minimality of G, Az admits a homomorphism to QR7. Regard-
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less of the orientations of the arcs between A and B, these homomorphisms may be

combined to be one from G to QR7 as above, as long as it is not the case that for

all φAz : Az → QR7 and φB: B → QR7 it is the case that φA(a1) = φA(a2) and

φB(b1) = φA(b2), and that a1 is the head of e1 and a2 is the tail of e2. However in

this case we proceed as in Case II.i by constructing A?z and following the argument

above.

Therefore if {e1, e2} is an edge cut in G \ {z}, then e1 and e2 have a common

neighbour of degree 2.

Claim 3. G contains a single vertex of degree 2.

Assume there exists z′ 6= z with neighbours u′ and v′ such that u′z′v′ form a

2−dipath. Consider the oriented graph Gz′ formed by removing z′ and adding in the

arc u′v′. If this graph admits a homomorphism to QR7, then this homomorphism

may be extended to include z′. This is a contradiction. Therefore Gz′contains either

an oriented graph from Z or R. It must be that both u′ and v′ appear in this copy. If

Gz′ contains a copy of R ∈ R, then by the minimality of G it must contain a graph as

in Figure 2.7. Since G does not contain this graph, it must be that the newly added

arc corresponds to the arc between x2 and y2 or the arc between y1 and x1. However

here we see that G is reducible.

If Gz′ contains a copy of Z ∈ Z and this copy does not contain z6, then the arc

incident with z5 is a cut arc in G. Therefore Z must contain z6. In this case we

see that the arcs not in Z that are incident with z6 and z5 form an edge cut. By

Claim 2 these two arcs must have a common endpoint of degree 2. If so, this common

endpoint must be z, as all other vertices have degree 3. The oriented graphs given

in Figure 2.8 give two of the four possibilities for the configuration of the vertices in

G. The other two can be obtained by reversing the orientations of all the arcs. We

see that both of these oriented graphs admit a homomorphism to QR7. This is a
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φ(u′) = 1

φ(v′) = 0 φ(z4) = 4

φ(z1) = 6

φ(v) = 2

φ(u) = 0

φ(z′) = 5

φ(z) = 1

φ(z1) = 4

φ(z2) = 4

φ(z4) = 1φ(u) = φ(v′) = 6

φ(v) = 0

φ(z3) = 6

φ(z) = 5

φ(z′) = 0

Figure 2.8: A configuration of vertices for Claim 3.

contradiction.

Claim 4. u1 and u2 do not have three common neighbours in G setminus{z}.

If u1 and u2 have three common neighbours in G \ {z}, then G \ {z} contains a

2−edge cut. This is a violation of Claim 2.

Claim 5. u1 and u2 are not adjacent in G setminus{z}.

If u1 and u2 are adjacent in G \ {z}, then G \ {z} contains a 2−edge cut. This is

a violation of Claim 2.

Claim 6. Each of u and v is either a source or sink vertex in G \ {z}

Assume that u1uu2 forms a 2−dipath in G \ {z}. Consider the graph, Hu, formed

from G \ {z} by removing u and adding the arc u2u1. If Hu admits a homomorphism

to QR7, then by Property 2.10 there exists a homomorphism from G \ {z} to QR7 in
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which u and v receive different colours. Therefore we may assume that Hu contains

either a subgraph from Z or a subgraph from R.

Assume that Hu contains a subgraph from Z. It must be that the arc u2u1 is in

this subgraph. And so since G \ {z} has no cut arc or 2−edge cut, it must be that

z6 exists. Up to symmetry, the arc u2u1 corresponds to the one between z1 and z3 or

the one between z5 and z3. However observe that in either case G \ {z} has either a

cut arc or a 2−edge cut.

Assume that Hu contains a subgraph from R. By the minimality of G it must

contain a graph as in Figure 2.7. Since G \ {z} is not reducible it must that u2u1

corresponds to, without loss of generality, the arc between x2 and y2. However in this

case observe the arcs incident with x5 and y5 that do not have their other ends at

either x3, x4, y3 or y4 form a 2−edge cut. If these arcs have a common endpoint, it

must be an endpoint of degree 2, as otherwise G \ {z} has a cut arc. Since G has

only one vertex of degree 2, this common endpoint must be v. We conclude that the

vertices are configured as in Figure 2.9. Since this graph must reduce to one that

contains a copy of a graph from Z, we may assume that neither u1 nor u2 are the

centre of a 2−dipath in G\{z, u}. This leads to the four possible partial orientations

given in Figure 2.10. However in each of these cases, regardless of the orientation of

the arcs incident with v, a homomorphism to QR7 exists in which u and v receive

different colours, as shown in Figure 2.11.

Therefore Hu does not reduce to have an oriented graph from Z. Therefore Hu

admits a homomorphism to QR7.

Claim 7. |{u1, u2, v1, v2}| 6= 2.

If this is true, then either G is reducible or violates Claim 2.

Claim 8. |{u1, u2, v1, v2}| 6= 3.



34

u1

x3

x1

x4

v1

u2

y4

y1

v2

y3

u

v

Figure 2.9: A configuration of vertices for Claim 6.
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u1

x3

x1

x4

v1

u2

y4

y1

v2

y3

u

v

u1

x3

x1

x4

v1

u2

y4

y1

v2

y3

u

v

u1

x3

x1

x4

v1

u2

y4

y1

v2

y3

u

v

u1

x3

x1

x4

v1

u2

y4

y1

v2

y3

u

v

Figure 2.10: A configuration of vertices for Claim 6.
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0

6

0

3

4

6

0

6

2

3

2

v

0

1

0

2

6

6

0

6

2

3

2

v

0

1

0

2

6

6

5

6

2

4

2

v

0

6

0

3

4

6

5

6

2

4

2

v

Figure 2.11: Colourings of four orientations for Claim 6.
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Suppose |{u1, u2, v1, v2}| = 3. Assume, without loss of generality, that u1 = v1.

Since u and v receive the same colour in any QR7−colouring of G \ {z}, it must be

that the arc between u1 and u, and the arc between u1 and v are oriented in the same

direction with respect to u1. Consider the subcubic graph, Au, formed by removing

z and v and adding an arc between u and v2 that is oriented oppositely to the arc

between v and v2, with respect to v2. If Au admits a homomorphism to QR7, then

observe that it may be extended to include v by applying Property 2.8 of QR7. We

see that in this case u and v are assigned different colours as uv2v form a 2−dipath in

the graph formed by adding v. The existence of such a homomorphism is a violation

of the assumption that G does not admit a homomorphism to QR7. Therefore it must

be that Au either contains a copy of a graph from Z or is reducible. Observe that in

Au, d(u1) = 2.

Assume that Au contains a copy of a graph from Z. Since adding the arc between

v2 and u created this copy, it must be that this arc appears in the copy of the graph

from Z. Up to symmetry there are two possibilities for this arc: the arc between z2

and z3 or the arc between z3 and z5. We note that although z5 has degree 2 in this

copy, it may have degree 2 or degree 3 in Au.

Case I: u corresponds to z3. Since u1 has degree 2 in Au, it must be that u1

corresponds to z5. This implies that u2 corresponds to z1. If z6 does not exist, then

G \ {z} is the oriented graph given in Figure 2.12, or the one formed by reversing

each arc. This oriented graph admits a homomorphism to QR7 in which u and v

receive different colours, a contradiction. If z6 exists, then observe that the vertex

corresponding to z6 is a cut vertex in G\{z}, or has degree two. This is a contradiction

of Claim 1 or Claim 3.

Case II: u corresponds to z2 and v2 corresponds to z3. Since u1 has degree 2 in

Au, it must be that u1 corresponds to z6. This implies that the vertex corresponding
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u1

u2

u

v2

v

Figure 2.12: A configuration of vertices for Claim 8.
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to z5 is a cut vertex in G \ {z} or is a vertex of degree 2. This is a contradiction of

Claim 1 or Claim 3.

Case III: u corresponds to z5 and v2 corresponds to z3. Since u1 has degree 2 in

Au, it must be that u2 corresponds to z4. If z6 exists, then vertices are configured as

in Figure 2.13. However, here we see that G has a 2−edge cut. If the arcs in the cut

have a common endpoint, then either this endpoint is v, or G \ {z} has a cut vertex.

However, we observe that this endpoint is not v. Therefore G \ {z} has a cut vertex,

this is a contradiction. If z6 does not exist we see that the arc incident with u1 that

does not have its endpoint at either u or v is a cut arc, a contradiction.

Therefore Au does not contain a copy of a graph from Z, and so must contain a

copy of an oriented graph in R.

Assume that Au contains a copy of a graph R ∈ R. Since G is reduced, Au must

reduce to a graph containing a graph from Z with a single reduction. Therefore Au

contains a copy of the graph in Figure 2.7. Since G is reduced it must be that u

corresponds to either x1 or x2, as otherwise G would be reducible. However, if this

is the case we see that u1 and u2 have three common neighbours. This contradicts

Claim 4. Therefore |{u1, u2, v1, v2}| 6= 3.

Claim 9. |{u1, u2, v1, v2}| 6= 4.

Suppose |{u1, u2, v1, v2}| = 4. Let Av1 be the oriented graph formed from G by

removing z, v and adding the edge between v1 and u, orienting it oppositely to the

arc between v and v1, with respect to v1.

If this oriented graph admits a homomorphism to QR7, then, by Property 2.8,

and Claim 6 we can extend this homomorphism to include v. However in this case it

cannot be that u and v receive the same colour; there is a 2−dipath between them.

Therefore Av1 does not admit a homomorphism to QR7. As such it either contains a

copy of an oriented graph in Z or is reducible. Similarly we construct Av2 and assert
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u v

u2 v2

u1

Figure 2.13: A configuration of vertices for Claim 8.
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that it contains a copy of an oriented graph in Z or is reducible.

We claim that neither of Av2 and Av1 contain a graph from R. Assume that Av1

contains a graph R ∈ R. By the minimality of G, Av1 must reduce to an oriented

graph that contains a graph from Z. Further it must be that a single reduction leads

to a copy of a graph from Z, as otherwise G would be reducible. Therefore Av1

contains a copy of the graph in Figure 2.7. Since G is not reducible it must be that,

without loss of generality, u corresponds to x2 and v1 corresponds to y2. However, if

this is true, u1 and u2 have three common neighbours in G \ {z}. This contradicts

Claim 4.

Therefore each of Av2 and Av1 contain a graph from Z. Assume that Av1 contains

a copy of Z ∈ Z. We first show that each of u1 and u2 has at least two common

neighbours with one of v1 and v2 in G. We do this by considering the degree of the

vertex to which u corresponds in Z. From this fact we then derive a contradiction.

If u corresponds to a vertex of degree 2 in Z it must be that v1 corresponds to a

vertex of degree 3. So we may assume that if u corresponds to z5, then one of u1 and

u2 corresponds to z4. Without loss of generality, we may assume that u1 corresponds

to z4. We see that u1 has two common neighbours with v1 in G.

If u corresponds to a vertex of degree 3 in Z, then it cannot be that v1 corresponds

to a vertex of degree 2, as otherwise u1 and u2 would have three common neighbours.

Therefore, if u corresponds to z1, then we may assume that u1 corresponds to z3, u2

corresponds to z6 and v1 corresponds to z4. Notice that u1 and u2 each have two

common neighbours with v1 in G.

By considering Av2 and observing that u1 cannot have two common neighbours

with both v1 and v2 we conclude that u2 has two common neighbours with v2. Thus

the vertices are configured as in Figure 2.14. Here we see a 2−edge cut. This is a

contradiction of Claim 2. Therefore one of Av2 or Av1 admits a homomorphism to
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u1 v1

u

u2 v2

v

Figure 2.14: A configuration of vertices for Claim 9.

QR7.

Claim 10. G does not exist.

By the previous claims |{u1, u2, v1, v2}| > 4.

Theorem 2.17. An orientation of a connected graph with ∆ ≤ 3 has oriented chro-

matic number at most 9.

Proof. Let G be a connected oriented cubic graph. We proceed based on the existence

of source and sink vertices of degree 3.

Case I: G has a source or a sink vertex of degree 3. Let G? be the oriented graph

formed by removing all the source and sink vertices of degree 3. Since G? contains no

source or sink vertices of degree 3, G? is reduced and contains no subgraph from Z.

By Lemma 2.16, there exists φ? : G? → QR7. Let QR′7 be the oriented graph formed



43

from QR7 by adding a universal source vertex, s, and a universal sink vertex, t. We

construct a homomorphism φ : G→ QR′7 given by

• φ(u) = φ′(u), for all u ∈ V (G) such that u has positive in- and out-degree.

• φ(u) = s, for all u ∈ V (G) such that d+(u) = 3.

• φ(u) = t, for all u ∈ V (G) such that d−(u) = 3.

Case II: G has neither a source or a sink vertex of degree 3. Let uv ∈ E(G). Since

G has no source or a sink vertex of degree 3, G \ {uv} is reduced and contains no

subgraph from Z. By Lemma 2.16, there exists φ : G \ {uv} → QR7. We extend φ

to be an oriented 9−colouring of G by letting φ(u) = 7 and φ(v) = 8.

Note that in this theorem the assumption of connectedness is important. We

achieve an oriented 9−colouring by either removing an arc, or removing sources and

sinks. This technique will fail to produce an oriented 9−colouring in the case where

G is not connected, each reduced component is cubic, and not all of these components

contain a copy of a graph from Z.

Corollary 2.18. For the family, F3, of orientations of connected graphs with maxi-

mum degree at most three, 7 ≤ χo(F3) ≤ 9.

2.4 Oriented Colourings of Graphs with Maximum

Degree Four

For the family, F4, of orientations of connected graphs with maximum degree 4,

Theorem 2.2 gives an upper bound of 512. However, for F4 we can get a better

bound by considering the acyclic chromatic number of graphs with ∆ ≤ 4. Graphs
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with maximum degree 4 have acyclic chromatic number at most 5 [23], and so by

Theorem 1.4 in Chapter 1 ,

χo(F4) ≤ 5 · 25−1 = 80.

As with our improved bound for orientations of cubic graphs, we use a non-zero

quadratic residue tournament as a means to construct a target.

Proposition 2.19 (Bonato [5]). The Paley tournament on 67 vertices, QR67, has

property P4,1 and property P3,2.

Proposition 2.20. The Paley tournament on 67 vertices, QR67 is vertex transitive

and arc transitive.

This follows similarly to Property 2.6.

Lemma 2.21. Every orientation of a 3−degenerate graph with maximum degree at

most 4 admits a homomorphism to QR67

Proof. Let G be a minimum counter-example with respect to number of vertices and

subject to that with respect to the number of arcs. We consider cases based on the

minimum degree of a vertex in G. Let z be a vertex of minimum degree in G. Since

G is 3−degenerate, it must be that z has degree 1, 2 or 3.

Case I: z has degree 1: Since QR67 has property P1,1 any homomorphism φ :

G \ {z} → QR67 can be extended.

Case II: z has degree 2: Let u and v be the neighbours of z in G. By the

minimality of G, G \ {z} admits a homomorphism to QR67. If both u and v have

z as an out-neighbour (respectively in-neighbour), then any homomorphism from

G\{z} to QR67 can be extended, since QR67 has property P2,1. Thus, without loss of

generality, we may assume that uz, zv ∈ E(G). We may further assume that in every
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homomorphism from G \ {z} to QR67, u and v receive the same colour, as otherwise

any homomorphism from G \ {z} to QR67 can be extended, since QR67 has property

P2,1.

Consider a homomorphism φ : G \ {z} → QR67. Let φ′ be the restriction of this

homomorphism to G \ {u, v, z}. Since QR67 has property P4,1 it also has property

P3,2. This implies that φ′ may be extended in such a way that u and v receive different

colours. This is a contradiction.

Case III: z has degree 3: Let u, v, w be the neighbours of z in G. Following Case

II we may assume, without loss of generality, that uz, zv, zw ∈ E(G) and that in

every homomorphism from G\{z} to QR67 that u receives the same colour of at least

one of v and w. This implies we may assume that u is adjacent to at most one of v

and w. We proceed based on the existence of arcs between u, v and w.

Case III.i: u, v, w form an independent set : Consider a homomorphism φ : G \

{z} → QR67. Let φ′ be the restriction of this homomorphism to G \ {u, v, w, z}.

Consider extending φ′. Since QR67 has property P3,2, there are two choices for each

of u, v, w, and each of these choices may be made independently. By hypothesis, no

matter how these choices are made, it must be that u receives the same colour as

at least one of v or w. Consider a graph with vertex set {u′, v′, w′} and edge set

{u′v′, u′w′}. If we assign to u′ (respectively v′ and w′) the same list of colours that

are available for u (respectively v and w) when extending φ′, then a list colouring of

this constructed graph corresponds exactly to an extension of φ′ to include u, v and

w where u does not receive the same colour as v or w. Since QR67 has property P3,2

each of these lists has cardinality at least two. Since K2,1 is 2−chooseable, such an

extension must exist. This is a contradiction.

Case III.ii: There is an arc, in some direction, between u and v. Consider a

homomorphism α : G \ {z} → QR67. Let α′ be the restriction of this homomorphism
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to G \ {w, z}. Since QR67 has property P3,2, α′ can be extended in such a way that

w does not receive the same colour as u. Therefore there is a homomorphism from

G \ {z} to QR67 in which u does not receive the same colour as v or w. This is a

contradiction.

Theorem 2.22. An orientation of a connected graph with ∆ ≤ 4 has oriented chro-

matic number at most 69.

Proof. Let G be an oriented graph such that ∆(U(G)) ≤ 4 and let uv ∈ E(G). By

Lemma 2.22, G \ {uv} admits a homomorphism to QR67. An oriented colouring of G

using 69 colours can be constructed from this homomorphism by adding the arc uv

and recolouring u and v respectively with two new colours.

2.5 Future Directions and Conclusions

The proof in Case II of Theorem 2.17 presents an interesting case. If it is indeed the

case that 9 colours are required, then oriented colourings constructed in this manner

have a pair of vertices that are the only elements of their respective colour class; these

oriented graphs are critical with respect to oriented chromatic number. Further, for

every arc uv ∈ V (G) it is possible to construct an oriented 9−colouring so that u and

v are the only vertices of their respective colour. In fact, by considering all choices of

uv, if an oriented cubic graph does need 9 colours, then the oriented graph formed by

reversing any arc of G leads to an oriented cubic graph that requires only 7 colours.

It is also worth pointing out that if the QR7−colouring maps the ends of uv to a

correctly oriented arc in QR7, then u and v need not be recoloured. In such a case

an oriented 7−colouring of G exists.

In [49] the author conjectures that 7 colours suffice for an oriented colouring of an

orientation of a connected graph with maximum degree 3. Our result, that 9 colour
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suffice, improves the previous upper-bound of 11. Though not specifically invoked in

the proof, the assumption of connectedness is important. Consider an oriented cubic

graph that is formed from the disjoint union of a pair of oriented 3−regular graphs,

where one is oriented to have sources and sinks, and one without. By our main result

each of these oriented graphs admits a homomorphism to a target with at most 9

vertices. However, by our construction, these two oriented graphs do not admit a

homomorphism to the same target. Similar remarks can be made for the results

concerning the family of orientations of graphs with maximum degree 4. When the

ends of the arc are coloured with the two new colours, this implicitly defines a 69-

vertex target. However, since the target constructed depends on the colours of the

neighbours of the ends of the arc that had its ends recoloured, this target is not a

universal target for the family of orientations of connected graphs with maximum

degree 4.
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Chapter 3

k−dipath Colourings of Oriented Graphs

In Chapter 3 we examine a generalisation of 2−dipath colourings of oriented graphs.

Using ideas similar to [33] we construct a homomorphism model for colourings that

require vertices at the end of a directed path of length at most k receive different

colours. Additionally, we consider the complexity of determining if a given oriented

graph has a k−dipath colouring using no more than m colours, for fixed values of m

and k.

3.1 Background and Preliminaries

Recall the vertex labelling definition for oriented colouring:

Let G be an oriented graph. A mapping c : V (G)→ {1, 2, 3, . . . ,m} is an oriented

colouring of G provided that:

• for all uv ∈ E(G), c(u) 6= c(v), and

• for all uv, xy ∈ E(G) such that c(u) = c(y), c(v) 6= c(x).

In the second condition of the labelling definition of oriented colouring an inter-

esting case arises when v = x. In this case we observe that it must be that u and y

are assigned different colours. In general we see that in any oriented colouring that
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vertices at the ends of a 2−dipath are assigned different colours. And so by consider-

ing proper vertex colourings of an oriented graph that also assign vertices at distance

2 different colours, we find a lower bound for the oriented chromatic number.

Definition 3.1. Let G be an oriented graph. A 2−dipath colouring of G using m

colours is a mapping c : V (G)→ {1, 2, 3, . . . ,m} such that:

• for all uv ∈ E(G), c(u) 6= c(v), and

• for all uv, vw ∈ E(G), c(u) 6= c(w).

The 2−dipath chromatic number of G is the least integer m such that there is a

2−dipath colouring of G using m colours. We use χ2d(G) to denote this parameter.

Since every oriented colouring is necessarily a 2−dipath colouring we observe that

if G is an oriented graph, then χ2d(G) ≤ χo(G).

Definition 3.2. If G a digraph, then define Gk to be the simple graph formed from

G as follows:

• V (Gk) = V (G), and

• E(Gk) = {uv|there is a directed path of length at most k from u to v in G}

When considering 2−dipath colourings of an oriented graph G we are led naturally

to the equivalence between a 2−dipath colouring and a proper vertex colouring of the

simple graph, G2 [33]. For 2−dipath colourings we consider oriented graphs, rather

than general digraphs, as the inclusion of 2−cycles allows for a vertex to be on both

ends of a directed path of length 2. And so when generalising to k−dipath colourings

we consider only those graphs with no directed cycles of length at most k.

Definition 3.3. Let G be an oriented graph with directed girth at least k + 1. A

k−dipath colouring of G using m colours is a mapping c : V (G) → {1, 2, 3, . . . ,m}
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1 2 3 4

1

2

2

Figure 3.1: A 3−dipath colouring using 4 colours.

such that for all pairs of distinct vertices u, v ∈ V (G) if there is a directed path of

length at most k from u to v, then c(u) 6= c(v). The k−dipath chromatic number of

G is the least m such that there is a k−dipath colouring of G using m colours. We

use χkd(G) to denote this parameter.

Figure 3.1 gives an example of a 3−dipath colouring using 4 colours. Here this

colouring is optimal as the directed path on 4 vertices requires 4 colours.

As an analogy to the notion of clique in a simple graph, we consider the notion of

a k−dipath clique.

Definition 3.4. Let G be an oriented graph with directed girth at least k+1. We say

G is a k−dipath clique if χkd(G) = |V (G)|.

Proposition 3.1. An oriented graph G is a k−dipath clique if and only if it has weak

diameter at most k.

Proof. Let G be an oriented graph with directed girth at least k+1. We observe that

Gk is a complete graph if and only if for each pair of non-adjacent vertices, say u and

v, there is a directed path of length at most k, in some direction, between u and v.

This condition is equivalent to G having weak diameter at most k.

The first appearance of k−dipath colouring is in a paper giving an upper bound
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for the 2−dipath chromatic number of Halin graphs [12]. Chen and Wang use directed

distance when defining k−dipath colouring, and avoid the directed girth condition

mentioned above. And so we note that our definition of k−dipath colouring differs

slightly to theirs. Though the k−dipath chromatic number is largely unstudied, the

2−dipath chromatic number has received attention as it gives a lower bound for

the oriented chromatic number. In her master’s thesis [57] (more recently published

as [33]), Sherk (née Young) gives a homomorphism model for 2−dipath colouring,

which implies an upper bound for the oriented chromatic number as a function of the

2−dipath chromatic number. This model is discussed further in Section 3.3.

Our goal in this chapter is to construct a homomorphism model similar to that

given for 2−dipath colourings in [33]. Additionally, we discuss the complexity of the

problem of k−dipath colouring with m colours. To achieve these two goals we first

require some preliminary results for k−dipath colourings.

3.2 A Theory of k−dipath Colouring

As discussed above, there is a direct connection between k−dipath colourings of a

particular oriented graph, and proper colourings of the kth power of the oriented

graph, Gk. And so k−dipath colouring is equivalent to proper colouring of Gk for

oriented graphs G with directed girth at least k + 1.

Proposition 3.2. If G is an oriented graph with directed girth at least k + 1, then

there is a one-to-one correspondence between k−dipath colourings of G and proper

colourings of Gk.

In [33] the authors observe this correspondence for 2−dipath colourings and also

obtain the following result.
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Theorem 3.3 (MacGillivray and Sherk [33]). If G is an oriented graph, then χo(G) ≤

2χ2d(G) − 1.

This upper bound follows from the construction of a universal target for the family

of oriented graphs with 2−dipath chromatic number at most m. This universal target

has an oriented colouring using 2m − 1 colours. We further explore the topic of

universal targets for k−dipath colourings in Section 3.3. Theorem 3.3 implies the

following result for the k−dipath chromatic number.

Corollary 3.4. If G is an oriented graph with directed girth at least k + 1, then

χo(G) ≤ 2χkd(G) − 1.

Proof. Let G be an oriented graph with directed girth at least k+1 such that χkd(G) ≤

m. Let c be a k−dipath colouring of G using at most m colours. Observe that c is a

2−dipath colouring of G. By Theorem 3.3, χo(G) ≤ 2m − 1.

Notice that the lower bound for χo(G) given in Theorem 3.3 does not hold for the

k−dipath chromatic number. The oriented chromatic number of P3, the directed path

on four vertices, is 3, however; four colours are required for a 4−dipath colouring.

The proof given in Corollary 3.4 uses the fact that any k−dipath colouring is

also a 2−dipath colouring. It is easy to see that any k−dipath colouring is also a

k′−dipath colouring for all k′ < k. The example given in Figure 3.1 is a k′−dipath

colouring for k′ = 2, 3.

Consider the case where G is acyclic and the longest directed path has at most k

arcs. Since acyclic oriented graphs have infinite directed girth, the k′-dipath chromatic

number is defined for all k′. Here the k′-dipath chromatic number is exactly the

k−dipath chromatic number for any k′ > k. To consider k−dipath colourings of

acyclic oriented graphs we require the following result about path length in an acyclic

oriented graph.
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Theorem 3.5 (Maurer, Sudborough, and Welzl [35]). If G is a acyclic oriented graph,

and Tk is the transitive tournament on k vertices, then G→ Tk if and only if G has

no directed path with k + 1 vertices.

Theorem 3.6. If G is an acyclic oriented graph and the longest directed path in G

has m vertices, then χkd(G) = m for all k ≥ m.

Proof. Let G be an oriented acyclic graph graph where the longest directed path in

G has m vertices. In any k−dipath colouring of G (m ≤ k), each of the vertices in

this longest path must receive a distinct colour, and so χkd(G) ≥ m. By Theorem

3.5, G admits a homomorphism φ : G → Tm, where Tm is the transitive tournament

on m vertices. We claim φ is a k−dipath colouring of G. If not, then there exist

a pair of vertices u, v ∈ V (G) such that φ(u) = φ(v) and a directed path u =

x1, x2, x3, . . . , x` = v (2 ≤ ` ≤ m ≤ k). Since φ is a homomorphism it must be

φ(x1), φ(x2) . . . , φ(x`) is a closed directed walk in Tm. This is a contradiction, as Tm

is acyclic.

Corollary 3.7. An acyclic oriented graph, G, has χkd(G) ≤ m if and only if G has

no directed path on at least m+ 1 vertices.

Corollary 3.8. An acyclic oriented graph, G, has χkd(G) ≤ m if and only if G

admits a homomorphism to Tm.

Though not a direct analogue, Theorem 3.6 has a similar flavour to the early

results on graph colourings of Gallai, Roy, Hasse, Vitaver ([19], [44], [26], [55]) (see

Theorem 1.1). In our version the length of the longest directed path in an acyclic

oriented graph gives the value of the k−dipath chromatic number for all k such that

k is larger than the length of the path. The proof of this theorem relies on Tk being

acyclic, so there is no closed directed walk in Tk. This technique may be generalized

for when the target has sufficiently large directed girth.
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Theorem 3.9. Let G be an oriented graph and let H be an oriented graph with

directed girth at least k + 1. If G→ H, then χkd(G) ≤ χkd(H) .

Proof. Let G and H be oriented graphs such that φ : G → H. If H has directed

girth at least k + 1, then so must G. Let c be a k−dipath colouring of H that uses

m colours. Construct the mapping c′ : V (G) → {1, 2, 3, . . . ,m} such that for all

v ∈ V (G), c′(v) = c(φ(v)). Consider u, v ∈ V (G) such that there is an `−dipath

from u to v (1 ≤ ` ≤ k). If c(u) = c(v), then there is a closed directed walk

φ(v) = y1, y2, . . . , yi = φ(u) (1 ≤ i ≤ k) in H. However since ` ≤ k the existence

of such a walk violates that H has directed girth at least k + 1. Therefore c′ is a

k−dipath colouring of G.

3.3 A Homomorphism Model for k−dipath Colour-

ing

In [33] the authors give a homomorphism model for 2−dipath colouring. That is, for

each m ≥ 1 they describe an oriented graph G2,m with the property that an oriented

graph G has 2−dipath chromatic number m if and only if G admits a homomorphism

to G2,m. We begin by reviewing this model and offering an improvement to the upper

bound in Theorem 3.3 for the cases m = 3 and m = 4. We then move on to consider

a homomorphism model for k−dipath colourings.

3.3.1 The 2−dipath Chromatic Number

The homomorphism model given in [33] is based upon the idea that in any 2−dipath

colouring with m colours and for any particular colour, i, three possibilities arise

when considering the colours of vertices in the closed neighbourhood of v:
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1. v is coloured with i,

2. there are out-neighbours of v coloured with i, or

3. either there are in-neighbours of v coloured with i or there is no vertex coloured

with i in the closed neighbourhood of v.

For a particular vertex and a particular colour, exactly one of these possibilities arises.

As such, for any particular 2−dipath colouring, c, with each vertex, x ∈ V (G) we can

associate a vector of length m, with entries x1, x2, . . . , xm given by

xi =


· , if c(x) = i;

1 , if ∃y ∈ N(x)+ such that c(y) = i;

0 , otherwise.

Let A2,m be the set of all such vectors that arise from a 2−dipath colouring using

m colours over all oriented graphs that have a 2−dipath colouring using m colours.

Each element of A2,m is a vector of length m where exactly one entry is · and all other

entries are either 1 or 0.

Using A2,m, construct the oriented graph G2,m.

• V (G2,m) = A2,m, and

• for X = (x1, x2, . . . , xm) and Y = (y1, y2, . . . , ym) in V (G2,m), where xi = · and

yj = ·, XY ∈ E(G2,m) when xj = 1 and yi = 0.

Proposition 3.10 (MacGillivray and Sherk [33]). The oriented graph G2,m is a uni-

versal target for the family of oriented graphs with 2−dipath chromatic number at

most m.

Proposition 3.11 (MacGillivray and Sherk [33]). χo(G2,m) ≤ 2m − 1.
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Corollary 3.12 (MacGillivray and Sherk [33]). If G is an oriented graph such that

χ2d(G) ≤ m, then χo(G) ≤ 2m − 1.

For the cases m = 3, 4 we offer the following improvements to Corollary 3.12.

Proposition 3.13. If G is an oriented graph with χ2d ≤ m, then

• if m = 3, then χo(G) ≤ 5, and

• if m = 4, then χo(G) ≤ 12.

Proof. Figure 3.2 gives G2,3, leaving out arcs between the source vertices on the

left and the sink vertices on the right. By inspection this oriented graph admits a

homomorphism to the tournament formed from a copy of a directed 3−cycle together

with a universal source vertex and universal sink vertex. Therefore if χ2d(G) ≤ 3,

then χo(G) ≤ 5.

Figure 3.3 gives a mapping of all vertices of G2,4, excluding sources and sinks,

to the ten-vertex target given. This target, together with a universal source and

universal sink vertex is a homomorphic image of G2,4. Therefore if χ2d(G) ≤ 4, then

χo(G) ≤ 12.

For the cases m = 3 and m = 4 the number of vertices of G2,m is small enough to

be examined by hand. Though here improved bounds are established by separately

combining sources and sinks, no general pattern seems to emerge in which such ver-

tices are mapped to the same vertex in the target. Because of this, it does not seem

feasible to utilise this method to establish new bounds for larger values of m.

3.3.2 The k−dipath Chromatic Number

To construct a universal target for the family of oriented graphs with k−dipath chro-

matic number at most m, we begin by constructing an object similar to the vector
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(·, 1, 0)

(·, 0, 1)

(0, ·, 1)

(1, ·, 0)

(0, 1, ·)

(1, 0, ·)

(·, 1, 1) (·, 0, 0)

(1, ·, 1)

(1, 1, ·)

(0, ·, 0)

(0, 0, ·)

Figure 3.2: The universal target for the family of oriented graphs with χ2d ≤ 3.

constructed for the construction of the universal target for the family of oriented

graphs with 2−dipath chromatic number at most m. However rather than construct-

ing a vector, we construct a matrix for each vertex.

Let G be an oriented graph with directed girth at least k + 1. For a vertex

v ∈ V (G) and a k−dipath colouring, c, of G using m colours, we define the k−dipath

colouring matrix of v, Av, to be the (2k − 1)×m {0, 1}−matrix, with rows indexed

by the set

{(k − 1)−, (k − 2)− . . . , 1−, 0, 1+, . . . , (k − 2)+, (k − 1)+},

and columns indexed by {1, 2, 3, . . . ,m}, that has a 1 in the ith row and jth column

if there is a vertex u ∈ V (G) such that c(u) = j, and

• if i ∈ {(k − 1)−, (k − 2)−, . . . , 1−}, then there is a directed path from u to v of

length i;

• if i ∈ {1+, . . . , (k − 2)+, (k − 1)+}, then there is a directed path from v to u of
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(·, 0, 1, 1)

(1, 0, 1, ·)

(·, 1, 0, 1)
(1, 1, 0, ·)

(·, 1, 1, 0)
(0, 1, 1, ·)

(·, 0, 0, 1)
(1, 0, 0, ·)

(·, 0, 1, 0)

(0, 0, 1, ·)

(·, 1, 0, 0)
(0, 1, 0, ·)

(0, ·, 1, 1)
(1, ·, 1, 0)

(0, ·, 1, 0)
(1, ·, 0, 0)

(0, ·, 0, 1)

(1, ·, 0, 1)
(1, 0, ·, 1)

(0, 1, ·, 1)
(1, 1, ·, 0)
(0, 1, ·, 0)

(0, 0, ·, 1)
(1, 0, ·, 0)

Figure 3.3: A homomorphic image of the universal target for the family of oriented
graphs with χ2d ≤ 4.
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length i; and

• if i = 0, then v = u.

Consider the colouring, c, given in Figure 3.1, and the unique vertex v such that

c(v) = 3. The 3−dipath colouring matrix of v is given by:

1 2 3 4

2− 1 0 0 0

1− 0 1 0 0

0 0 0 1 0

1+ 0 0 0 1

2+ 1 0 0 0

For example, the value, 1, in entry (2−, 1) comes by observing that there is a

vertex w such that c(w) = 1 and there is a path of length 2 from w to v.

Let Ak,m denote the set of all possible k−dipath colouring matrices across all

k−dipath colourings using m colours over all oriented graphs with directed girth at

least k + 1 and k−dipath chromatic number at most m. Each element of Ak,m is a

matrix that satisfies the following conditions.

Observation 3.14. For all A ∈ Ak,m, and all columns aj of A (1 ≤ j ≤ m),

• if there is a 1 in the i− row of this column, then the entries in the `+ row are

all 0 (0 ≤ ` ≤ k − i);

• if there is a 1 in the i+ row of this column, then the entries in the `− row are

all 0 (0 ≤ ` ≤ k − i); and

• if there is a 1 in the 0 row of this column, then all other entries of this column

are 0.



60

Using Ak,m we construct an oriented graph Gk,m, which is a universal target for

the family of oriented graphs with k−dipath chromatic number at most m.

• V (Gk,m) = Ak,m.

• If A ∈ Ak,m has a 1 in entry (0,m1), and B ∈ Ak,m has a 1 in entry (0,m2),

then AB ∈ E(Gk,m) provided each of the following conditions hold.

1. A has a 1 in entry (1+,m2);

2. B has a 1 in entry (1−,m1);

3. if A has a 1 in entry (i−,m3), then B has 0 in entry (`+,m3) (0 ≤ ` ≤ k−i,

1 ≤ i ≤ k − 1) and a 1 in entry ((i− 1)−,m3); and

4. if B has a 1 in entry (i+,m3), then A has 0 in entry (`−,m3) (0 ≤ ` ≤ k−i,

1 ≤ i ≤ k − 1) and a 1 in entry ((i+ 1)+,m3).

This completes the construction of Gk,m.

Lemma 3.15. The oriented graph Gk,m has directed girth at least k + 1.

Proof. Let A1, A2, . . . , A`, A1 (1 ≤ ` ≤ k) be a directed cycle in Gk,m such that A1

has a 1 in entry (0,m1). This implies A2 has a 1 in entry (1−,m1) and a 1 in entry

((`− 1)+,m1). This is contrary to Observation 3.14.

Lemma 3.16. The k−dipath chromatic number of Gk,m is at most m.

Proof. Consider the colouring, c, given by c(A) = m1, where m1 the is lone column of

the matrix of A for which the entry (0,m1) of A is a 1. We claim that c is a k−dipath

colouring of Gk,m. Consider a path of length k in Gk,m: A1A2, . . . , Ak. Assume there

exists a pair of indices, 1 ≤ i < j ≤ k such that c(Ai) = c(Aj). This implies Ai+1

has a 1 in entry (1−, c(Ai)) and a 1 in entry ((j − (i + 1))+, c(Ai)). This violates

Observation 3.14.



61

Using these two lemmata we prove our main result in this section.

Theorem 3.17. Suppose G is an oriented graph with directed girth at least k + 1,

then χkd(G) ≤ m if and only if G→ Gk,m.

Proof. Let G be an oriented graph with directed girth at least k + 1. If G → Gk,m,

then by Lemmas 3.15 and 3.16, and Theorem 3.9, χkd(G) ≤ m.

Assume χkd(G) ≤ m. Let c be a k−dipath colouring of G using m colours.

Consider the mapping φ : V (G)→ V (Gk,m), where for all v ∈ V (G), φ(v) = Av, the

k−dipath colouring matrix of v (with respect to c). Let uv be an arc of G. We claim

AuAv is an arc of Gk,m. Assume Au has a 1 in entry (0,m1), and Av has a 1 in entry

(0,m2). We must show Au and Av satisfy the four conditions for an arc to exist in

Gk,m.

1. Since c(v) = m2, Au has a 1 in entry (1+,m2).

2. Since c(u) = m1, Av has a 1 in entry (1−,m1).

3. Assume there exists i such that Au has a 1 in entry (i−,m3). Since c is a

k−dipath colouring, Au has a 0 in entry (`+,m3) (i+` ≤ k, ` > 0), as otherwise

there would be a pair of vertices coloured m3 at the ends of a dipath of length

at most k in G.

4. Assume there exists i such that Av has a 1 in entry (i+,m3). Since c is a

k−dipath colouring, Av has a 0 in entry (`−,m3) (i+` ≤ k, ` > 0), as otherwise

there would be a pair of vertices coloured m3 at the ends of a dipath of length

at most k in G.

Therefore φ : G→ Gk,m is a homomorphism.
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3.4 Complexity of k−dipath Colourings

In [33] the authors use their homomorphism model for 2−dipath colouring to discuss

the complexity of the following colouring problem.

2−DIPATH m−COLOURING

Input: an oriented graph, G.

Question: does G have a 2−dipath colouring using m colours?

Theorem 3.18 (MacGillivray and Sherk [33]). Let m ≥ 1 be a fixed integer. If

m ≤ 2, then 2-DIPATH m-COLOURING is Polynomial. If m ≥ 3, then 2-DIPATH

m-COLOURING is NP-complete.

Here the authors use the indicator construction and make an argument based on

the complexity of graph homomorphism. Our goal in Section 3.4 is to find similar

results for the following decision problems.

3−DIPATH m−COLOURING

Input: an oriented graph, G.

Question: does G have a 3−dipath colouring using m colours?

k−DIPATH m−COLOURING

Input: an oriented graph, G.

Question: does G have a k−dipath colouring using m colours?

We construct a gadget that allows us to transform proper m−colouring of simple

undirected graphs to 3−dipath colouring (respectively k−dipath colouring) using m
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colours. Formally, the decision problem of m−colouring of simple undirected graphs

is stated as follows.

m−COLOURING

Input: a graph, G.

Question: does G have proper colouring using m colours?

Theorem 3.19 (Garey, Johnson and Stockmeyer [20]). For any fixed integer m > 2,

m−COLOURING is NP-complete.

Let G be a simple graph, and let G̃ be an arbitrary orientation of G. We construct

Hm (m > 3) from G̃.

• For all v ∈ V (G) add

– vertices vi, vo and xv;

– a transitive tournament on m − 2 vertices with source vertex sv and sink

vertex tv;

– a 2−dipath (tvxvvi), and

– an arc vosv.

• For all uv ∈ E(G̃) add

– vertices uv1 , uv2 ;

– the 3−dipath (uouv1uv2vi); and

– an arc vosv.

This completes the construction of Hm. See Figure 3.4 for an example of this

construction with m = 4. Observe Hm is an acyclic oriented graph.
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v

u

uo uisu tu xu

xvtvsv vivo

uv1 uv2

G̃ H4

Figure 3.4: Constructing H4 for the proof of Theorem 3.23 for the case m = 4.

Observation 3.20. χ3d(Hm) ≥ m.

For any vertex v ∈ V (G) observe that the m− 2 vertices of the transitive tourna-

ment constructed for v, together with xv and vo form a 3−dipath clique in Hm with

m vertices.

Observation 3.21. If χ3d(Hm) = m, then for every v ∈ V (G) and every 3−dipath

colouring, c, of Hm using m colours, c(vo) = c(vi).

For any vertex v ∈ V (G) observe that the m− 2 vertices of the transitive tourna-

ment constructed for v, together with xv and vo form a 3−dipath clique on m vertices

in Hm. Also observe that replacing vo with vi also yields a 3−dipath clique on m

vertices in Hm. As such, in any 3−dipath colouring of Hm using m colours, vo and vi

must receive the same colour, as the other m − 1 colours are used for the transitive

tournament and xv.

Observation 3.21 provides a natural way to construct a proper m−colouring of G

given a 3−dipath colouring of Hm using m colours. Given a 3−dipath colouring of
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Hm we can unambiguously lift back the colour of the vertices vi, vo ∈ H to the vertex

v ∈ G. This next proposition shows this lifting can be done in either direction.

Proposition 3.22. If G is a simple graph and Hm is constructed from G as above,

then for all m ≥ 4, χ(G) ≤ m if and only if χ3d(Hm) ≤ m.

Proof. Let c be a 3−dipath colouring of Hm using m colours. By Observation 3.21,

for every vertex v ∈ V (G) we have c(vo) = c(vi). Consider the function φ : V (G) →

{1, 2, 3, . . . ,m} given by φ(v) = c(vi). If φ is not a proper colouring of G, then

there exists uv ∈ E(G̃) such that φ(u) = φ(v). By construction of φ, this implies

c(uo) = c(vi). However this contradicts our hypothesis that c is a 3−dipath colouring

of Hm using m colours. Therefore no such arc of G̃ can exist. Therefore φ is a proper

colouring of G using no more than m colours.

Let φ be a proper colouring of G using m colours. Construct a partial colouring of

Hm, c : V (Hm)→ {1, 2, 3, . . . ,m}, given by c(vo) = c(vi) = φ(v), for all v ∈ V (G). To

see that c can be completed to a 3−dipath colouring of Hm using m colours observe

that

• for every v ∈ V (G), if φ(vo) = i (1 ≤ i ≤ m), then vertices of the transitive

tournament constructed for v together with xv can be coloured using the set

{1, 2, 3 . . . ,m} \ {i}; and

• for every uv ∈ E(G̃), if φ(uo) = i and φ(vi) = j (1 ≤ i, j ≤ m), then vertices

uv1 , uv2 ∈ V (Hm) can be coloured using the set {1, 2, 3 . . . ,m} \ {i, j}.

Theorem 3.23. For all fixed integers m > 3, 3−DIPATH m−COLOURING is NP-

complete. The problem is Polynomial for all m ≤ 3.
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Proof. For fixed m > 3 our transformation is from m−COLOURING. Consider an

instance of m−COLOURING, with input graph G. Construct the acyclic oriented

graph Hm, as described above. We note this construction can be obtained in poly-

nomial time. By Proposition 3.22, χ(G) ≤ m if and only if χ3d(H) ≤ m. Since

m−COLOURING is NP-complete it follows that 3−DIPATH m−COLOURING is

NP-complete.

Consider now an instance of 3−DIPATH m−COLOURING for fixed m ≤ 3 with

input graph G. If G has a directed path with at least four vertices, then at least 4

colours are required. Therefore we may assume the longest directed path in G has

no more than m vertices. Since G has directed girth at least 4, we have directly that

G is acyclic. By Theorem 3.8, G has a 3−dipath colouring using m colours if and

only if G admits a homomorphism to Tm, the transitive tournament on m vertices.

Homomorphism to Tm can be checked in polynomial time [3] and so 3−DIPATH

m−COLOURING is Polynomial for all fixed m ≤ 3.

Comparing our results to the results for 2−DIPATH m−COLOURING given in

[33], the dividing line above is expected. In fact, with only slight modifications to the

construction of Hm this same method may be used for 2−DIPATH m−COLOURING.

Furthermore, with this same construction we can attack the problem of k−DIPATH

m−COLOURING for any fixed m and k.

As before, given a simple graphG we construct an oriented graph, Hm,k (m > k ≥ 3),

such that χkd(H) ≤ m if and only if χ(G) ≤ m. Let G be a simple graph, and let G̃

be an arbitrary acyclic orientation of G.

• For all v ∈ V (G), add

– vertices vi and vo,
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– a transitive tournament on m − k + 1 vertices with source vertex sv and

sink vertex tv,

– the vertices and arcs required for a (k−1)−dipath: tv, xv1 , xv2 , xv3 , . . . , xvk−2
, vi,

and

– an arc vosv.

• For all uv ∈ E(G̃), add

– the vertices and arcs required for a k−dipath uo, uv1 , uv2 , uv3 , . . . , uvk−1
, vi;

and

– an arc vosv.

This completes the construction of Hm,k.

Observation 3.24. χkd(Hm,k) ≥ m.

For any vertex v ∈ V (G), observe that the m − k + 1 vertices of the transitive

tournament constructed for v, together with the vertices xv1 , xv2 , xv3 , . . . , xvk−2
, vi form

a k−dipath clique on m vertices.

Observation 3.25. If χkd(Hm,k) = m, then for every v ∈ V (G) and every k−dipath

colouring, c, of Hm,k using m colours, c(vo) = c(vi).

For any v ∈ V (G) replacing vi with vo in the clique formed from the m − k + 1

vertices of the transitive tournament constructed for v, together with the vertices

xv1 , xv2 , xv3 , . . . , xvk−2
, vi also forms a k−dipath clique on m vertices.

Proposition 3.26. If G is a simple graph and Hm,k is constructed from G as above,

then for all m > k ≥ 3, χ(G) ≤ m if and only if χkd(Hm,k) ≤ m.
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Proof. Let c be a k−dipath colouring of Hm,k using m colours. By Observation 3.25

for every vertex v ∈ V (G) we have c(vo) = c(vi). Consider the function φ : V (G) →

{1, 2, 3, . . . ,m} given by φ(v) = c(vi). If φ is not a proper colouring of G, then

there exists uv ∈ E(G̃) such that φ(u) = φ(v). By construction of φ this implies

c(uo) = c(vi). However this contradicts our hypothesis that c is a k−dipath colouring

of Hm,k using m colours. Therefore no such arc of G̃ can exist. Therefore φ is a

proper colouring of G using no more than m colours.

Let φ be a proper colouring of G using m colours. Construct a partial colouring of

Hm,k, c : V (Hm,k)→ {1, 2, 3, . . . ,m}, given by c(vo) = c(vi) = φ(v), for all v ∈ V (G).

To see c can be completed to a k−dipath colouring of Hm,k using m colours observe

that

• for every v ∈ V (G), if φ(vo) = i (1 ≤ i ≤ m), then vertices of the transitive

tournament constructed for v together with the vertices xv1 , xv2 , xv3 , . . . , xvk−2

can be coloured using the set {1, 2, 3 . . . ,m} \ {i}; and

• for every uv ∈ E(G̃), if φ(uo) = i and φ(vi) = j (1 ≤ i, j ≤ m), then vertices

uv1 , uv2 , uv3 , . . . , uvk−1
∈ V (Hm,k) can be coloured using the set {1, 2, 3 . . . ,m} \

{i, j}.

Theorem 3.27. Let m and k ≥ 3 be fixed positive integers. The problem k−DIPATH

m−COLOURING is NP-complete for m > k. The problem is Polynomial for all

m ≤ k.

Proof. For fixed m > k ≥ 3 our transformation is from m−COLOURING. Consider

an instance of m−COLOURING, with input graph G. Construct the acyclic ori-

ented graph Hm,k, as described above. We note this construction can be obtained
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in polynomial time. By Proposition 3.26, χ(G) ≤ m if and only if χkd(H) ≤ m.

Since m−COLOURING is NP-complete for all m ≥ 3 it follows that 3−DIPATH

m−COLOURING is NP-complete.

Consider now an instance of k−DIPATH m−COLOURING for fixed m ≤ k with

input graph G. If G has a directed path with at least k + 1 vertices, then at least

k + 1 colours are required. Therefore we may assume the longest directed path in

G has no more than m vertices. Since G has directed girth at least k + 1, we have

directly that G is acyclic. By Theorem 3.8, G has a k−dipath colouring using m

colours if and only if G admits a homomorphism to Tm, the transitive tournament

on m vertices. Homomorphism to Tm can be checked in polynomial time [3] and so

k−DIPATH m−COLOURING is Polynomial for all fixed m and k such that m ≤ k.

3.5 Future Directions and Conclusions

For the cases m = 3 and m = 4 we have given an improvement for the upper bound for

the oriented chromatic number of oriented graphs with 2−dipath chromatic number

m. The number of vertices in Gm,k in these cases is small enough to be able to analyse

these graphs by hand. For larger values of m, however, such an approach is not likely

to yield results. It remains to be seen if the bound of 2m − 1 given by [33] is best

possible for large values of m.

The homomorphism model presented in Section 3.3, based on the vector model

presented in [33], seems as if it may be adaptable to more general situations. Here

we are enforcing that no two vertices of the same colour can appear on a path of

length at most k. However we can imagine adapting this model to be used in a

situation where the distance constraint is different for each colour. Further it may
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be possible to encode more complicated constraints into this model. For example it

may be possible to use this model to construct colourings where vertices of the same

colour are permitted to be at some distances from each other, but prohibited at some

other distances from each other.

Recall the definition of a graph multi-colouring: If G is a graph, c : V (G) → 2m

is a multi-colouring using m colours if for all uv ∈ E(G), we have c(u) \ c(v) 6= 0 and

c(v)\c(u) 6= 0. Using multi-colouring rather than enforcing a directed girth condition

is a method of avoiding the problem of short cycles in k−dipath colourings. Rather

than ensuring that a vertex does not lie on a prohibitively short cycle, we can allow

for a vertex to be coloured differently from itself by assigning to it a set of colours.

This could led to a definition of k−dipath colouring that is equivalent not to a proper

colouring of the kth power of the graph, but to a multi-colouring of the kth power of

the graph. In this formulation, a possible universal target may have all subsets of

a k−set as the set of vertices. This would be consistent with an exponential upper

bound for the oriented chromatic number.
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Chapter 4

Simple Colourings of Oriented Graphs

The best upper bound for the oriented chromatic number of the family planar graphs

has rested at 80 since 1994, when Raspaud and Sopena provided a connection between

the acyclic chromatic number and the oriented chromatic number. Given that the

best lower bound is 18 [34], it is likely that there is room for improvement. In this

chapter we consider a pair of methods that may be employed in an attempt to improve

this bound: simple colouring and simple 2−dipath colouring.

4.1 Background and Preliminaries

Consider relaxing the requirement of oriented colouring that adjacent vertices must

receive different colours. With this constraint relaxed colouring becomes trivial, each

vertex can receive the same colour. To avoid trivial colouring let us require that at

least two colours be used. Formally, we define simple m−colouring as follows.

Definition 4.1. Let G be an oriented graph. A simplem−colouring of G is a mapping

c : V (G)→ {1, 2, 3, . . . ,m} such that

• there exists u, v ∈ V (G) so that c(u) 6= c(v), and



72

• if there exist uv and xy so that c(u) = c(y), then either c(v) 6= c(x) or c(u) =

c(v) = c(x) = c(y).

For an oriented graph, G, we define the simple chromatic number of G, denoted

χs(G), to be the least m such that G has a simple m−colouring. For a family of

oriented graphs, F , we define the simple chromatic number of F , denoted χs(F), to

be the least m such that for all F ∈ F , χs(F ) ≤ m.

As with other colouring parameters, we may use graph homomorphism to define

the simple chromatic number.

Definition 4.2. Let G be an oriented graph and let H be a reflexive anti-symmetric

digraph. We say G admits a simple homomorphism to H if there exists φ : G→ H,

and there exists x, y ∈ V (G) such that φ(x) 6= φ(y). The simple chromatic number of

G, denoted χs(G), is the least m such that there exists H so that G admits a simple

homomorphism to H and |V (H)| = m.

As a first example, consider an oriented graph G that contains, as a proper sub-

graph, a directed 3−cycle uvw. If u and v receive the same colour in a simple colouring

of G, then we observe that w must also receive this same colour, as otherwise the

second condition of a simple colouring is violated. If u and v receive different colours

in a simple colouring of G, then we observe that w must be assigned a colour that

is distinct from both the colour of u and the colour of v, as otherwise the second

condition of a simple colouring would be violated.

The oriented graphs given in Figure 4.1 have simple chromatic number 2 and

3, respectively. To see that 3 is optimal for the second example, observe that in

any simple 2−colouring of this oriented graph, there would necessarily be a directed

3−cycle containing only two colours.
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Figure 4.1: Examples of oriented graphs with χs(G) = 2 and χs(G) = 3.

Proposition 4.1 (Smoĺıková [48]). An oriented graph, G, has simple chromatic num-

ber at most two if and only if there exists a set of vertices X ⊂ V (G) such that every

edge of U(G) with an end in X and an end in X is oriented in G so that its tail is

in X and its head is in X.

This characterisation follows by observing the only two-vertex target for such a

simple homomorphism is a single arc with a loop at each end.

Corollary 4.2. Every graph has an orientation with simple chromatic number 2.

This follows by observing that any oriented graphs with either a source or a sink

vertex has simple chromatic number 2 and any graph may be oriented to have either

a source or sink vertex.

Simple colourings of oriented graphs were introduced by Smoĺıková [48]. In her

Ph.D. thesis, amongst other things, she considered families of oriented graphs such
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that χo(F) = χs(F). For a family of graphs, F , we say F is optimally simply

colourable if χo(F) = χs(F).

Theorem 4.3 (Smoĺıková [48]). The families of oriented planar graphs and oriented

p−trees (p ≥ 3) are optimally simply colourable.

In general, the difference between the oriented chromatic number and the simple

chromatic number may be arbitrarily large; the transitive tournament on m vertices

has oriented chromatic number m but simple chromatic number 2. In addition to

studying families of optimally simply colourable graphs, Smoĺıková considered ori-

ented graphs for which χs(G) = |V (G)|.

Definition 4.3. An oriented graph, G, is a simple clique if χs(G) = |V (G)|. We call

a tournament simple if it is a simple clique.

Theorem 4.4 (Smoĺıková [48]). Let s(n) be the number of simple cliques on n ver-

tices. There is a constant c > 1 and n0 ∈ N such that for any n ≥ n0

s(n) ≥ (1− c−n) · 3(n
2).

Simple tournaments arise in an algebraic context by viewing a tournament as a

binary algebra. In this context, simple homomorphisms correspond to non-trivial

homomorphisms between quasi-trivial algebras [38]. Such an algebra is called simple

if it has no proper non-trivial sub algebra. The family of simple quasi-trivial algebras

corresponds exactly to the family of simple tournaments. And so by applying a result

on quasi-trivial algebras, we get the following result.

Theorem 4.5 (Erdős et al. [17]). Almost all tournaments are simple.

To examine simple cliques more closely, we require the following terminology.
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Definition 4.4. Let G be an oriented graph and let u, v, w ∈ V (G) such that uv, vw ∈

E(G). We say v is between u and w if uvw is 2−dipath. We say C ⊆ V (G) is convex

if for any pair u,w ∈ C there is no v ∈ V (G) \ C such that v is between u and w.

Definition 4.5. The convex hull of C ⊆ V (G) is the smallest convex set of vertices

of G that has C as a subset. We denote this set as conv(C).

From this definition it follows directly that if C is a convex set, then conv(C) = C.

Definition 4.6. We call G complete-convex if for every connected subgraph on at

least two vertices, H, conv(V (H)) = V (G).

Observation 4.6. If G is an oriented graph, c a simple colouring of G and u and v

a pair of vertices such c(u) = c(v), then for all w between u and v, c(u) = c(w)

Proposition 4.7 (Smoĺıková [48]). Let G be an oriented graph and c a simple colour-

ing of G. If there exists an arc uv ∈ E(G) such that c(u) = c(v), then for every

x ∈ conv({u, v}), c(x) = c(u).

Proof. Consider a vertex x ∈ conv({u, v}) and let N be the subset of conv({u, v})

such that x /∈ N and for all y, z ∈ N such that if there is a vertex w 6= x between y

and z, then w ∈ N . We proceed by induction on the cardinality of N . If |N | = 2,

then N = {u, v}. Since N is largest it must be x is between u and v. If c is a simple

colouring of G such that c(u) = c(v), then any vertex between u and v must also

be assigned this same colour, as otherwise the second condition of a simple oriented

colouring would be violated. Therefore c(x) = c(u).

Assume now |N | = k > 2. Since N is largest there exists a pair of vertices y, z ∈ N

such that x is between y and z. If c is a simple colouring of G such that c(u) = c(v),

then by induction c(u) = c(y) = c(z). Since x is between y and z, it must also be

c(x) = c(u).
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Corollary 4.8 (Smoĺıková [48]). If G is a complete-convex graph, then every simple

colouring of G is also an oriented colouring of G.

Following Sen’s characterisation of oriented cliques [47], we arrive at the following

characterisation of simple cliques.

Proposition 4.9. An oriented graph on at least three vertices is a simple clique if

and only if it has weak diameter at most two and is complete-convex.

Let Tm be the transitive tournament on m vertices with source vertex s and sink

vertex t. The tournament formed from Tk by reversing the direction of the arc between

s and t is a simple clique; this graph has weak diameter 1 and is complete-convex.

As mentioned above χs(Tm) = 2 and so we see that changing the direction of even a

single arc can have a drastic effect on the simple chromatic number.

4.2 Simple Colourings of Planar Graphs

Given the on-going interest in the oriented chromatic number of the family of planar

graphs, we examine the implications of Smoĺıková’s result that the family of oriented

planar graphs is optimally simply colourable.

Let P be the family of oriented planar graphs and let m = χo(P). Since P is

optimally simply colourable, m = χs(P). Let P ∈ P be the smallest oriented graph

in P so that χs(P ) = m. By finding the simple chromatic number of P we can

improve the upper bound for the oriented chromatic number of planar graphs. Here

we give some properties of P that could aid in the search for an oriented graph on

fewer than 80 vertices that is a homomorphic image of P .

Property 4.10. No vertex of P is a source or a sink.
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Any oriented graph with a source or a sink vertex has simple chromatic number

2. There exist oriented planar graphs with oriented chromatic number at least 3, and

so it must be that m > 2. Therefore P has no source or sink vertex.

Property 4.11. The planar graph P is complete-convex.

Proof. Let H be a connected subgraph of P with at least two vertices. Assume

conv(V (H)) ⊂ V (P ). Consider the result of identifying the vertices of conv(V (H))

into a single vertex, h. Remove all loops and copies of identical arcs, and call this new

digraph PH . Since H is connected this identification can be considered as a sequence

of edge contractions. Therefore since P is planar, PH is also planar. However it may be

that PH contains 2−cycles. If PH is an oriented graph, then, by choice of P , χo(PH) <

χo(P ). However, an oriented colouring, c, of PH usingm′ < m colours can be extended

to be a simple m′−colouring of P by colouring each vertex in H with c(h). Therefore

PH is not an oriented graph and so must contain 2−cycles. This implies there exists

a vertex not in conv(V (H)) that is between a pair of vertices in conv(V (H)). This

contradicts that conv(V (H)) is a convex set. Therefore conv(V (H)) = V (P ).

When taking H to be a single arc, we arrive at the following property of P .

Property 4.12. For every xy ∈ E(P ) there is an ordering of the vertices of P ,

x, y, u1, u2, . . . , un−2, so that for every vertex ui, 1 ≤ i ≤ n− 2, there exists a pair of

vertices s and t so that both of s and t appear earlier in the ordering than ui and suit

is 2−dipath.

Knowing P is complete-convex allows us to restrict our considerations when seek-

ing to improve the upper bound on the oriented chromatic number of planar graphs.

The existing upper bound of 80 comes by way of constructing a universal target for

the family of planar graphs. Such a graph necessarily exists because the family of
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planar graphs is complete (see Proposition 1.3). The same is true for the family of

complete-convex planar graphs.

Theorem 4.13. The family of complete-convex planar graphs is complete.

Proof. Let G1 and G2 be complete-convex planar graphs with at least two vertices.

Let uv be an arc on the outer face of a planar embedding G1 and let xy be an arc

on the outer face of a planar embedding G2. Consider the oriented planar graph G

formed from G1 and G2 in the following manner:

• V (G) = V (G1) ∪ V (G2), and

• E(G) = E(G1) ∪ E(G2) ∪ {vy, yu, ux}.

To showG is complete-convex it suffices to show x, y ∈ conv({u, v}), u, v ∈ conv({x, y}),

and that the convex hull of each of the newly added arcs is the entirety of the vertex

set of G.

• x, y ∈ conv({u, v}). Observe y is between v and u and x is between u and y.

• u, v ∈ conv({x, y}). Observe u is between y and x and v is between u and y.

• conv({v, y}) = V (G). Observe u is between y and v. Since u and v are elements

of conv{v, y}, and G1 is complete-convex, then each vertex of G1 is contained

in conv({v, y}). Further, x is between u and y and so since x and y are both

elements of conv({v, y}) and since G2 is complete-convex, each vertex of G2 is

contained in conv({v, y}).

• conv({u, x}) = V (G). This claim follows similarly to the previous claim.

• conv({u, y}) = V (G). Since both v and x are between u and y, each of u, v, x,

and y are in conv({u, y}). Our claim now follows similarly to the previous claim.
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Corollary 4.14. The family of complete-convex planar graphs has a universal target

with χo(P) vertices.

The oriented graph constructed by Raspaud and Sopena [43] is a universal target

for the family of complete-convex planar graphs by virtue of it being a universal

target for the family of oriented planar graphs. Complete-convex graphs are highly

structured and so it is possible this structure can be used to construct a universal

target for the family of complete-convex planar graphs on fewer than 80 vertices.

Consider now the smallest non-trivial connected subgraphs of P : single arcs. If

uv is an arc of P , then since P is complete-convex it must be conv({u, v}) = V (P ).

Since there must be a vertex between u and v, we get the following property of arcs

of P .

Property 4.15. The ends of every arc in P are also the ends of some 2−dipath of

P .

Property 4.16. Every edge of U(P ) is contained in a 3−cycle.

Property 4.15 is a necessary condition of all complete-convex oriented graphs.

Definition 4.7. We call G, an oriented graph, 2−convex if for every arc uv, |conv({u, v})| >

2.

From this definition it follows directly that every complete-convex oriented graph

is also 2−convex. Though every complete-convex graph is also 2−convex, the opposite

is not true.

Proposition 4.17. There exist planar graphs that are 2−convex but not complete-

convex.
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Figure 4.2: A 2−convex graph that is not complete-convex.

Proof. Let G be the oriented graph given in Figure 4.2. The convex hull of {u, v}

contains w and no other vertex, but the ends of every arc of G are also the ends of a

2−dipath. Therefore this oriented graph is 2−convex but not complete-convex.

Amongst the family of orientations of planar graphs, it is easy to find examples

of 2−convex graphs. Consider a plane triangulated graph G. We show that we can

orient the edges so that each arc is a member of a facial directed 3−cycle. We do this

by 3−colouring the planar dual of G and then orienting the arcs in a face according

to the colour assigned to the corresponding vertex in the planar dual. Oriented faces
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can be classified into one of three categories: transitive triples, clockwise directed

3−cycles, and anti-clockwise directed 3−cycles. We begin by observing in which

ways the directed 3−cycles can share an edge.

Observation 4.18. If f1 and f2 are faces of a planar embedding of G with a common

arc such that f1 and f2 are both directed 3−cycles, then at most one of f1 and f2 are

clockwise.

To show that every triangulated planar graph has a 2−convex orientation we

require the following lemma.

Lemma 4.19. Let G be an embedding of a maximally-planar graph, and let F be the

set of faces of G. If C = {f1, f2, . . . , fk} ⊆ F and A = {h1, h2, . . . , h`} ⊆ F such that

• C ∩ A = ∅,

• for all 1 ≤ i < j ≤ k, fi and fj do not share an edge, and

• for all 1 ≤ p < m ≤ `, hp and hm do not share an edge,

then there exists an orientation of G such that each fi ∈ C is a clockwise 3−cycle

and each hp ∈ A is an anti-clockwise 3−cycle.

Proof. Since for all 1 ≤ i < j ≤ k fi and fj do not share an edge, it is possible

to orient the edges that are part of some fi so that each fi is a clockwise directed

3−cycle. Let 1 ≤ p ≤ ` be the least integer such that each of the edges of the

preceding p− 1 faces in A may be successfully oriented to be a directed 3−cycle, but

the edges of hp may not be. If hp shares no edge with some fi ∈ C, then its edges

may be oriented to be an anti-clockwise directed 3−cycle. If hp shares a single edge

with some fi, then by our observation above, this shared edge is oriented correctly

to be able to orient hp as an anti-clockwise directed 3−cycle. The same holds if hp

shares two edges or three edges with faces in C. (See Figure 4.3)
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Figure 4.3: An anti-clockwise triangle bordered by clockwise triangles.

Theorem 4.20. Every simple triangulated plane graph other than K4 has a 2−convex

orientation.

Proof. Let G 6= K4 be a triangulated planar graph. Since G is not K4, by Brooks’

Theorem the planar dual of G, GP , admits a 3−colouring. Let c be a 3−colouring of

GP . and A be the set of vertices of GP that are assigned colours 1 and 2, respectively.

It follows that every edge of GP has an end in C or an end in A. By viewing C and

A as sets of faces of G and applying Lemma 4.19 we obtain our result.

Our exploratory work on convexity in oriented planar graphs brings us no closer

to improving the upper bound for the oriented chromatic number of planar graphs.

However it does provide us with a possible roadmap for improving this bound; rather

than considering the family of all oriented planar graphs, we may instead consider

the family of complete-convex planar graphs.
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4.3 Simple 2−dipath Colourings of Oriented Graphs

The 2−dipath chromatic number, χ2, stands as a lower bound for the oriented chro-

matic number, as every oriented colouring is also a 2−dipath colouring. This topic is

covered more in depth in Chapter 3. Sherk and MacGillivray show a function of the

2−dipath chromatic number also stands as an upper bound for the oriented chromatic

number [33]. Here we consider a similar idea for simple colourings of oriented graphs

and introduce the notion of simple 2−dipath colouring of an oriented graph.

Definition 4.8. Let G be an oriented graph. A simple 2−dipath colouring of G

with m > 1 colours is a surjective function c : V (G) → {1, 2, 3, . . . ,m} such that if

uv, vw ∈ E(G) and c(u) = c(w), then c(u) = c(v) = c(w). The simple 2−dipath

chromatic number of G, denoted χ2s(G), is the least m such that G has a simple

2−dipath colouring with m colours.

From this definition we have directly that for any oriented graph, G, χ2s(G) ≤

χs(G) and χ2s(G) ≤ χ2d(G).

Figure 4.4 gives examples of oriented graphs that require two and three colours,

respectively, in a simple 2−dipath colouring. As with simple colouring, observe that

in any oriented graph that contains, as a proper subgraph, a directed 3−cycle, the

vertices of this 3−cycle either all receive the same colour, or all receive pairwise

distinct colours.

We begin our investigation of this parameter by characterising completely those

oriented graphs, G, with χ2s(G) = 2.

Theorem 4.21. An oriented graph, G, has χ2s(G) = 2 if and only if U(G) contains

an edge cut, C, so that the oriented graph induced by C contains no 2−dipath.

Proof. Let G be an oriented graph so that χ2s(G) = 2, and let c be a simple 2−dipath
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Figure 4.4: Examples of oriented graphs with χ2s(G) = 2 and χ2s(G) = 3.

colouring of G using two colours. Let X = {x ∈ V (G)|c(x) = 1}. Let C ⊂ E(U(G))

be the set of edges with exactly one end in X. By definition C is an edge cut of U(G).

Consider now a pair of edges uv, vw ∈ C so that u,w ∈ X. If these arcs are oriented

in G as uv and vw, respectively, then since c(u) = c(w) = 1, it must also be c(v) = 1.

This is a contradiction, as v /∈ X. Therefore the oriented graph induced by C does

not contain a 2−dipath.

Let G be an oriented graph, and let C be a minimal edge cut of U(G) so that the

oriented graph induced by C contains no 2−dipath. Since C is a minimal edge cut,

there exists a non-empty set of vertices X ⊂ V (G) such that the subgraph induced

by X is a component of V (G) \C. A colouring that assigns colour 1 to vertices in X

and colour 2 to all other vertices is a simple 2−dipath colouring.

The upper bound for the oriented chromatic number in terms of the 2−dipath

chromatic number given in [33] comes by exhibiting a universal target for the family

of oriented graphs with 2−dipath chromatic number at most m. However, we show no

such upper bound for the simple chromatic number in terms of the simple 2−dipath
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chromatic number can exist, as there exists a family of oriented graphs with simple

2−dipath chromatic number 2 and arbitrarily large simple chromatic number.

Theorem 4.22. For each m > 2 there exists an oriented graph, H, with χ2s(H) = 2

and χs(H) ≥ m.

Proof. Let G1 and G2 be simple cliques (see Definition 4.3) on m > 2 vertices, where

• V (G1) = {u1, u2, . . . , um}, and

• V (G2) = {v1, v2, . . . , vm}.

Construct an oriented graph, H, as follows.

• V (H) = V (G1) ∪ V (G2), and

• E(H) = E(G1) ∪ E(G2) ∪ {v1u1} ∪ {uivj|2 ≤ i, j ≤ m}.

By Theorem 4.21 χ2s(H) = 2, as the set of an arc {v1u1} ∪ {uivj|2 ≤ i, j ≤ m} is

an edge cut that does not induce any 2−dipath.

To show χs(H) ≥ m, we assume the contrary. Assume χs(H) < m and let d be a

simple colouring of H using no more than m− 1 colours. Since G1 (respectively G2)

has m vertices, we may assume a pair of vertices of G1 (respectively G2) is assigned

the same colour by d. Since G1 (respectively G2) is a simple clique it must be that

all of the vertices of G1 (respectively G2) are assigned this same colour. This implies

χs(H) = 2. This is a contradiction whenever m > 2.

Corollary 4.23. For all k > 2 there exists no oriented graph Gk such that G admits

a simple homomorphism to Gk if and only if χ2s(G) ≤ k.

Though there is no result to be obtained bounding the simple chromatic number

from above with a function of the simple 2−dipath chromatic number, we can relate
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the simple 2−dipath chromatic number to the 2−dipath chromatic number for the

family of complete-convex graphs. To do so we require the following result relating

convexity and simple 2−dipath colourings. The proof of which follows similarly to

the proof of Proposition 4.7.

Proposition 4.24. Let G be an oriented graph and c a simple 2−dipath colouring

of G. If there exists an arc uv ∈ E(G) such that c(u) = c(v), then for every x ∈

conv({u, v}), c(x) = c(u).

Corollary 4.25. If G is a complete-convex graph, then every simple 2−dipath colour-

ing of G is also a 2−dipath colouring of G.

Corollary 4.26. If G is a complete-convex graph, then χ2d(G) = χ2s(G).

Corollary 4.27. If F is a family of complete-convex graphs, then χ2s(F) = χ2d(F).

Corollary 4.28. If Pc is the family of complete-convex planar graphs, then χ2s(Pc) =

χ2d(Pc).

Little is known about the 2−dipath chromatic number of the family of planar

graphs. It is possible that the ideas utilised by Smoĺıková, and also utilised here

in Chapter 5, may be re-purposed to define a similar notion to optimally simply

colourable for 2−dipath colouring and simple 2−dipath colouring. If similar results

hold true, then the family of complete-convex planar graphs may be used to find

bounds for the 2−dipath chromatic number of the family of planar graphs. In turn,

this may provide new insight into the oriented chromatic number for the family of

planar graphs.
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4.3.1 Complexity of Simple 2−dipath Colouring with Two

Colours

In [33] MacGillivray and Sherk show that deciding if an input oriented graph has

2−dipath chromatic number at most k (for fixed k) is NP-complete whenever k > 2.

The problem is Polynomial when k = 2. In Chapter 3 we extend this complexity

result for the problem of k−dipath colouring. Here we examine the decision problem

for simple 2−dipath colouring and show that deciding if an oriented graph has a sim-

ple 2−dipath colouring using two colours is NP-complete.

SIMPLE 2−DIPATH 2−COLOURING

Input: an oriented graph G.

Question: does G have a simple 2−dipath colouring using two colours?

MONOTONE NOT-ALL-EQUAL 3−SATISFIABILITY (MONOTONE-NAE3SAT)

Input: a 3CNF formula, F , with variables x1, x2, . . . , xk and clauses e1, e2, . . . , e`

without negated variables.

Question: is F not-all-equal satisfiable?

Theorem 4.29 (Schaefer [45]). MONOTONE-NAE3SAT is NP-complete.

Given an instance F of MONOTONE-NAE3SAT with k variables and ` clauses,

we construct an oriented graph H such that F is not-all-equal satisfiable if and only

if H has a simple 2-dipath colouring using two colours.

Beginning with a pair of vertices, t and f , construct H as follows.

• For each variable xi of F (1 ≤ i ≤ k)
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f

xi

t

x′′
i

x′
i

Figure 4.5: The construction for each variable of F in the proof of Theorem 4.37.

– add the vertices xi, x
′
i, and x′′i , and

– add the arcs necessary to form the 2−dipath (txif) and the directed

3−cycle (xix
′
ix
′′
i ).

• For each clause ej = (xa ∨ xb ∨ xc) of F (1 ≤ j ≤ `)

– construct the oriented graph given in Figure 4.6, and

– add the arcs necessary to form the directed cycles (x
ej
a x′ax

′′
a), (x

ej
b x
′
bx
′′
b ),

(x
ej
c x′cx

′′
c ), (tt

ej
a t

ej
c ), and (ff

ej
a f

ej
c ).

This completes the construction of H. See Figures 4.5 and 4.6. Note that this con-

struction can be obtained in polynomial time. If H has a simple 2−dipath colouring

of H, g, using two colours, we make the following observations:

Observation 4.30. For all clauses ej = (xa ∨ xb ∨ xc), g(t) = g(t
ej
a ) = g(t

ej
c ) and

g(f) = g(f
ej
a ) = g(f

ej
c ).

Notice that in each of these cases the vertices form a directed 3−cycle. Since only

two colours are being used in the simple 2−dipath colouring, each vertex in a directed

3−cycle must receive the same colour.
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Figure 4.6: The construction for each clause, ej = (xa ∨ xb ∨ xc), of F in the proof of
Theorem 4.37.

Observation 4.31. g(t) 6= g(f).

If g(t) = g(f), then all other vertices of H must receive this same colour. This violates

that at least two colours are used in simple 2−dipath colouring.

Observation 4.32. For all variables xi and all clauses ej such that xi is contained

in ej, g(xi) = g(x
ej
i ) = g(x′i) = g(x′′i ).

Notice that in each of these cases the vertices form a directed 3−cycle. Since only

2 colours are being used in the simple 2−dipath colouring, each vertex in a directed

3−cycle must receive the same colour.

Observation 4.33. For all variables xi and all clauses ej such that xi is contained

in ej, g(xi) 6= g(x
ej
i ) = g(yi) = g(zi) (when x

ej
i , yi, and zi exist).

Since g(xi) = g(x
ej
i ) (see Observation 4.32) , if g(xi) = g(x

ej
i ), then g(t) = g(f). Since

x
ej
i yizi is a directed 3−cycle, each of these vertices must be assigned the same colour.

Observation 4.34. For all clauses, ej = (xa ∨ xb ∨ xc), g(xa), g(xb) and g(xc) are

not all equal.
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If g(xa), g(xb) and g(xc) are all equal, then the colours appearing on the 2−dipath

zaxbzc violate the second condition of a simple 2−dipath colouring.

We use these observations to prove the following results relating the 2−colourability

of H and the satisfiability of F .

Proposition 4.35. If H has a simple 2−dipath colouring, then F is not-all-equal

satisfiable.

Proof. If there exists a simple 2−dipath colouring, g, using two colours, then we may

use g to make the following truth assignments to the variables of F .

• If g(xi) = g(t), then assign xi to be TRUE, otherwise assign xi to be FALSE

(1 ≤ i ≤ k).

By Observation 4.34 each clause contains at least one TRUE variable, but does

not contain three TRUE variables. Therefore if H has a simple 2−dipath colouring

using two colours, then F has the required type of satisfying truth assignment.

Proposition 4.36. If F is not-all-equal satisfiable, then H has a simple 2−dipath

colouring using two colours.

Proof. Consider a not-all-equal satisfying assignment of the variables of F . We con-

struct a simple 2−dipath colouring of H, g, using two colours.

• For all clauses ej, let g(t) = g(t
ej
a ) = g(t

ej
c ) = 1 and g(f) = g(f

ej
a ) = g(f

ej
c ) = 2.

• For all xi such that xi is FALSE, let g(xi) = g(x′i) = g(x′′i ) = g(x
ej
i ) = 2 and

g(x
ej
i ) = g(y

ej
i ) = g(z

ej
i ) = 1, where ej is a clause containing xi (1 ≤ i ≤ k and

1 ≤ j ≤ `).

• For all xi such that xi is TRUE, let g(xi) = g(x′i) = g(x′′i ) = g(x
ej
i ) = 1 and

g(x
ej
i ) = g(y

ej
i ) = g(z

ej
i ) = 2, where ej is a clause containing xi (1 ≤ i ≤ k and

1 ≤ j ≤ `).
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To show that g is a simple 2−dipath colouring, we show at there is no 2−dipath

in H, uvw, such that g(u) = g(w) 6= g(v).

Consider first the set of vertices T ⊂ V (H) such that g(v) = 1 for all v ∈ T . For a

contradiction assume there exists u, v, w ∈ V (G) such that uvw is a 2−dipath, where

u,w ∈ T and v /∈ T . It suffices to consider 2−dipaths in H where a pair of adjacent

vertices in a 2−dipath is not contained in the same directed 3−cycle. Further, we

may also discount those 2−dipaths that have an end contained in the set

{f} ∪ {f eja , f ejc |ej = (xa ∨ xb ∨ xc), 1 ≤ j ≤ `},

as elements of this set are not elements of T .

• uvw 6= x
ej
a f

ej
a xa

ej : if x
ej
a ∈ T , then xa

ej /∈ T .

• uvw 6= x
ej
c f

ej
c xc

ej : if x
ej
c ∈ T , then xc

ej /∈ T .

• uvw 6= xa
ejzax

ej
b : if xa

ej ∈ T , then za ∈ T .

• uvw 6= x
ej
b zcxc

ej : if xc
ej ∈ T , then zc ∈ T .

• uvw 6= z
ej
a x

ej
b z

ej
c : since F is not-all-equal satisfied, it cannot be that both z

ej
a

and z
ej
c are in T when x

ej
b ∈ F .

Therefore no such 2−dipath uvw exists where x,w ∈ T but v /∈ F .

Consider now the set of vertices F ⊂ V (H) such that g(v) = 2. For a contradiction

assume there exists u, v, w ∈ V (G) such that uvw is a 2−dipath where u,w ∈ F and

v /∈ F . It suffices to consider 2−dipaths in H where a pair of adjacent vertices in

a 2−dipath is not contained in the same directed 3−cycle. Further, we may also

discount those 2−dipaths that have an end contained in the set

{t} ∪ {teja , tejc |ej = (xa ∨ xb ∨ xc), 1 ≤ j ≤ `},
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as elements of this set are not elements of F .

• uvw 6= xa
ej t

ej
a x

ej
a : if x

ej
a ∈ F , then xa

ej /∈ F .

• uvw 6= xc
ej t

ej
c x

ej
c : if x

ej
c ∈ F , then xc

ej /∈ F .

• uvw 6= xa
ejzax

ej
b : if xa

ej ∈ F , then za ∈ F .

• uvw 6= x
ej
b zcxc

ej : if xc
ej ∈ F , then zc ∈ F .

• uvw 6= z
ej
a x

ej
b z

ej
c : since F is not-all-equal satisfied, it cannot be that both x

ej
b

and z
ej
c are in F when x

ej
b ∈ T .

Therefore there is no 2−dipath uvw such that x,w ∈ F and v /∈ T , and so g is a

2−dipath colouring of H.

Theorem 4.37. SIMPLE 2−DIPATH 2−COLOURING is NP-complete

Proof. Our reduction is from MONOTONE-NAE3SAT. Given an instance, F of

MONOTONE-NAE3SAT we construct H, as described above (see Figures 4.5 and

4.6). We note H can be constructed in polynomial time. Since MONOTONE-

NAE3SAT is NP-complete and since F is not-all-equal satisfiable if and only if

H has a simple 2−dipath colouring we have directly that SIMPLE 2−DIPATH

2−COLOURING is NP-complete.

4.4 Conclusions and Future Directions

Our work here on simple colourings of planar graphs provides a possible avenue of

attack for improving the upper bound on the oriented chromatic number for the

family of planar graphs; rather than considering the entire family of planar graphs,
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we may restrict our attention to those which are complete-convex. Many questions

still remain on the subject of complete-convex planar graphs. There is no known

method of constructing such graphs, and it is unknown when a planar graph may be

oriented to be complete-convex. Work on these two questions may provide further

structure inherent to these graphs, which may in turn aid in finding a new universal

target for this family of graphs.

That the problem of simple 2−dipath colouring using just two colours is NP-

complete suggests further structural results concerning simple 2−dipath colouring

may be difficult. It may be possible that for some particular families of graphs, the

problem of simple 2−dipath colouring may be easier to study. A good candidate for

a family of such graphs would be oriented 2−trees. Additionally, given the interest

in the oriented chromatic number of planar graphs and the relationship between the

simple chromatic number and chromatic number of such graphs, this family would be

a priority in the study of the simple 2−dipath chromatic number.

It is possible that simple 2−dipath colourings may be generalised to simple k−dipath

colourings using the same methods as in Chapter 3. However, given that there is no

universal target for oriented graphs with simple 2−dipath chromatic number m, the

homomorphism model used in Chapter 3 will not be able to provide a universal target

for simple k−dipath colourings.
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Chapter 5

Vertex Colourings of k−edge-coloured

Graphs

In Chapter 5 we examine colourings of (0, k)−mixed graphs. More often called

k−edge-coloured graphs, these graphs arise from ordinary graphs by assigning an

edge type (colour) to each of the edges. Here we consider vertex colourings of these

graphs. We find a lower bound for the chromatic number of the family 2−edge-

coloured graphs with maximum degree 3 by considering a new colouring parameter

for these graphs. We find an upper bound for these graphs by constructing targets

for graphs in this family. Finally, we consider vertex colourings of k−edge-coloured

graphs that allow, in some cases, adjacent vertices to receive the same colour. We

find that these colourings, called simple colourings, provide an avenue of attack to

improve the upper bound on the chromatic number of families of k−edge-coloured

graphs.

5.1 Background and Preliminaries

When restricted to (j, k) = (0, k), the definitions for homomorphism and colouring

given in Chapter 1 give the following.
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Definition 5.1. Let (G,Σ) and (H,Π) be k−edge-coloured graphs. We say (G,Σ)

admits a homomorphism to (H,Π), denoted (G,Σ) → (H,Π), if there exists φ :

V (G)→ V (H) such that, for all 1 ≤ i ≤ k, if uv ∈ Σi, then φ(u)φ(v) ∈ Πi. We call

φ a homomorphism and we write φ : (G,Σ)→ (H,Π).

Definition 5.2. Let G be a k−edge-coloured graph. The chromatic number of G,

denoted χk(G), is the least integer m such that there exists a k−edge-coloured graph H

such that |V (H)| = m and a homomorphism φ : G→ H. We call φ an m−colouring

of G, or a colouring of G using m colours. If F is a family of k-edge-coloured graphs,

then we define χk(F) to be the least m such that for all F ∈ F , χk(F ) ≤ m.

Recall the vertex labelling definition for colouring of k−edge-coloured graphs.

Definition 5.3. If (G,Σ) is a k−edge-coloured graph and c : V (G)→ {1, 2, 3, . . . ,m},

then c is an m−colouring of G provided the following conditions are met:

• for all uv ∈ E(G), c(u) 6= c(v), and

• for all 1 ≤ i ≤ k, uv ∈ Σi, and xy ∈ E(G), if c(u) = c(x) and c(v) = c(y), then

xy ∈ Σi.

When restricted to the case k = 1, our definitions for homomorphism and colouring

match exactly the usual definitions for graphs. When restricted to the case k = 2, we

arrive at the following definitions.

Definition 5.4. A 2−edge-coloured graph is a simple graph, G, together with a

function Σ : E(G)→ {1, 2}. For all e ∈ E(G), if e ∈ Σ1, then we say e is a red edge,

otherwise it is a blue edge.

In our diagrams we denote red edges by solid lines and blue edges by dashed lines.
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Definition 5.5. Let (G,Σ) be a 2−edge-coloured graph. A colouring of (G,Σ) us-

ing m colours or, alternatively an m−colouring of G, is a function c : V (G) →

{1, 2, 3, . . . ,m} such that

• if uv ∈ E(G), then c(u) 6= c(v), and

• if uv, xy ∈ E(G) such that c(u) = c(x) and c(v) = c(y), then either uv, xy ∈ Σ1

or uv, xy ∈ Σ2.

Consider the 2-edge-coloured graph G in Figure 5.1. The simple graph underlying

G has chromatic number 3; however 6 colours are needed for a colouring of the

2−edge-coloured graph. Though colour 1 may be used again on the 3−cycle formed

from blue edges, the colour 2 may not be used on this 3−cycle, as there is already a

red edge between a vertex coloured 1 and a vertex coloured 2. The 2−edge-coloured

graph in Figure 5.2, H, is a target in a homomorphism that is equivalent to this

colouring; that is, G→ H.

As with oriented colouring, the second requirement of a colouring of a 2−edge-

coloured graph gives rise to a local requirement in any colouring of a 2−edge-coloured

graph. We see if G contains a path uvw where uv ∈ Σ1 and vw ∈ Σ2, then it must

be u and w receive different colours. This condition, that vertices at the end of such

a path receive different colours, is necessary but not sufficient for a colouring of a

2−edge-coloured graph. Therefore we can use colourings that satisfy this condition

to find a lower bound for the chromatic number. With this in mind we define the

term alternating 2−path.

Definition 5.6. If G is a 2−edge-coloured graph, and u, v, w ∈ V (G) such that

uv ∈ Σ(uv) 6= Σ(vw), then the path uvw is an alternating 2−path.

Colourings of oriented graphs that assign to each vertex a colour such that pairs of

vertices at directed distance at most 2 receive different colours (2−dipath colourings)
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Figure 5.1: A 2−edge-coloured graph coloured with 6 colours.

2

3

45

6

1

Figure 5.2: A homomorphic image of the 2−edge-coloured graph in Figure 5.1.



98

are useful when constructing lower bounds for the oriented chromatic number.(See

Chapter 3). We consider an analogous colouring parameter for 2−edge-coloured

graphs.

Definition 5.7. For a 2−edge-coloured graph, (G,Σ), we define an alternating 2−path

colouring using m colours, or an alternating 2−path m−colouring, to be a function

c : V (G)→ {1, 2, 3, . . . ,m} such that

• if uv ∈ E(G), then c(u) 6= c(v), and

• if uv, vw ∈ E(G) is an alternating 2−path, then c(u) 6= c(w).

Definition 5.8. The alternating 2−path chromatic number of (G,Σ), denoted by

χa2(G,Σ) is the least m such that (G,Σ) has an alternating 2−path colouring using m

colours. For a family of graphs, F , define χa2(F) to be the least m such that for all

(G,Σ) ∈ F , χa2((G,Σ)) ≤ m.

Since every m−colouring is also an alternating 2−path colouring, we get immedi-

ately that for all (G,Σ), χa2(G,Σ) ≤ χs(G,Σ).

5.2 Vertex Colourings of 2−edge-coloured Graphs

with ∆ ≤ 3

We begin by showing each 2−edge-coloured cubic graph has an alternating 2−path

8−colouring. To do so, we first define a graph akin to the square of an oriented graph.

Let (G,Σ) be a 2−edge-coloured graph. Define G?, a simple graph, with

• V (G?) = V (G) and

• E(G?) = E(G) ∪ {uv|u and v are the ends of an alternating 2−path in G}.
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In this graph a pair of vertices are adjacent if and only if they are adjacent in G

or they are at the ends of an alternating 2−path in G. As such, a proper colouring

of G? is also an alternating 2−path colouring of G and so χ(G?) = χa2(G).

Lemma 5.1. If (G,Σ) is a 2−edge-coloured graph with ∆ ≤ 3, then either G? contains

a vertex with degree at most 6, or G? has a proper 8-colouring.

Proof. Let (G,Σ) be a 2−edge-coloured graph, and let G? be defined as above. To

prove our lemma, we show the average degree in G? is no more than 7. Each edge of

G contributes exactly one edge to G?. Since each vertex of G is the centre vertex of

at most two alternating 2−paths, each vertex of G contributes at most two edges to

G?. Therefore

|E(G?)| ≤ |E(G)|+ 2|V (G)| = 3|(V (G))|
2

+ 2|V (G)| = 7|V (G)|
2

Since G? has at most 7|(V (G))|
2

edges it is either 7−regular and so, by Brooks’

Theorem is 8−colourable, or G? has a vertex of degree at most 6.

Consider the 2−edge-coloured graph G given in Figure 5.3. In this case G? is K8,

and so G is an example of a 2−edge-coloured subcubic graph that requires 8 colours

in an alternating 2−path colouring. Recall that a graph is subcubic if it has maximum

degree 3, but is not 3−regular. To show 8 colours suffice for 2−edge-coloured cubic

graphs, we first show 8 colours suffice for a 2−edge-coloured subcubic graphs.

Lemma 5.2. If (G,Σ) is a connected 2−edge-coloured subcubic graph, then χa2(G,Σ) ≤

8.

Proof. We proceed by induction on n, the number of vertices ofG. Note our statement

is trivially true for all n ≤ 8. Let u be a vertex of degree 2 in G, with neighbours x

and y. Consider an alternating 2−path colouring, c, of G \ {u}. Since x and y are of



100

degree at most 2 in G \ {u}, c can be constructed such that c(x) 6= c(y), as each of x

and y only need to disagree in colour from at most 6 other vertices in a colouring of

G \ {u} and 8 colours are available. This colouring can be extended to one of G since

there are only 6 vertices from which u needs to disagree in colour and 8 available

colours.

Using Lemmas 5.1 and 5.2, we give a proof of the main result regarding alternating

2−path colourings of cubic graphs.

Theorem 5.3. Every 2−edge-coloured cubic graph has an alternating 2−path colour-

ing using no more than 8 colours.

Proof. Figure 5.3 gives an example of a 2−edge-coloured cubic graph that requires 8

colours. This shows χa2(F) ≥ 8 for, F , the family of 2−edge-coloured cubic graphs.

Let G be a 2−edge-coloured cubic graph. We may assume G? is not 7−regular,

as otherwise we have directly that G has an alternating 2−path colouring using no

more than 8 colours. By Lemma 5.1, there exists a vertex v such that v has degree

less than 7 in G?. We may assume dG(v) = 3, as otherwise we have directly that

dG?(v) ≤ 6. Let a, b, d be the neighbours of v in G. We proceed by cases.

Case I: All of va, vb, vd are red. By Lemma 5.2, G\{v} has an alternating 2−path

colouring, c, using 8 colours. Since v must disagree in colour with no more than 6

vertices, and we have a palette of 8 colours, c can be extended, as adding v creates

no new alternating 2−paths between the neighbours of v.

Case II: Exactly one of va, vb, vd is red. Without loss of generality, assume va ∈ Σ1

and vb, vd ∈ Σ2. By Lemma 5.2, G \ {v} can be coloured using 8 colours. Further, in

this colouring there are at least two choices for each of a, b, d. Therefore a colouring,

c, of G\{v} exists where c(a) 6= c(b) and c(a) 6= c(d). This colouring can be extended

to one of G, since v must disagree in colour with no more than 6 vertices, as v has

degree at most 6 in G?.
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Figure 5.3: A 2−edge-coloured cubic graph that requires 8 colours in an alternating
2−path colouring.

The example given in Figure 5.3 is the only 2−edge-cubic graph known, at the

time of writing to require 8 colours in an alternating 2−path colouring.

We turn now to the task of bounding the chromatic number of the family of

2−edge-coloured graphs with maximum degree 3. We begin by observing that since

each vertex in the graph in Figure 5.3 requires its own colour in an alternating 2−path

colouring, then this 2−edge-coloured graph also requires 8 colours in a proper colour-

ing. This gives directly that χ2 ≥ 8 for this family. To give an upper bound for this

parameter, we will make use of the following property.

Property 5.4. A 2−edge-coloured complete graph (G,Σ) has property Pi,j if for every

subset X ⊂ V (G) of size i and for every sequence (z1, z2, . . . , zi), zk ∈ {1, 2} (1 ≤

k ≤ i), there exist j distinct vertices in V (G) \ X, y1, y2, . . . , yj, such that for all

1 ≤ ` ≤ j, xiy` ∈ E(G) and Σ(xiy`) = zi.
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Variants of this property have appeared in previous work on 2−edge-coloured

graphs and also in work on oriented graphs. A nice survey on graphs with property

P1,n is given by Bonato (here called n−existentially closed) [5]. Here, it is shown

that such graphs can be found among the Payley graphs. Sopena and Vignal use

the existence of an oriented version of this property to give an upper bound on the

oriented chromatic number of cubic graphs [52].

To show no more than 11 colours are required for a colouring of a 2−edge-coloured

cubic graph, we exhibit a 2−edge-coloured graph on 9 vertices with property P2,1 and

then show, with a few exceptions, every subcubic 2−edge-coloured graph admits a

homomorphism to this graph. Using this fact, we can then, for any 2−edge-coloured

subcubic graph, find a 2−edge-coloured target with 11 vertices.

Let (H,Σ) be the 2−edge coloured graph formed from the complete graph on 9

vertices where the red edges are those shown in Figure 5.4. Observe that H[Σ1] =

H[Σ2] = C3�C3. And so the subgraph induced by the red edges is isomorphic to the

one induced by the blue edges, each of these subgraphs is edge transitive, and H is

vertex transitive.

The 2−edge-coloured graph H exhibits the following properties.

Property 5.5. For every edge xy of H there exists:

1. a single vertex z such that Σ(xz) = Σ(yz) = Σ(xy),

2. a pair of vertices z1 and z2 such that Σ(xz1) = Σ(xz2) = 1 and Σ(z1y) =

Σ(z2y) = 2, and

3. a pair of vertices z1 and z2 such that Σ(xz1) = Σ(xz2) = Σ(z1y) = Σ(z2y) 6=

Σ(xy).

We observe these properties by considering the neighbourhood of the vertex set

{u0, v0}. In [36] the authors use these properties of H to show H is a universal target
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0 1 2

u

v

w

Figure 5.4: The red edges of H, a 2−edge-coloured graph with property P2,1. The
vertices are labelled by their row and column index.

for the family of 2−edge-coloured outerplanar graphs and in fact all 2−edge-coloured

2−trees.

Corollary 5.6 (Montejano et al. [36]). The 2−edge-coloured graph H has property

P2,1.

That H has property P2,1 is not enough to show that each 2−edge-coloured cubic

graph admits a homomorphism to H. Consider the pair of 2−edge-coloured graphs,

A1 and A2, in Figure 5.5. Call this set of graphs A. Neither of these graphs admits a

homomorphism to H. To see this, observe that in any colouring of A1 or A2, a1 and

a2 must receive different colours. By Property 5.5.3 this means a3 and a4 receive the

same colour. However this is a contradiction, as they are at the ends of an alternating

2−path.

It turns out, however, that these subcubic graphs are the lone obstructions to

subcubic homomorphism to H. In order to show subcubic graphs that contain neither

A1 nor A2 admit a homomorphism to H we require the following property of A1 and
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a2 a2

a3 a4 a3 a4

a1 a1

d d

Figure 5.5: A1 and A2.

A2.

Property 5.7. Let A′ be a graph produced from a graph in A by changing the colour

of any edge and then subdividing this edge. Let x be the new vertex created by this

process. There exists a pair of homomorphisms c1, c2 : A′ → H such that c1(d) = c2(d)

but c1(x) 6= c2(x).

Figure 5.6 gives all possible graphs formed by subdividing an edge of A2, as above.

Table 5.1 gives explicit colourings that verify the property. Similar colourings may

also be obtained for the possible graphs obtained by subdividing an edge of A1, as

above.

Theorem 5.8. Every connected 2-edge-coloured subcubic graph with no subgraph iso-

morphic to a graph in A admits a homomorphism to H.

Proof. Let (G,Σ) be a minimum counter-example with respect to number of vertices

and, subject to that, with respect to the number of edges. Since G is the smallest

counter-example and is subcubic, there exists a vertex z with neighbours x and y

such that G \ {z} admits a homomorphism to H. Further, it must be, by Property
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B1 c1 c2

a1 v0 v0

a2 u2 u2

a3 v0 v0

a4 w1 w1

d u0 u0

x v1 v2

B2 c1 c2

a1 u2 u2

a2 v0 v0

a3 v0 v0

a4 w1 w1

d u0 u0

x v1 v2

B3 c1 c2

a1 u2 u2

a2 w1 w1

a3 v0 v0

a4 w1 w1

d u0 u0

x w0 w2

B4 c1 c2

a1 w1 w1

a2 u2 u2

a3 v0 v0

a4 w1 w1

d u0 u0

x w0 w2

B5 c1 c2

a1 u2 u2

a2 u2 u2

a3 v0 v0

a4 w1 w1

d u0 u0

x u0 u1

B6 c1 c2

a1 w2 u2

a2 u1 u1

a3 v0 w0

a4 v0 w0

d u0 u0

x w0 v0

B7 c1 c2

a1 u0 u0

a2 u2 w2

a3 w1 v1

a4 w1 v1

d u0 u0

x v2 w2

Table 5.1: Homomorphisms to H of the graphs in Figure 5.6.
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d

a4

a2

x
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x
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x
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a3
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d
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x

B7

Figure 5.6: Possibilities for subdividing an edge in A2, as described in Property 5.7.
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5.5, that xz ∈ Σ1, yz ∈ Σ2 and in every homomorphism φ : G \ {z} → H we have

φ(x) = φ(y). Since H is vertex transitive, we may also assume G has no cut-edge.

Further, since ∆(G) ≤ 3, G has no cut-vertex, as the existence of a cut-vertex implies

the existence of a cut-edge.

Let x1 and x2 (respectively y1 and y2) be the neighbours of x (respectively y) in

G \ {z}. It must be x1x and x2x (respectively y1y and y2y) have the same colour, as

otherwise, by Property 5.5 there would exist a homomorphism φ : G \ {z} → H such

that φ(x) 6= φ(y).

We proceed by considering the existence and colour of an edge x1x2. By Properties

5.5.2 and 5.5.3, we may assume xx1 is a red edge and xx2 is a red edge.

Case I: There is a blue edge between x1 and x2: If there is a blue edge between

x1 and x2, then by Property 5.5.2 any colouring G \ {z, x} can be extended to one of

G \ {z} in two ways. This is a contradiction.

Case II: There is no edge between x1 and x2: If there is no edge between x1 and

x2 we can obtain a homomorphism φ : G \ {z} → H such that φ(x) 6= φ(y) by

• removing x from G \ {z}, and

• adding a blue edge x1x2.

If this new graph has no subgraph isomorphic to a graph in A, then since this new

graph has fewer vertices than G it admits a homomorphism, δ, to H. By Property

5.5.3, δ can be extended to be a homomorphism from G\{z} to H in two ways. This

implies that there exists a homomorphism φ : G \ {z} → H such that φ(x) 6= φ(y).

This is a contradiction.

If this new graph does contain a subgraph isomorphic to a graph in A, then it

must be replacing the red edges xx1 and xx2 with the blue edge x1x2 yields a block

isomorphic to a graph in A. However, by Property 5.7, any colouring of G \ {z, x}
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can be extended to one of G \ {z} such that x and y receive different colours. This is

a contradiction.

Case III: There is a red edge between x1 and x2: Assume there is a red edge

between x1 and x2. Let s1 and s2 be neighbours of x1 and x2, respectively, in G\{z, x}.

If s1 = s2, then s1 is a cut vertex in G \ {z}. As such, any colouring of G \

{z, x, x1, x2, s1} can be extended to one of G \ {z} such that x and y receive different

colours. To see this, note there are three possible colours for s1 in such an extension.

Otherwise, we require the following claim.

Claim 11. There exists a colouring of G \ {z, x, x1, x2} with H such that s1 and s2

receive different colours.

Consider the graph G′ formed from G by removing z, x, x1, x2, adding new vertex

t, a red edge s1t and a blue edge s2t. If this graph contains no subgraph from A, then

it admits a homomorphism to H such that s1 and s2 receive different colours. If this

graph does contain a subgraph from A, then it must be that the path from s1 to s2

through t corresponds to the path between a3 and a4 through d in a copy of either

A1 or A2. We show that this implies there is only a single vertex of degree at most 2

in G \ {z}. This is a contradiction as both x and y have degree at most 2.

Consider the graph induced by the vertices corresponding to a1, a2, a3 and a4 when

the vertex t is added. This graph is K4 \ {a1a2}. However, s1 and s2 (the vertices

corresponding to a1 and a2) are adjacent to x1 and x2, respectively. Further, by

assumption, x1 and x2 are adjacent and are also adjacent to x. As G has maximum

degree 3, there can be no other vertices in G\{x, z}, as z is not a cut vertex. Therefore

G \ {z} has only a single vertex of degree 2, a contradiction as each of x and y are of

degree 2.

Consider a colouring of G\{z, x, x1, x2} with H in which s1 and s2 receive different

colours. Figure 5.7 shows all possibilities for the edges in the subgraph induced by
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Γ1 c1 c2

x w1 w2

x1 v1 v2

x2 u1 u2

s1 v0 v0

s2 u0 u0

Γ2 c1 c2

x w2 u0

x1 v2 v0

x2 u2 w0

s1 v1 v1

s2 u0 u0

Γ3 c1 c2

x w0 u1

x1 w2 v1

x2 w1 w1

s1 v0 w0

s2 u0 u0

Γ4 c1 c2

x w0 u2

x1 w2 w2

x2 w1 v2

s1 v1 v1

s2 u0 u0

Γ5 c1 c2

x u0 v2

x1 u2 w2

x2 u1 v2

s1 v1 v1

s2 u0 w2

Γ6 c1 c2

x u0 w1

x1 u2 w2

x2 u1 w0

s1 v0 v0

s2 u0 u0

Table 5.2: Homomorphisms to H of the graphs in Figure 5.7.

x, x1, x2, s1 and s2, up to symmetry. For each graph in Figure 5.7, Table 5.2 gives a

pair of colourings that each give the same colour to s1 and s2 but the two colourings

give a different colour for x. This contradicts that every homomorphism from G\{z}

gives the same colours to both x and y.

Therefore, every 2−edge-coloured connected subcubic graph that does not contain

a subgraph from A admits a homomorphism to H.

Theorem 5.9. Every connected 2−edge-coloured graph with maximum degree 3 ad-

mits a homomorphism to a 2−edge-coloured graph on 11 vertices.

Proof. Let G be a connected 2−edge-coloured graph with maximum degree 3.

Case I: G contains no subgraph isomorphic to a graph in A: Let uv be an edge of

G. Form G′ by deleting uv . By Theorem 5.8, G′ admits a homomorphism, φ, to H.

By colouring each vertex other than u and v as prescribed by φ and giving u colour

0 and v colour 0′ we have an 11-colouring of G.

Case II: G contains a subgraph isomorphic to a graph in A: From each of these

subgraphs remove the vertex a2. What remains admits a homomorphism to H. By
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Γ1 Γ2

x1

x

s2x2

s1

xx

s2s2

x1s1

Γ4

x1 s1

Γ3

x2 x2

xx

s2s2

x1s1

Γ6

x1 s1

Γ5

x2 x2

Figure 5.7: Possibilities in Case III if s1 6= s2
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colouring all removed vertices from copies of A1 with colour 0+ and those from copies

of A2 with colour 0−, we obtain an 11-colouring of G.

Both the result and method of proof of this result are similar in flavour to the result

on oriented cubic graphs presented in Chapter 2. In both results we consider a target

graph with convenient adjacency properties, consider a family of subgraphs that do

not admit a homomorphism to this target, and then construct a homomorphism to

a modified target depending on the existence, or lack thereof, of these subgraphs in

the input graph. In Chapter 2 this method is also used to construct colourings of

oriented graphs with maximum degree 4. It is likely that this technique can be useful

in constructing colourings of (j, k)−mixed graphs with bounded degree, provided

target graphs with appropriate adjacency properties exist. For example, the graph

formed from H using the Tromp construction has property P3,1 [36].

5.3 Simple Colourings of k−edge-coloured Graphs

Definition 5.9. Let (G,Σ) and (H,Π) be k−edge-coloured graphs. We say G admits

a simple homomorphism to H, denoted G→s H, if there exists a mapping φ : V (G)→

V (H), such that the following conditions are satisfied:

1. there exist u, v ∈ V (G) such that φ(u) 6= φ(v), and

2. for all 1 ≤ i ≤ k if uv ∈ Σi, then φ(u)φ(v) ∈ Πi or φ(u) = φ(v).

If |V (H)| = m, we call φ a simple colouring of G using m colours or a simple

m−colouring of G.

Alternatively we may view simple homomorphisms of k−edge-coloured graphs as

homomorphisms where the target graph has a loop of each edge colour and the range

of the vertex mapping consists of at least two vertices.
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Definition 5.10. If G is a k−edge-coloured graph and c is a simple colouring of

G, then a proper subgraph, H, of G is called monochromatic if for all u, v ∈ V (G),

c(u) = c(v).

Definition 5.11. For a k−edge-coloured graph G the simple chromatic number of

G is the least m such that there exists a simple m−colouring of G. We denote this

value as χsk(G). If F is a family of k−edge-coloured graphs we define χsk(F) as the

smallest m such that for all F ∈ F , χsk(F ) ≤ m. In the event no such m exists we

say χsk(F) =∞.

Simple colourings were first introduced by Smoĺıková [48] in her Ph.D thesis. She

studied simple colourings of oriented graphs. Here we show her results and methods

can be adapted for 2−edge-coloured graphs.

5.3.1 Simple Colourings of 2−edge-coloured Graphs

Those k−edge-coloured graphs with simple chromatic number equal to two are easily

characterised.

Proposition 5.10. A k−edge-coloured graph G has χsk(G) = 2 if and only if G has

a monochromatic edge cut.

This follows by observing that, up to the colour of the edges, there is a single

target for simple 2−colouring. This target is a single edge with loops of both colours

at either end.

Proposition 5.11. There exist no 2−edge-coloured graph with simple chromatic num-

ber equal to 3.

This follows by observing that, up to the the colour of the edges, there are exactly

two 2−edge-coloured complete graphs on 3 vertices, one in which all of the edges have
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the same colour, and one in which exactly two of the edges agree in colour. Each

of these graphs has simple chromatic number 2. And so any 2−edge-coloured graph

that admits surjective simple homomorphism to either of these graphs must satisfy

the hypothesis of Proposition 5.10.

Definition 5.12. Let (G,Σ) be a 2−edge-coloured graph and let u, v, w ∈ V (G) such

that uv, vw ∈ E(G). We say v is between u and w if uvw is an alternating 2−path.

We say C ⊂ V (G) is convex if for any pair u,w ∈ C there is no v ∈ V (G) \ C such

that v is between u and w. Let N ⊆ V (G). The convex hull of N is the minimum

convex set of vertices of G that has N as a subset. We denote this set conv(N).

Note that if N is a convex set, then conv(N) = N .

Proposition 5.12. Let c be a simple colouring of a 2−edge-coloured graph G and

consider N ⊆ V (G) such that for all u ∈ N , c(u) = i. For all x ∈ conv(N), it must

be c(x) = i.

Proof. Consider a vertex x ∈ conv(N) and let N ′ be the largest subset of conv(N)

such that x /∈ N ′ and for all y, z ∈ N ′ such that if there is a vertex w 6= x between y

and z, then w ∈ N ′. We proceed by induction on the cardinality of N ′. If |N ′| = 2,

then, since N ′ is largest, x is between the two vertices in N ′ and so c(x) = i.

Assume now that |N ′| = k > 2. Since N ′ is largest, there exists a pair of vertices

y, z ∈ N ′ such that x is between y and z. If c is a simple colouring of G, then by

induction c(y) = c(z) = c(v) for all v ∈ N ′. Since x is between y and z, it must also

be c(x) = c(u).

In the remainder of this chapter we explore families of graphs, F , for which

χ2(F) = χs2(F).

Definition 5.13. A family of 2−edge-coloured graphs, F is optimally simply colourable

if χ2(F) = χs2(F).
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We begin our study of such families by considering the family of 2−edge-coloured

planar graphs, P , as the long-standing upper bound of χ2(P) ≤ 80 [2] is of particular

interest.

Theorem 5.13. The family P of planar 2−edge-coloured graphs is optimally simply

colourable.

Proof. As every m−colouring is also a simple m−colouring, we have directly that

χs2(P) ≤ χ2(P).

Let m = χs2(P) and let (P,Σ) ∈ P have at least 3 vertices. We show there is an

m−colouring of P . Since P was chosen arbitrarily, this implies χ2(P) ≤ m = χs2(P).

Let (P ?,Σ?) be a triangulation of (P,Σ) such that Σ1 ⊆ Σ?
1 and Σ2 ⊆ Σ?

2. Denote

by C(P ?) the set of all simple m-colourings of (P ?,Σ?) that contain a monochromatic

edge. For every c ∈ C(P ?), P ? has a triangular face Fc that is not monochromatic

under c, but contains a monochromatic edge, as otherwise we have directly that P

has an m−colouring. Denote the vertices of such a face by xc, yc, zc. We note that,

with respect to the colours of the edges, there are four possibilities for the edges in

this face (up to relabelling of xc, yc, zc). We will refer to these four possibilities as

follows:

1. Type A: xcyc, yczc, zcxc ∈ Σ1

2. Type B: xcyc, zcxc ∈ Σ1 and yczc ∈ Σ2

3. Type C: zcyc ∈ Σ1 and xcyc, xczc ∈ Σ2

4. Type D: xcyc, yczc, zcxc ∈ Σ2

Notice that by reversing the roles of red and blue edges in Types A and B we

obtain types D and C, respectively.
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We define a new 2−edge-coloured graph (R,Π) that has (P ?,Σ?) as a subgraph

and show any simple m−colouring of R when restricted to the edges in P ? is an

m−colouring. As such, it must be P has an m−colouring. We do this by showing no

colouring in C(P ?) can be extended to one of R.

Construct R from P ? as follows: (See Figure 5.8)

• For each Fc of Type A add vertices dc, ec, fc together with blue edges xcfc, xcdc,

ycdc, dcec,zcec and red edges ycfc, ycec,zcdc,dcfc.

• For each Fc of Type B add vertex dc together with blue edges xcdc, zcdc and

red edge ycdc.

• For each Fc of Type C add vertex dc together with red edges xcdc, zcdc and blue

edge ycdc.

• For each Fc of Type D add vertices dc, ec, fc together with red edges xcfc, xcdc,

ycdc, dcec,zcec and blue edges ycfc, ycec,zcdc,dcfc.

Notice R is a planar 2−edge-coloured graph (See Figure 5.8), and so has a simple

m-colouring. Let cr be such a colouring. By construction, for a given triangular

face Fc, and for any chosen pair from the set {xc, yc, zc}, the unchosen vertex is part

of the convex hull formed of the chosen pair. As such, in any simple m−colouring

all 3 vertices either receive the same colour or receive distinct colours. Therefore

cr does not extend c for any c ∈ C(P ?). Therefore when restricted to P ?, cr is an

m−colouring. As P ∈ P was chosen arbitrarily, this gives χ2(P) ≤ m = χs2(P).

For a fixed integer m > 1, let us consider the smallest 2−edge-coloured planar

graph with simple chromatic number m. Call this 2−edge-coloured graph H and let

c be a simple m-colouring of H. Let uv be an edge of H and consider the result

of contracting this edge. If the convex hull of u and v contains only u and v, then
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Figure 5.8: Construction for Types D and C
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contracting this edge yields no parallel edges with different colours. This smaller

2−edge-coloured graph must have a simple (m− 1)−colouring. Such a colouring can

be extended to one of H by giving both u and v the same colour. As such, it must be

that the convex hull of u and v contains at least one other vertex. This idea can be

extended to any connected subgraph of H. That is to say, if H is a smallest 2−edge-

coloured graph with simple chromatic number m, it must be that the convex hull of

any connected set of vertices is the entire vertex set of H. If it were not, then we

could identify the convex hull into a single vertex, and either obtain a smaller graph

with simple chromatic number m, or colour H with fewer colours. This reasoning

suggests a family of graphs to examine for trying to improve χ2(P) ≤ 80. We need

only consider the graphs so that the convex hull of any connected subgraph is the

entire graph.

We turn now to another family of optimally simply colourable graphs, partial

p−trees.

Theorem 5.14. For any p ≥ 3, the family, Tp, of 2−edge-coloured partial p−trees is

optimally simply colourable.

Proof. Let p ≥ 3. We have directly that χs2(Tp) ≤ χ2(Tp), as any homomorphism is

also a simple homomorphism. To prove our claim it suffices to show χ2(Tp) ≤ χs2(Tp).

Since χs(Tp) is bounded [1], it must also be χs2(Tp) is bounded. Let χs2(Tp) = m

and consider T ∈ Tp such that χs2(T ) = m. We may assume T is a p−tree. Let C be

the set of simple m−colourings of T such that T has a monochromatic edge.

As T is a p−tree it is constructed with a sequence of cliques of order p + 1

V1, V2, . . . , V`. For every colouring c ∈ C there must exist some clique Vi such that Vi

has a monochromatic edge, but contains vertices of two different colours. Let xc ∈ Vi
and yc ∈ Vi be the ends of this monochromatic edge, and let zc ∈ Vi be coloured

differently than xc and yc under c.
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xc yc zc

uc vc

Figure 5.9: The edges added to form T ′ in Theorem 5.14.

Consider the following partial p−tree, T ′, constructed from T . (See Figure 5.9)

V (T ′) = V (T ) ∪
⋃
c∈C

{vc, wc},

E(T ′) = E(T ) ∪ {xcvc, xcwc, ycvc, ycwc, zcvc, zcwc},

ΣT ′

2 = ΣT
2 ∪ {xcvc, xcwc, zcwc}.

Consider an m−colouring of T ′, c′. Since for all c ∈ C, zc, vc, wc ∈ conv({xc, yc}),

if xc and yc receive the same colour under c′, then zc, vc and wc must also receive this

same colour. Therefore c′ does not extend any colouring in C. This implies that when

restricted to the vertices of T c′ is an m−colouring of T . Therefore χ2(Tp) ≤ χs2(Tp)

and so χ2(Tp) = χs2(Tp) .

The families of 2−edge-coloured planar graphs and 2−edge-coloured p−trees each

have bounded chromatic number and so have bounded simple chromatic number.

Here we examine a family in which both of these parameters are unbounded.

Let B be the family of 2−edge-coloured bipartite graphs. We show, by way of

construction, χsk(B) =∞.
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Figure 5.10: Construction of Gm for m = 3

Consider the complete bipartite graph, Gm (m ≥ 3), with vertex set

V (Gm) = {a1, a2, . . . , am} ∪ {b1, b2, . . . , bm} ∪ {c1, c2, . . . , cm},m ≥ 3

and edge set

E(Gm) = {aibj|1 ≤ i, j ≤ m} ∪ {cibj|1 ≤ i, j ≤ m}.

We form a 2−edge-coloured graph (Gm,Σ) by partitioning E(Gm) as follows:

• aibj ∈ Σ1 for all i > j and for all i < j where i and j have the same parity,

• cibj ∈ Σ1 for all i > j and for all i < j where i and j have the different parity,

and

• all other edges are placed in Σ2.

Proposition 5.15. χs2(Gm) ≥ m
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Proof. We proceed by induction on m, noting by inspection (see Figure 5.10) that

for m = 3 in any simple colouring of G each of the vertices in B = {b1, b2, b3} must

all receive distinct colours. We show for all m > 3 that the convex hull of any pair of

vertices in B consists all of the vertices of G.

Case I: conv({bi, bj}) = V (G), where 1 < i < j < m. By induction we have

{a1, a2, . . . , am−1} ∪ {b1, b2, . . . , bm−1} ∪ {c1, c2, . . . , cm−1} ⊆ conv({bi, bj}).

Since exactly one of a1bm and a2bm is red, bm ∈ conv({a1, a2}) ⊆ conv({bi, bj}).

Therefore bm ∈ conv({bi, bj}). Further, since ambm and cmbm are blue and ambm−2

and cmbm−1 are red, we have {am, cm} ⊆ conv({bm−1, bm}) ⊆ conv({bi, bj}). Therefore

conv({bi, bj}) = V (Gm).

Case II: conv({bi, bm}) = V (G), where i ≡ m (mod 2). Since ambm is blue and

ambi is red, am ∈ conv({bi, bj}). Since am−1bm is blue and am−1bi is red we notice that

since i ≡ m (mod 2), it must be that for i < m − 1, am−1 ∈ conv({bi, bj}). Finally,

since ambm−2 is red and am−1bm−1 is blue, bm−1 ∈ conv({bi, bm}). By Case I, it must

be V (G) = conv({bi, bm}).

Case III conv({bi, bn}) = V (G), where i 6≡ m (mod 2). Proceed as in Case II

swapping vertices in C for vertices in A and red for blue, where required.

Therefore, for every pair {bi, bj} (1 ≤ i 6= j ≤ m) the convex hull of {bi, bj} is all

vertices in G. As such, in any simple 2−edge-coloured colouring of G the vertices in

B must receive pairwise distinct colours. This gives directly that χs2(G) ≥ m.

Corollary 5.16. χs2(B) =∞.

Corollary 5.17. χ2(B) =∞.

Finally, we consider a family of 2−edge-coloured graphs that is not optimally

simply colourable, connected cubic graphs.
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Theorem 5.18. Every connected 2−edge-coloured cubic graph requires at most 4

colours in any simple colouring.

Proof. Let (G,Σ) be a 2−edge-coloured cubic graph that has simple chromatic num-

ber at least 5. We may also assume G has at least 5 vertices. Since G does not have

a simple 2−colouring, for any subset of the vertices N ⊂ V (G), the edge cut formed

from those edges with exactly one end in N contains both red and blue edges. Con-

sider now the subgraph induced by the set of red (respectively blue) edges. Call this

graph G1 (respectively G2). Each of these graphs must be connected, as otherwise

there is an edge cut consisting solely of either red or blue edges, implying G has a

simple 2−colouring.

If G1 contains a cycle it must be a Hamilton cycle in G, as otherwise G would

contain a vertex that has all of its incident edges red since G is cubic. However, if this

is the case, then G2 is a matching and so is not connected. Therefore each of G1 and

G2 is connected, acyclic, spanning, and has maximum degree 2; they are Hamilton

paths. Since G is cubic, a vertex of degree 2 in G1 is a vertex of degree 1 in G2,

and vice versa. Since G2 has 2 vertices of degree 1, G1 has two vertices of degree 2.

However, since G1 has no vertex of degree 3, and has at least 5 vertices, it cannot

have exactly two vertices of degree 2 and two vertices of degree 1. This contradicts

that G has at least 5 vertices.

Corollary 5.19. The family of 2−edge-coloured cubic graphs is not optimally simply

colourable.

The proof of the previous theorem allows us to classify the simple chromatic

number of 2−edge-coloured connected cubic graphs.

Theorem 5.20. If (G,Σ) is a connected 2−edge-coloured graph, then χs2(G) = 2

unless (G,Σ) is the complete graph on 4 vertices in which G[Σ1] and G[Σ2] each are

a path on 4 vertices. In this case χs2(G) = 4.
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Proof. Let (G,Σ) be a connected 2−edge-coloured graph. As observed in Theorem

5.18, if either of G1 = G[Σ1] or G2 = G[Σ2] is not connected, then χs2(G) = 2. Assume

now G1 and G2 are connected. Following the proof of Theorem 5.18, we see each of

G1 and G2 are Hamilton paths and a vertex of degree 2 in G1 is a vertex of degree at

most 1 in G2, and vice versa. Therefore G has at most 4 vertices. Since G is cubic

it must be the complete graph on 4 vertices. Therefore (G,Σ) is the complete graph

on 4 vertices in which G[Σ1] and G[Σ2] each are a path on 4 vertices.

5.4 Conclusions and Future Directions

Throughout our work on the chromatic number of 2−edge-coloured graphs with max-

imum degree 3, we have been careful to note that all of the graphs we are considering

are connected. Unlike proper colourings of graphs, we cannot just consider the com-

ponent which requires the most colours. For an easy example, consider the disjoint

union of two copies of K3, one with all red edges and the other with all blue edges.

We see no obvious way to adapt the method of proof of Theorem 5.9 to work with

non-connected graphs, as the proof may construct different targets for each of the

components. As such, the question of the chromatic number of the entire family of

2−edge-coloured cubic graphs remains open. Obviously, this number is at least 8,

but it is unknown if it is equal to the chromatic number for the family of connected

2−edge-coloured cubic graphs. It is also an open question whether the bound of 11

for the family of connected cubic graphs can be improved. If this number can be

improved, it may be there exists a 2−edge-coloured graph on fewer than 11 vertices

to which each 2−edge-coloured cubic graph admits a homomorphism. As mentioned

previously, when considering families of 2−edge-coloured graphs with bounded max-

imum degree, the technique applied in Theorem 5.9 can be useful in constructing
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colourings. For example for the family of connected 2−edge-coloured graphs with

maximum degree at most 4, a target graph with Property P3,1 may be of use. The

Tromp construction (see [36]) applied the target graph used in Theorem 5.2 yields a

2−edge-coloured graph with Property P3,1. It is possible this graph may be a univer-

sal target for the family of connected 2−edge-coloured graphs that have maximum

degree 4, but are not 4−regular.

In our study of simple colourings of 2−edge-coloured graphs, the families we con-

sidered are the same families considered by Smoĺıková [48] in her Ph.D. thesis. In [2]

Alon and Marshall note, when referring to the similarity of their results on k−edge-

coloured graphs to those of Raspaud and Sopena on oriented graphs, though similar

methods were utilised they see no way to deduce their set of results for k−edge-

coloured graphs from the results on oriented graphs and vice versa. Here we make

the same observation for the results of Smoĺıková [48]. In [41], Nešetřil and Raspaud

unify the results of Alon and Marshall, and Raspaud and Sopena, by finding a simi-

lar result for (j, k)−mixed graphs. It is possible a similar generalisation exists when

considering simple colourings of (j, k)−mixed graphs.
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Chapter 6

Incidence Colourings and Oriented

Incidence Colourings

Incidence colouring arose in 1993 when Brualdi and Massey first defined the incidence

chromatic number of a graph (then called the incidence colouring number) [9]. In this

paper they gave upper and lower bounds for the incidence chromatic number based

on maximum degree. These authors used their results as a method to improve a

bound for the strong chromatic index of bipartite graphs. Since then, bounds for the

incidence chromatic number have been investigated for a variety of families of graphs,

including planar graphs, k−trees, k−regular graphs, toroidal grids and k−degenerate

graphs ([15], [54], [53], [56]). In this chapter we find a new characterisation of the inci-

dence chromatic number using systems of distinct representatives and also introduce

a directed version of this parameter.

6.1 Introduction and Preliminaries

Definition 6.1. Let G be a simple undirected graph. For every u ∈ V (G) and e =

uv ∈ E(G) we call the pair (u, e) = (u, uv) an incidence. Let IG denote the set of

incidences of G. A pair of distinct incidences (v, e) and (w, f) are adjacent if v = w,
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Figure 6.1: Incidences defined to be adjacent.

e = f , vw = e, or vw = f . (See Figure 6.1).

Definition 6.2. An incidence colouring of G using k colours is a mapping, c :

IG → {1, 2, 3, . . . , k} such that for adjacent incidences (v, e), (w, f) ∈ IG, c((v, e)) 6=

c((w, f)). The incidence chromatic number of G, denoted χi(G), is the least integer

k such that G has an incidence colouring using k colours. For a family of graphs, F ,

the incidence chromatic number of F , denoted χi(F) is the least k such that for all

F ∈ F , χi(F ) ≤ k.

In describing explicit incidence colourings we will drop the extra pair of parenthe-

ses. That is, we denote c((v, e)) as c(v, e).

In their introduction to incidence colouring, Brualdi and Massey make the follow-

ing contributions.

Proposition 6.1 (Brualdi and Massey [9]). Let G be a simple graph.

• χi(G) ≤ |V (G)|.

• If G is a complete graph, then χi(G) = |V (G)|.

• If G is a tree, then χi(G) ≤ ∆(G) + 1.

• If G is a path, then χi(G) ≤ 3.
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• If G is a cycle, then χi(G) ≤ 4.

Based on their initial observations, Brualdi and Massey conjectured that for any

graph, G, χi(G) ≤ ∆(G)+2. This was shown to be false by Guiduli [24] by considering

the family of Paley graphs. Guiduli gives the following upper bound.

Proposition 6.2 (Guiduli [24]). If G is graph, then χi(G) ≤ ∆(G)+20 log ∆(G)+84.

As with other colouring parameters, homomorphism is useful in establishing upper

bounds. For incidence colourings, however, we require injective homomorphisms.

Definition 6.3. Let G and H be graphs. We say G admits an injective homomor-

phism to H if there exists a homomorphism φ : G → H such that for all u ∈ V (G)

and every pair of edges ux, uy ∈ E(G), φ(x) 6= φ(y).

Theorem 6.3. If G and H are simple graphs such that G admits an injective homo-

morphism to H, then χi(G) ≤ χi(H).

Proof. Let G and H be simple graphs such that φ : G→ H is an injective homomor-

phism. Let c be an incidence colouring of H using k colours. Consider the mapping

c′ : IG → {1, 2, 3, . . . , k} given by c′(u, uv) = c(φ(u), φ(u)φ(v)). Consider a pair of

edges uv, vw ∈ E(G). Since φ is injective, we note φ(u) 6= φ(w). If c′ is not an

incidence colouring, then one of the following must be true.

• c′(u, uv) = c′(v, uv): If this is true, then c(φ(u), φ(u)φ(v)) = c(φ(v), φ(u)φ(v)).

However this would contradict that c is an incidence colouring of H.

• c′(u, uv) = c′(v, vw): If this is true, then c(φ(u), φ(u)φ(v)) = c(φ(v), φ(v)φ(w)).

However this would contradict that c is an incidence colouring of H, as since

φ(u) 6= φ(w) the incidences (φ(u), φ(u)φ(v)) and (φ(v), φ(v)φ(w)) are adjacent

in H.
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• c′(v, uv) = c′(w, vw): If this is true, then c(φ(v), φ(u)φ(v)) = c(φ(w), φ(v)φ(w)).

However this would contradict that c is an incidence colouring of H, as since

φ(u) 6= φ(w) the incidences (φ(v), φ(u)φ(v)) and (φ(w), φ(v)φ(w)) are adjacent

in H.

Therefore c′ is an incidence colouring of G using no more than χi(H) colours.

6.2 Incidence Chromatic Number as a System of

Sets

Let G be simple graph and c be an incidence colouring of G using k colours. For each

vertex u, let

Au = {c(u, e)|(u, e) ∈ IG}.

If c is a surjection, then we observe

⋃
u∈V (G)

Au = {1, 2, 3, . . . , k}.

Observe the following properties of these sets.

Property 6.4. For all e = uv, Au \ Av 6= ∅.

Consider the incidence (u, uv). The colour appearing at this incidence must be

an element of Au, and since c is an incidence colouring, this colour cannot appear as

an element of Av.

Property 6.5. For all u ∈ V (G) the collection of sets {Au \ Av|v ∈ N(u)} has a

system of distinct representatives.

For each Au \ Av we select c(u, uv) as the representative element.
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Though these sets and their properties arise from a particular incidence colouring

of G, we can use such a system of sets to define incidence colouring.

Theorem 6.6. If A = {Au| u ∈ V (G)} is a collection of sets such that

• |Au| = d(u), and

• for all u ∈ V (G) the collection of sets Bu = {Au \ Av| v ∈ N(u)} has a system

of distinct representatives,

then G has an incidence colouring using exactly
∣∣∣⋃u∈V (G) Au

∣∣∣ colours.

Proof. Let G be a graph and let A = {Au| u ∈ V (G)} be a collection of sets that

satisfy the hypotheses. For every collection of sets Bu = {Au \Av| v ∈ N(u)}, let buv

be the representative of the set Au \ Av in the system of distinct representatives of

Bu. We claim a colouring, c, that assigns the colour buv to the incidence (u, uv) is an

incidence colouring of G.

Consider the pair of edges uv, vw ∈ E(G). If c is not an incidence colouring then

one of the following must be true.

• buv = bvu: Since buv ∈ Au \ Av and bvu ∈ Av, it must be buv 6= bvu;

• buv = bvw: Since buv ∈ Au \ Av and bvw ∈ Av, it must be buv 6= bvw;

• bvu = bvw: Since bvu and bvw are each representatives in a system of distinct

representatives of the collection of sets Bv it must be bvw 6= bvu.

Therefore c is an incidence colouring of G. Further since for every vertex u,

|Au| = d(u), it must be every element of Au appears as a colour on some incidence

(u, e). Therefore c uses exactly
∣∣∣⋃u∈V (G) Au

∣∣∣ colours.

Using this theorem we find an alternate characterisation for the incidence chro-

matic number of a graph G.
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Definition 6.4. Let G be a graph. The incidence chromatic number of G, denoted

χi(G), is the cardinality of the smallest set U such that there exist subsets Au ⊂ U

for all u ∈ V (G) so the following properties hold.

• For all u ∈ V (G), |Au| = d(u), and

• for all u ∈ V (G), the collection of sets {Au \ Av} has a system of distinct

representatives.

6.3 Oriented Incidence Colouring

We now consider adapting the spirit of incidence colouring to directed graphs.

Definition 6.5. For a digraph, G, we define incidences of two types:

• an ordered pair (u, uv), where uv ∈ E(G); and

• an ordered pair (xy, y), where xy ∈ E(G).

Let IG denote the set of incidences of G, a digraph. Consider the incidences

(u, uv), (uv, v), (x, xy), (xy, y) ∈ IG. We define adjacency as follows (see Figure 6.2).

• If v = x, then

– (uv, v) is adjacent to (x, xy),

– (u, uv) is adjacent to (x, xy), and

– (uv, v) is adjacent to (xy, y).

• If uv = xy, then (u, uv) is adjacent to (xy, y).
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Figure 6.2: Oriented incidences defined to be adjacent.

Definition 6.6. An oriented incidence colouring of G assigns to each incidence of G

a colour such that adjacent incidences receive different colours. That is, an oriented

incidence colouring of G with k colours is a function c: IG → {1, 2, . . . , k} such that

if α, β ∈ IG are adjacent incidences, then c(α) 6= c(β).

As with incidence colouring, in describing explicit oriented incidence colourings

we will drop the extra pair of parentheses. That is, we denote c((x, xy)) as c(x, xy).

Definition 6.7. For a digraph G we define the oriented incidence chromatic number

to be the least k such that G has an oriented incidence colouring using k colours. We

denote this value as −→χi(G). If F is a family of digraphs we define −→χi(F) to be the

least k such that for all F ∈ F , −→χi(F ) ≤ k.

Figures 6.3, 6.4, 6.5, and6.6 give examples of oriented incidence colourings of some

digraphs with few vertices. Notice that in Figure 6.3, we see a pair of incidences at

the same vertex receiving the same colour.

In this section our main goal is to study the relationship between oriented incidence

colouring and digraph homomorphism. Using this relationship we find a connection

between the oriented incidence chromatic number of a digraph and the chromatic

number of its underlying simple graph. Subsequently, we find upper and lower bounds

for the oriented chromatic number of complete symmetric digraphs.
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Figure 6.3: An oriented incidence 3−colouring of the transitive triple.

3 1 2 3

12

Figure 6.4: An oriented incidence 3−colouring of the directed cycle on 3 vertices
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1 2 3 1

Figure 6.5: An oriented incidence 3−colouring of the directed path on 3 vertices

41

2 3

Figure 6.6: An oriented incidence 4−colouring of the 2−cycle

The study of 2−dipath colourings of oriented graphs in the thesis of Sherk [57]

contains a result that provides an upper bound on the oriented chromatic number as

a function of the 2−dipath chromatic number (see Chapter 3). We consider the pos-

sibility of a result relating the oriented chromatic number and the oriented incidence

chromatic number. This idea is explored in Section 6.3.5.

We begin by finding the oriented incidence chromatic number of the family of

orientations of stars. By Figure 6.5 we see at least 3 colours are required to colour

every oriented star. We show that 3 colours always suffice.

Proposition 6.7. If G is an orientation of a star, then −→χi(G) ≤ 3.

Proof. Let Sk be an oriented star on k+ 1 vertices. Let u be the centre vertex of Sk,

A be the set of out-neighbours of u and B be the set of in-neighbours of u. Consider

a function, c : ISk
→ {1, 2, 3} defined as follows. For all a ∈ A and all b ∈ B let

• c(u, ua) = 3,

• c(ua, a) = 1,
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• c(bu, u) = 2, and

• c(b, bu) = 1.

It is easy to observe that c is an oriented incidence colouring of Sk.

We begin our study of the oriented incidence chromatic number by relating the

oriented incidence chromatic number of an oriented graph to the incidence chromatic

number of the underlying simple graph. To do so, we observe that the set of incidences

of an oriented graph is exactly equal to the set of incidences of the underlying graph,

as defined in Definition 6.5, and that any incidences adjacent in the oriented sense

are also adjacent in the undirected sense. From this it follows directly that:

Proposition 6.8. If G is an oriented graph, then χi(U(G)) ≥ −→χi(G).

By Theorem 6.1, we see that if T is a tournament on k vertices, then −→χi(T ) ≤ k.

We improve this bound in Section 6.3.4 by observing tournaments are subgraphs of

symmetric complete graphs.

6.3.1 A Homomorphism Model for Oriented Incidence Colour-

ing

Consider a homomorphism that maps an orientation of a star to P2. We can obtain

the oriented incidence colouring of Sk exhibited in Proposition 6.7 by lifting back the

oriented incidence colouring of P2 given in Figure 6.5 to the incidences of Sk. This

idea leads us to the following general result relating oriented incidence colouring and

digraph homomorphism.

Theorem 6.9. If G and H are digraphs such that G→ H, then −→χi(G) ≤ −→χi(H).
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Proof. Let G and H be digraphs, let f be an oriented incidence colouring of H using

−→χi(H) colours, and let φ be a homomorphism from G to H. Construct c, an oriented

incidence colouring of G, as follows. For all uv ∈ E(G):

• let c(u, uv) = f (φ(u), φ(u)φ(v)) and,

• let c(uv, v) = f (φ(u)φ(v), φ(v)).

If c is not an oriented incidence colouring of G, then one of the following must

occur:

Case I : There exist x, y ∈ V (G) and xy ∈ E(G) such that c(x, xy) = c(xy, y).

However this would imply f(φ(x), φ(x)φ(y)) = f(φ(x)φ(y), φ(y)), a contradiction as

f is an oriented incidence colouring of H.

Case II : There exist x, y, z ∈ V (G) and xy, yz ∈ E(G) such that c(y, yz) =

c(xy, y). However this would imply f(φ(y), φ(y)φ(z)) = f(φ(x)φ(y), φ(y)), a contra-

diction.

Case III : There exist x, y, z ∈ V (G) and xy, yz ∈ E(G) such that c(x, xy) =

c(y, yz). However this would imply f(φ(x), φ(x)φ(y)) = f(φ(y), φ(y)φ(z)), a contra-

diction.

Case IV : There exist w, x, y ∈ V (G) and xy, wx ∈ E(G) such that c(xy, y) =

c(wx, x). However this would imply f(φ(x)φ(y), φ(y)) = f((φ(w)φ(x), φ(x)), a con-

tradiction.

Therefore c is an oriented incidence colouring of G using at most −→χi(H) colours.

Corollary 6.10. If G is an oriented graph, then −→χi(G) ≤ χo(G).

Proof. If G is an oriented graph such that χo(G) = m, then there exists T , a tour-

nament on m vertices such that G → T . By Proposition 6.8 and Theorem 6.1

−→χi(T ) ≤ m. And so by Theorem 6.9, −→χi(G) ≤ m.
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Figure 6.7: An oriented incidence 4−colouring of the directed cycle on 5 vertices

Corollary 6.11. Let G be an oriented graph.

• If U(G) is a path, then −→χi(G) ≤ 3.

• If U(G) is a tree, then −→χi(G) ≤ 3.

• If U(G) is a cycle, then −→χi(G) ≤ 4.

• If U(G) is a complete graph, then −→χi(G) ≤ |V (G)|.

All of these results follow directly from bounds for the oriented chromatic number

for these families of oriented graphs. The only case that requires further comment is

the case where G is a directed 5−cycle. By inspection we can see only 4 colours are

required for an oriented incidence colouring (see Figure 6.7), even though 5 colours

are required for an oriented colouring.

Corollary 6.12. If F is a family of oriented graphs with bounded oriented chromatic

number, then F also has bounded oriented incidence chromatic number.

Theorem 6.9 provides a direct link between the oriented incidence chromatic num-

ber of an oriented graph and the oriented chromatic number of the same oriented
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graph. However, by considering the family of bipartite graphs, we are led to a rela-

tionship between the oriented incidence chromatic number of an oriented graph and

the chromatic number of its underlying simple graph.

Proposition 6.13. If B is an oriented bipartite graph, then −→χi(B) ≤ 4.

Proof. Let B = [X, Y ] be an oriented bipartite graph. Partition the arcs into two

sets, those that have their head in X and those that have their head in Y . Denote

by xy an arc that has its head in Y and by y′x′ (x, y, x′, y′ ∈ V (B)) an arc that has

its head in X. Consider a function c : IB → {1, 2, 3, 4} such that

• c(x, xy) = 1,

• c(xy, y) = 2,

• c(y′x′, x′) = 3, and

• c(y′, y′x′) = 4.

It is easily observed that c is an oriented incidence colouring of B.

The technique applied here suggests a method for constructing oriented incidence

colouring using a proper vertex colouring of the underlying graph. Observe that if

χ(U(G)) ≤ k, then G admits a homomorphism to the digraph formed from Kk by

replacing each edge with a pair of oppositely oriented arcs. We call this graph the

symmetric tournament on k vertices and denote it by
−→
K k. In Proposition 6.13 we are

noticing every orientation of a bipartite graph admits a homomorphism to
−→
K 2

Theorem 6.14. If G is digraph, then −→χi(G) ≤ −→χi(
−→
Kχ(U(G))).

Proof. Let G be a digraph and assume χ(U(G)) ≤ k. Since G admits a homomor-

phism to
−→
K k, by Theorem 6.9 it must be that −→χi(G) ≤ −→χi(

−→
Kk).
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Figure 6.8: An oriented incidence 4−colouring of the symmetric complete graph on

3 vertices,
−→
K3.

n 1 2 3 4 5 6 7
−→χi(
−→
Kn) 0 4 4 5 5 6 6

Table 6.1: The oriented incidence chromatic numbers of
−→
Kn for 1 ≤ n ≤ 7.

Given that homomorphism to the symmetric complete graph is useful in finding an

upper bound for the oriented incidence chromatic number, we consider the problem

of finding the oriented incidence chromatic number of a symmetric complete graph.

Table 6.1 gives the oriented incidence chromatic number of
−→
Kk, for 0 ≤ k ≤ 7.

These values were found by computer search. Figures 6.8 and 6.9 give oriented in-

cidence colourings of
−→
K3 and

−→
K6, respectively, using the fewest possible number of

colours. Though this table tempts us into making a conjecture about the oriented

incidence chromatic number of a symmetric complete digraphs, we resist this temp-

tation, as later we show this conjecture would be false. After developing some further

tools in Section 6.3.2 and Section 6.3.3, we return to the question of the oriented

incidence chromatic number of symmetric complete digraphs.
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Figure 6.9: An oriented incidence 6−colouring of the symmetric complete graph on

6 vertices,
−→
K6.
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6.3.2 Constructions and Decompositions

Here we examine oriented incidence colourings of digraph decompositions and prod-

ucts. We begin with an upper bound for digraphs that can be realised as the union

of digraphs.

Proposition 6.15. If G is a digraph such that G = G1∪G2 where V (G1)∩V (G2) = ∅,

then

−→χi(G) = max{−→χi(G1),−→χi(G2)}.

Proposition 6.16. If G is a digraph such that G = G1 ∪G2 where V (G1) ⊆ V (G2)

and E(G1) ∩ E(G2) = ∅, then

−→χi(G) ≤ −→χi(G1) +−→χi(G2).

Proof. Let

φ1 : V (G1)→ {1, 2, 3, . . . ,−→χi(G1)}

and let

φ2 : V (G2)→ {−1,−2,−3, . . . ,−−→χi(G2)}

be oriented incidence colourings of G1 and G2, respectively. Define φ as follows.

• φ(u, uv) = φ`(u, uv), and φ(uv, v) = φ`(uv, v) for all uv ∈ E(G`) (` ∈ {1, 2}).

We show by contradiction that φ is an oriented incidence colouring of G. If φ is

not an oriented incidence colouring of G, then one of the following must be true.

Case I : There exist x, y ∈ V (G) and xy ∈ E`(G) (` ∈ {1, 2}) such that c(x, xy) =

c(xy, y). However this would imply φ`(x, xy) = φ`(xy, y). This contradicts that φ` is

an oriented incidence colouring of G`.

The remainder of the cases follow similarly to the proof of Theorem 6.9.



140

Recall the arboricity of a graph, G, is the smallest number of forests needed to

cover E(G). The in-star arboricity (respectively, out-star) of a digraph, G, is the

smallest number of in-stars (respectively, out-stars) needed to cover E(G).

Corollary 6.17. If G is a directed graph, then −→χi(G) ≤ 3·arb(U(G)), where arb(U(G))

denotes the arboricity of U(G).

Proof. Consider a decomposition of U(G) into forests. When oriented, each of these

forests requires at most 3 colours, regardless of the orientation of G. Colouring each

forest with a unique set of 3 colours yields an oriented incidence colouring using at

most 3 · arb(U(G)) colours.

Corollary 6.18. If G is a digraph, then −→χi(G) ≤ 2 ·min{arbin(G), arbout(G)}, where

arbin(H) and arbout(H) denote the in-star and out-star arboricity of G, respectively.

We consider now a graph operation that arises in the study of oriented colourings

and oriented cliques (for an example see [46]). Let G and H be digraphs on disjoint

vertex sets. We define the digraph G ? H as follows.

• V (G ? H) = V (G) ∪ V (H) ∪ {z}, and

• E(G ? H) = E(G) ∪ E(H) ∪ {uz|u ∈ V (G)} ∪ {zv|v ∈ V (H)}.

Theorem 6.19. Let G and H be digraphs and let k = max{−→χi(G),−→χi(H)}. Then

k ≤ −→χi(G ? H) ≤ k + 2.

Proof. Let cG be an oriented incidence colouring of G using the colours {1, 2, 3, . . . , k}

and let cH be an oriented incidence colouring of H using the colours

{3, 4, . . . , k + 1, k + 2}.

Construct an oriented incidence colouring, c, ofG?H, using the colours {1, 2, . . . , k+

2}, as follows.
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• c(u, uv) = cG(u, uv) and c(uv, v) = cG(uv, v), for all uv ∈ E(G),

• c(u, uv) = cH(u, uv) and c(uv, v) = cH(uv, v), for all uv ∈ E(H),

• c(u, uz) = k + 1 and c(uz, z) = k + 2, for all u ∈ V (G), and

• c(z, zv) = 1 and c(zv, v) = 2, for all v ∈ V (H).

The upper bound in Theorem 6.19 is not always achieved with equality. The

oriented graph in Figure 6.11 is P2 ? P2. The directed path on 3 vertices can be

coloured using 3 colours, but P2 ? P2 requires only 4 colours, not the 5 given by the

upper bound in Theorem 6.19.

Finally we consider the oriented incidence chromatic number of the join of di-

graphs. Let G and H be digraphs. The join of G and H, denoted G + H, is the

digraph with

• V (G+H) = V (G) ∪ V (H), and

• E(G + H) = E(G) ∪ E(H) ∪ {uGvH |uG ∈ V (G), vH ∈ V (H)} ∪ {uHvG|uH ∈

V (H), vG ∈ V (G)}.

Informally, the join of digraphs is the disjoint union of the digraphs together with

all possible arcs between vertices of different digraphs. We give a pair of bounds for

the oriented incidence chromatic number of the join of a pair of digraphs.

Theorem 6.20. If G and H are digraphs, then

−→χi(G+H) ≤ max {−→χi(G),−→χi(H)}+ 4.

This follows directly from Theorem 6.14, and Propositions 6.13, 6.15 and 6.16.
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6.3.3 Oriented Incidence Colourings as a System of Sets

Let c be an oriented incidence colouring of a digraph G. For a vertex u, let

Au =
⋃

uv∈E(G)

c(u, uv)

and let

Bu =
⋃

vu∈E(G)

c(vu, u).

Informally Au is the set of colours assigned to incidences of the type (u, uv) and Bu

is the set of colours assigned to incidences of the type (vu, u).

Property 6.21. For all vertices v, Av ∩Bv = ∅.

No colour can appear on an incidence of the form (uv, v) and one of the form (v, vw).

Property 6.22. For all vertices v that have an out-neighbour, Av is non-empty.

Property 6.23. For all vertices v that have an in-neighbour, Bv is non-empty.

Property 6.24. For all arcs uv, Au \ Av 6= ∅ and Bv \Bu 6= ∅.

For every arc uv it must be c(u, uv) ∈ Au \ Av.

Property 6.25. For all arcs uv, if Au \ Av = Bv \Bu, then |Au \ Av| 6= 1.

If Au \ Av = Bv \Bu and |Au \ Av| = 1, then it would imply c(u, uv) = c(uv, v).

As with our new characterisation for incidence colouring using systems of distinct

representatives, existence of sets satisfying these properties is enough to construct an

oriented incidence colouring.

Theorem 6.26. Let G be a digraph with n vertices. The oriented incidence chromatic

number of G is the least k such that there exist sets

Au1 , Au2 , . . . , Aun ⊆ {1, 2, 3, . . . , k}
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and sets

Bu1 , Bu2 , . . . , Bun ⊆ {1, 2, 3, . . . , k}

such that the following hold.

1. For all vertices v, Av ∩Bv = ∅.

2. For all vertices v that have an out-neighbour, Av is non-empty.

3. For all vertices v that have an in-neighbour, Bv is non-empty.

4. For all arcs uv, Au \ Av 6= ∅ and Bv \Bu 6= ∅.

5. For all arcs uv, if Au \ Av = Bv \Bu, then |Au \ Av| 6= 1.

Proof. Assume there exist sets

Au1 , Au2 , . . . , Aun ⊆ {1, 2, 3, . . . , k}

and sets

Bu1 , Bu2 , . . . , Bun ⊆ {1, 2, 3, . . . , k}

that satisfy the hypotheses. Construct an oriented incidence colouring c by assigning

to each incidence (u, uv) a colour from the set Au \ Av and to each incidence (uv, v)

a colour from the set Bv \Bu such that c(u, uv) 6= c(uv, v).

Corollary 6.27. If c is an oriented incidence colouring of
−→
Kn, then the collec-

tion of sets Au1 , Au2 , . . . , Aun form an antichain in the Boolean lattice of subsets of

{1, 2, 3, . . . ,−→χi(
−→
Kn)}.

Corollary 6.28. If c is an oriented incidence colouring of
−→
Kn, then the collec-

tion of sets Bu1 , Bu2 , . . . , Bun form an antichain in the Boolean lattice of subsets

of {1, 2, 3, . . . ,−→χi(
−→
Kn)}.
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We use these results in Section 6.3.4 to find both upper and lower bounds for the

oriented incidence chromatic number of a symmetric complete digraph.

6.3.4 Symmetric Complete Digraphs

To find a lower bound for −→χi(
−→
Kn) we first observe that for every pair of sets Au, Av

(as defined in Section 6.3.3), it must be Au 6= Av.

Theorem 6.29. The complete symmetric digraph on n vertices has oriented incidence

chromatic number at least dlog2(n)e.

Proof. Let c be an oriented incidence colouring using k colours and let Avi (1 ≤ i ≤ n)

be the set of colours appearing on an incidence of the form (vi, vivj). By Theorem

6.26, for every 1 ≤ i < j ≤ n it must be Avi 6= Avj . Since each Avj ⊆ {1, 2, 3, . . . k},

it must be k ≥ log2(n).

To find an upper bound on the oriented incidence chromatic number of a sym-

metric complete digraph we first recall the classic result of Sperner.

Theorem 6.30 (Sperner’s Theorem). The size of a largest antichain in the lattice of

subsets of {1, 2, 3, . . . , k} is (
k

bk/2c

)
.

Theorem 6.31. If k is the smallest integer such that
(

k
bk/2c

)
≥ n, then

k ≤ −→χi(
−→
Kn) ≤ 2k.

Proof. Let c be an oriented incidence colouring of
−→
Kn using −→χi(

−→
Kn) colours. Consider

the collection of sets Au1 , Au2 , . . . , Aun , where Aui is the set of colours that appear on

incidences of the type (ui, uiuj). By Corollary 6.27, this collection of sets forms an

antichain of length n. This implies directly that −→χi(
−→
Kn) ≥ k.
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Let k be the smallest integer such that
(

k
bk/2c

)
≥ n. Let

Au1 , Au2 , . . . , Aun ⊂ {1, 2, 3, . . . k}

be pairwise distinct sets of size
(

k
bk/2c

)
and let

Bu1 , Bu2 , . . . , Bun ⊂ {1′, 2′, 3′, . . . , k′}

be pairwise distinct sets of size
(

k
bk/2c

)
. By Sperner’s Theorem, these sets satisfy the

hypothesis of Theorem 6.26 and so there exists an oriented incidence colouring of
−→
Kn

using 2k colours.

Using Theorem 6.31 we find an upper bound for −→χi(
−→
Kn) as a function of log2(n).

To do so we require the following observations.

Observation 6.32. For all n ≥ 9,

( dc · log2(n)e
d(c/2) · log2(n))e

)
≥ n,

where c = 1 + logn(log2(n)).

Observation 6.33.

lim
n→∞

logn(log2(n)) = 0.

Combining these observations with the statement of Theorem 6.31 gives the fol-

lowing.

Lemma 6.34. For all n ≥ 2,

log2(n) ≤ −→χi(
−→
Kn) ≤ (2 + o(1)) log2(n).
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We use this result to find the following upper bound for −→χi(
−→
Kn), where n is a

central binomial coefficient.

Theorem 6.35. For all n =
(

2k
k

)
,

−→χi(
−→
Kn) ≤ (1 + o(1)) log2(n).

Proof. Let n =
(

2k
k

)
. We show the existence of an oriented incidence colouring of

−→
Kn,

with vertex set {v1, v2, . . . , vn}, using no more than (1 + o(1)) log2(n) colours.

Let A1, A2, . . . , An be a collection of subsets of {1, 2, 3, . . . , 2k} that satisfy the

following properties.

• For all i 6= j (1 ≤ i ≤ j ≤ n), Ai 6⊂ Aj and Ai 6⊂ Aj, and

• for all i (1 ≤ i ≤ n), |Ai| = k.

For all i (1 ≤ i ≤ n) let Bi = Ai. Construct a colouring, c, as follows. For all

i, j ∈ {1, 2, 3, . . . , n} such that |Ai\Aj| > 1, assign to incidence (ui, uiuj) any element

of Ai \ Aj and to incidence (uj, ujui) any element of Bj \ Bi such that c(ui, uiuj) 6=

c(uj, ujui). Observe that by Theorem 6.3.3 the colouring constructed thus far does

not assign identical colours to any adjacent incidences. At this point we observe for

every set Ai that there exist k2 sets Aj such that |Ai \Aj| = 1. And so the symmetric

graph, S, induced by those arcs xy where the incidences (x, xy), (xy, y), (y, yx) and

(yx, x) remain uncoloured is a regular symmetric digraph where each vertex has in-

degree k2 and out-degree k2. The simple graph underlying S is k2−colourable and

so, by Theorem 6.9 and Lemma 6.34,

−→χi(S) ≤ −→χi(
−→
K k2) ≤ (2 + o(1)) log2(k2) = (4 + o(1)) log2(k).

We can complete c to be an oriented incidence colouring of
−→
Kn using at most an



147

additional (4+o(1)) log2(k) colours. The total number of colours used by c is at most

2k + (4 + o(1)) log2(k). Since log2(n) ≤ 2k and

lim
n→∞

(4 + o(1)) log2(k)

log2(n)
= 0,

we observe:

2k + (4 + o(1)) log2(k) ≤ (1 + o(1)) log2(n).

Therefore,

−→χi(
−→
Kn) ≤ (1 + o(1)) log2(n).

To extend this result for values of n that are not central binomial coefficients we

require the following observations.

Observation 6.36. For all k > 1,

log

((
2(k + 1)

k + 1

))
− log

((
2k

k

))
≤ 2.

Observation 6.37. For all n ≥ 2, where
(

2(k−1)
k−1

)
< n <

(
2k
k

)

log(n) + 2 > log

((
2k

k

))
.

Combining these observations with Theorem 6.29 gives the following statements.

Theorem 6.38. For all n ≥ 2

log2(n) ≤ −→χi(
−→
Kn) ≤ (1 + o(1)) log2(n) + 2.
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Corollary 6.39. If G is a digraph, then −→χi(G) ≤ (1 + o(1)) log2(χ(G)) + 2.

Corollary 6.40. If T is a tournament on n vertices, then

log(n) ≤ −→χi(T ) ≤ (1 + o(1)) log2(n) + 2.

Corollary 6.41. If T is a transitive tournament on n vertices, then

1

2
log2(n) ≤ −→χi(T ) ≤ (1 + o(1)) log2(n) + 2.

The lower bound here comes by observing that the arcs of any symmetric complete

digraph on n vertices may be partitioned in a pair of transitive tournaments on n

vertices.

We note the upper bounds given in Theorem 6.38 are not the best possible. Con-

tinued work on this bound by Pascal Ochem in [16] gives the following bounds.

Theorem 6.42. If n ≥ 8, then

log2(n) + 1
2

log2(log2(n)) ≤ −→χi(
−→
Kn) ≤ log2(n) + 3

2
log2(log2(n)) + 2.

6.3.5 Graphs with small Oriented Incidence Chromatic Num-

ber

In her Masters thesis [57] (more recently published as [33]), Sherk explores the re-

lationship between oriented graph homomorphism and 2−dipath colouring. One of

the main results of this work is to define a family of oriented graphs, Gk (k > 1),

with the property that an oriented graph H has a 2−dipath colouring using k colours

if and only if H admits a homomorphism to Gk. See Chapter 3 for a more thor-

ough discussion of this result. Here we consider the possibility of a similarly-styled
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result for the oriented incidence chromatic number. For the case −→χi(G) = 2, a fairly

straightforward characterisation exists.

Theorem 6.43. Let G be a digraph with at least one arc, then −→χi(G) = 2 if and only

if G admits a homomorphism to
−→
P1.

To find a characterisation for those digraphs for which 3 colours suffice, consider

the oriented graphs given in Figure 6.10. Observe that H1 → H2.

Theorem 6.44. For any digraph, G, −→χi(G) ≤ 3 if and only if G admits a homomor-

phism to H2.

Proof. Let G be a digraph. If G admits a homomorphism to H2, then by Theorem

6.9 we have directly −→χi(G) ≤ 3, as H2 is a subgraph of H1 and −→χi(H1) = 3. To show

−→χi(G) ≤ 3 implies homomorphism to H2, we show −→χi(G) ≤ 3 implies homomorphism

to H1.

Let g be an oriented incidence colouring of G that uses at most 3 colours. Con-

struct the mapping f : V (G)→ V (H1) as follows.

• For all s ∈ V (G) such that d−(s) = 0, let f(s) = u.

• For all t ∈ V (G) such that d+(t) = 0, let f(t) = v.

• For all x ∈ V (G) such that there exist wx, xy ∈ E(G), let f(x) be the unique

vertex h ∈ H1 \ {u, v} such that for all h1h ∈ E(H1), c(h1h, h) = g(wx, x) and

for all hh2 ∈ E(H1); let c(h, hh2) = g(x, xy).

It can be checked f : G→ H1. Since H1 → H2 we have G→ H2.

Corollary 6.45. If G is an oriented graph with −→χi(G) ≤ 3, then χo(G) ≤ 5.
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Figure 6.10: The oriented graphs, H1 and H2, used in the proof of Theorem 6.44.
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x1

x2

x3

Figure 6.11: An outerplanar graph that requires 4 colours in an oriented incidence
colouring.

We note here this bound is tight – H1 has oriented incidence chromatic number 3

and oriented chromatic number 5.

These results allow us to find the oriented incidence chromatic number of oriented

outerplanar graphs.

Corollary 6.46. The family of oriented outerplanar graphs has oriented incidence

chromatic number 4.

Proof. Consider the oriented graph, G, shown in Figure 6.11. It is outerplanar and

so its underlying simple graph has chromatic number at most 3. By Theorem 6.14

and Table 6.1, −→χi(G) ≤ 4.

To show −→χi(G) = 4 we show G does not admit a homomorphism to H2. Consider

the vertices labelled x1, x2, x3 in Figure 6.11. Each of these vertices has positive in-

and out-degree, and so if G admits a homomorphism to H2, then these three vertices

must map to the directed 3−cycle. However these vertices form a transitive triple.

Therefore G does not admit a homomorphism to H2. This gives that the family of

oriented outerplanar graphs has oriented incidence chromatic number at least 4.

Given there is an oriented graph that is a universal target for all digraphs that

have oriented incidence chromatic number at most 3 it is natural to wonder if there
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is an oriented graph that is a universal target for all digraphs that have oriented

chromatic number at most k, for each k. This turns out not to be the case.

Theorem 6.47. For all k > 3, there is no finite oriented graph G such that every

oriented graph with oriented incidence chromatic number no more than k admits a

homomorphism to G.

Proof. Consider the family of oriented bipartite graphs. Every oriented bipartite

graph has an oriented incidence colouring using at most 4 colours, but the oriented

chromatic number of the family of oriented bipartite graphs is unbounded [49]. This

implies there is no finite oriented graph that is a universal target for the family of

oriented bipartite graphs.

Definition 6.8. Let G be a digraph. Define the directed line graph of G, denoted

−→
L (G), to be the digraph with the following vertex and arc sets.

• V (
−→
L (G)) = {xuv|uv ∈ E(G)}, and

• E(
−→
L (G)) = {xuvxvw|uv, vw ∈ E(G)}.

Informally, the directed line graph of a digraph G has as its vertex set the arc

set of G and has an arc e1e2 whenever the head of e1 is incident with the tail of e2.

We note the directed line graph has been used in the study of the oriented chromatic

index [42].

Using the directed line graph we build a homomorphism model of oriented inci-

dence colouring. To do this we first define a digraph that will be the target for a

homomorphism from a directed line graph. We call this graph Γk (k > 1), and define

it as follows.

• V (Γk) = {(a, b)|a, b ∈ {1, 2, . . . k}, a 6= b}, and
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• E(Γk) = {((a, b)(c, d)) |a 6= c, b 6= c, d}.

Theorem 6.48. −→χi(G) ≤ k if and only if
−→
L (G)→ Γk.

Proof. Let G be a digraph and assume −→χi(G) ≤ k. Let c be an oriented incidence

colouring of G using at most k colours. Using c we construct a homomorphism

−→
L (G)→ Γk. We first define a map between the vertices of

−→
L (G) and the vertices of

Γk and then show it is a homomorphism. Let φ : V (
−→
L (G))→ V (Γk) be defined by

• φ(xuv) = (c(u, uv), c(uv, v)).

Since c uses at most k colours and is an oriented incidence colouring, we see

(c(u, uv), c(uv, v)) ∈ V (Γk). To show φ is a homomorphism consider the image of an

arc xuvxvw under φ.

φ(xuv)φ(xvw) = ((c(u, uv), c(uv, v)), (c(v, vw), c(vw,w)))

Since c is an oriented incidence colouring, it must be c(u, uv) 6= c(v, vw), c(uv, v) 6=

c(v, vw), and c(uv, v) 6= c(vw,w). Therefore

((c(u, uv), c(uv, v)), c(v, vw), c(vw,w))

is an arc of Γk and so φ is a homomorphism. Therefore if−→χi(G) ≤ k, then
−→
L (G)→ Γk.

To prove the opposite direction, let φ :
−→
L (G) → Γk. Using this homomorphism

construct an oriented incidence colouring as follows.

• If φ(xuv) = (a, b), then let c(u, uv) = a and c(uv, v) = b.

If c is not an oriented incidence colouring, then there must be a pair of adjacent

incidences of G that receive the same colour.
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Case I: c(u, uv) = c(uv, v). Assume φ(xuv) = (a, b). Since a 6= b, it must be

c(u, uv) 6= c(uv, v).

Case II: c(u, uv) = c(v, vw). Assume φ(xuv) = (a, b) and φ(xvw) = (c, d). Since φ

is a homomorphism, the image of the arc xuvxvw is an arc of Γk. Therefore a 6= c and

so it must be c(u, uv) 6= c(v, vw).

Case III: c(uv, v) = c(v, vw). Assume φ(xuv) = (a, b) and φ(xvw) = (c, d). Since

φ is a homomorphism, the image of the arc xuvxvw is an arc of Γk. Therefore b 6= c

and so it must be c(uv, v) 6= c(v, vw).

Case IV: c(uv, v) = c(vw,w). Assume φ(xuv) = (a, b) and φ(xvw) = (c, d). Since

φ is a homomorphism, the image of the arc xuvxvw is an arc of Γk. Therefore b 6= d

and so it must be c(uv, v) 6= c(vw,w).

Since no pair of adjacent incidences receive the same colour, c is an oriented

incidence colouring of G using at most k colours.

For the case k = 3, we observe Γk is the disjoint union of two directed 3−cycles.

Proposition 6.49. If G is a digraph, then −→χi(G) ≤ 3 if and only if
−→
L (G) → C3,

where C3 is the directed cycle on 3 vertices.

6.4 Conclusions and Future Directions

In the study of oriented incidence colourings of digraphs, many open problems and

areas of enquiry remain. One open area is the construction of universal targets for

digraphs with given oriented incidence chromatic number. For digraphs with ori-

ented incidence chromatic number 3 there is a complete characterisation. Digraphs

with oriented incidence chromatic number at most 3 are necessarily oriented graphs,

and the universal target for this family is an oriented graph. For digraphs with ori-

ented incidence chromatic number at least 4, observe that such digraphs may contain
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2−cycles. And so any universal target for this family of digraphs necessarily contains

2−cycles.

The definition of oriented colouring enforces that if there is an arc with its tail

coloured i and its head coloured j, then there is no arc with its tail coloured j

and its head coloured i. To enforce this constraint with respect to the colours of

the incidences would not drastically change the analysis given above. Undoubtedly

this extra constraint would increase the oriented incidence chromatic number, but

the methods used above may still be utilized. The homomorphism model utilizing

the chromatic number would still exist, however the logarithmic upper bound for a

colouring of a symmetric complete graph may not hold.
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Glossary of Colouring Parameters

χj,k (j, k)−chromatic number 7

χo oriented chromatic number 13

χ2 chromatic number (of a 2−edge coloured graph) 10

χk chromatic number (of a k−edge coloured graph) 10

χ2d 2−dipath chromatic number 50

χkd k−dipath chromatic number 50

χs simple chromatic number (of an oriented graph) 72

χ2s simple 2−dipath chromatic number 83

χa2 alternating 2−path chromatic number (or a 2−edge coloured graph) 98

χs2 simple chromatic number (of a 2−edge coloured graph) 112

χsk simple chromatic number (of a k−edge coloured graph) 112

χi incidence chromatic number 125

−→χi oriented incidence chromatic number 130
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