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Titre : Sur divers problemes de coloration de graphes.
Résumé Dans cette these, nous étudions des problemes de coloration de graphe. Nous
nous intéressons a deux familles de colorations.

La premieére consiste a colorer des graphes, appelés graphes signés, modélisant des
relations sociales. Ceux-ci disposent de deux types d’arétes : les arétes positives pour
représenter 'amitié et les arétes négatives pour 'animosité. Nous pouvons colorer des
graphes signés a travers la notion d’homomorphisme : le nombre chromatique d’un graphe
signé (G, o) est alors le nombre minimum de sommets d'un graphe signé (H, ) tel que
(G, 0) admet un homomorphisme vers (H, 7). Nous étudions la complexité des homomor-
phismes de graphes signés quand la cible est fixée et quand 'entrée peut étre modifiée, et
obtenons des dichotomies P/NP-complet et FPT /W[1]-difficile. Nous obtenons des bornes
supérieures sur le nombre chromatique d’un graphe signé quand le graphe a peu de cy-
cles. Enfin, nous étudions les relations entre les homomorphismes de graphes signés et le
produit Cartésien des graphes signés.

La deuxiéme famille de coloration consiste a colorer les arétes au lieu des sommets
en respectant différents criteres. Nous étudions quatre types de colorations d’arétes : la
coloration d’arétes « packing », la coloration d’arétes injective, la coloration AVD et les
1-2-3-étiquetages. La coloration d’arétes « packing » est une forme de coloration propre
d’arétes ou chaque couleur a ses propres regles de conflits, par exemple, la couleur 1
pourrait obéir aux regles de la coloration propre d’arétes tandis que la couleur 2 obéirait
aux regles de la coloration forte d’arétes. Nous étudions cette forme de coloration sur
les graphes subcubiques en donnant des bornes supérieures sur le nombre de couleurs
nécessaires pour colorer ces graphes. Une coloration d’arétes injective est une coloration
d’arétes telle que pour chaque chemin de longueur 3, les deux arétes aux extrémités du
chemin n’ont pas la méme couleur. Nous déterminons la complexité de la coloration
d’arétes injective sur plusieurs classes de graphes. Pour les colorations AVD, c’est-a-dire
les colorations propres d’arétes ou les sommets adjacents sont incidents a des ensembles
de couleurs différents, nous obtenons des bornes supérieures sur le nombre de couleurs
requises pour colorer le graphe quand le degré maximum du graphe est significativement
plus grand que son degré moyen maximum, ou quand le graphe est planaire et a un
degré maximum supérieur ou égal a 12. Finalement, nous prouvons la 1-2-3 Conjecture
multiplicative : pour tout graphe connexe (non réduit a une aréte), on peut colorer ses
arétes avec les couleurs 1, 2 et 3 de telle maniere que la coloration (de sommets) obtenue
en associant a un sommet le produit des couleurs de ses arétes incidentes est propre.
Mots-clés graphe, coloration, graphe signé, homomorphisme, coloration d’arétes.

Title: On various graph coloring problems.
Abstract In this thesis, we study some graph coloring problems. We are interested in
two families of colorings.

The first one consists in coloring graphs, called signed graphs, modeling social links.
These signed graphs dispose of two types of edges: positive edges to represent friendship
and negative edges for animosity. Coloring signed graphs is done through the notion of
homomorphism: the chromatic number of a signed graph (G, o) is the smallest order of a
signed graph (H, ) to which (G, ¢) admits a homomorphism. We study the complexity
of homomorphisms of signed graphs when the target graph is fixed and when the input
can be modified, giving P/NP-complete dichotomies and FPT /W[1]-hard dichotomies. We
also present bounds on the chromatic number of signed graphs when the input graph has
few cycles. Finally, we study the relationship between homomorphisms of signed graphs
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and the Cartesian product of signed graphs.

The second family of colorings consists in coloring edges, instead of vertices, accord-
ing to some constraints. We study four kinds of edge-colorings notions: packing edge-
colorings, injective edge-colorings, AVD colorings and 1-2-3-labellings. Packing edge-
coloring is a form of proper edge-coloring where each color has its own conflict rule, for
example, color 1 may behave according to the rules of proper edge-colorings while color 2
behave according to the rules of strong edge-colorings. We study packing edge-coloring
on subcubic graphs and provide bounds on the number of colors necessary to color the
graphs. An injective edge-coloring is an edge-coloring where for any path of length 3,
the two non-internal edges of the path receive different colors. We determine the com-
plexity of injective edge-coloring for some classes of graphs. For AVD colorings, i.e. a
proper edge-coloring where adjacent vertices are incident with different sets of colors, we
obtain bounds on the number of colors required to color the graph when the graph has
its maximum degree significantly greater than its maximum average degree and when the
graph is planar and has maximum degree at least 12. Finally, we prove the Multiplica-
tive 1-2-3 Conjecture, i.e. that every connected graph (which is not just an edge) can be
edge-labelled with labels 1, 2 and 3 so that the coloring of GG, obtained by associating
with each vertex the product of the labels on edges incident with u, is proper.
Keywords graph, coloring, signed graph, homomorphism, edge-coloring.
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Introduction (en francais)

Introduction (en frangais)

Le but de cette these est d’étudier certains problemes de coloration de graphe. Un graphe
(fini) est un objet mathématique composé d’un nombre fini de sommets et d'un nombre
fini d’arétes reliant des paires de sommets. Les graphes sont un outil d’abstraction utilisé
dans plusieurs domaines, on pourra par exemple citer : les réseaux routiers, les réseaux
de télécommunications, I'analyse de communautés, les bases de données, I'analyse ADN...

L’une des applications des graphes se trouve en psychologie sociale. Cette derniére
étudie la dynamique des relations entre diverses entités. Par exemple, les graphes peuvent
étre utilisés pour décrire les relations entre les pays au cours de la premiere guerre mondiale
(voir [7]). Pour cela, on peut utiliser un type de graphe avec deux sortes d’arétes, celles-ci
étant soit positives soit négatives, les arétes positives représentant ’amitié et les arétes
négatives représentant ’animosité. On appelle un tel graphe un graphe signé et on le note
généralement sous la forme d’un couple (G, o). Les graphes signés ont été introduits par
Harary en 1953 [92].

Supposons que nous avons trois pays (ou personnes) A, B et C, chacun ayant des
relations avec les deux autres. Certains choix pour les relations forment des situations
stables alors que d’autres sont instables. Cela se généralise bien entendu avec plus de trois
pays (voir [7]). L’étude de ces relations nous permet de déterminer si une configuration est
stable ou instable. Les quatre situations possibles entre ces trois pays sont représentées
sur la Figure 1.

(b) (d)

Figure 1: Les quatre relations possibles entre A, B et C. Les arétes positives sont dessinées
avec des traits pleins bleus et les arétes négatives sont dessinées avec des pointillés rouges.

Analysons cela en détail.

o Dans le premier cas, les trois pays sont alliés (voir Figure 1(a)). Dans ce cas, la
situation est stable. Cela ne signifie pas que les relations entre les pays ne peuvent
pas se détériorer mais qu'une détérioration des relations proviendrait de facteurs
extérieurs et ne saurait étre due a des instabilités du graphe. Il y a beaucoup
d’exemples de telles situations stables. On peut par exemple évoquer 1'Union Eu-
ropéenne ou chaque pays membre est allié aux autres.

o Dans le deuxieéme cas, deux pays, disons A et C', sont alliés contre le troisieme (voir
Figure 1(b)). Cette situation est elle aussi stable. C’est I’exemple classique du bloc
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Introduction (en frangais)

contre bloc en géopolitique. L’alliance entre le Rohan et le Gondor contre les armées
de Sauron dans Le Seigneur des anneaux : Le Retour du roi en est un exemple.

o Le troisieme cas se déroule quand deux pays, disons A et ', sont ennemis alors que
le troisieme, B, est allié avec chacun d’entre eux (voir Figure 1(c)). Nous avons ici
notre premiere situation instable : B est forcé de choisir entre son alliance avec A
et son alliance avec C. Il est aussi possible que A et C se réconcilient grace a leur
ami commun. Dans tous les cas, la situation est condamnée a changer a cause des
relations entre A, B et C'. Par exemple, dans Star Wars, épisode III : La Revanche
des Sith, Anakin a été forcé de choisir entre Palpatine et 'ordre des Jedi.

o Enfin, le quatriéme cas se produit quand les trois pays sont ennemis (voir Fig-
ure 1(d)). Cette situation est elle aussi instable. En effet, comme dit le dicton :
« 'ennemi de mon ennemi est mon ami ». Il est alors tres probable que deux des
trois pays s’allient contre le troisieme. Par exemple, dans Game of Thrones, la
Garde de Nuit, le Peuple libre et les Marcheurs Blancs étaient en guerre les uns
contre les autres jusqu’a ce que les deux premiers s’allient contre le troisieme pour
survivre.

Ces exemples, présentés avec trois pays, peuvent se généraliser a un nombre arbitraire
d’intervenants. On peut aussi vouloir considérer le cas ou deux pays n’ont pas de relations
(bonnes ou mauvaises). Pour représenter ce cas, on préfére n’avoir aucune aréte entre A
et B dans le graphe signé.

La notion de « stabilité », formalisée par Harary [92] sous le nom de « balance »
(équilibre), nous permet d’étudier les graphes signés. Il est intéressant de pouvoir com-
parer les graphes signés, c’est-a-dire vérifier si deux graphes signés présentent les méme
structures stables et instables. De la découle la notion d’homomorphisme de graphes
signés. Informellement, il y a un homomorphisme entre deux graphes signés (G, o) et
(H,m) si on peut envoyer les cycles stables (respectivement instables) de (G, o) vers des
cycles stables (respectivement instables) de (H, ). Appliquer des homomorphismes nous
permet de catégoriser les sommets, c’est-a-dire regrouper les sommets d’un graphe signé
qui se comportent d’'une maniere similaire.

Les homomorphismes de graphes signés (et de certaines notions dérivées) est 1'objet
d’étude de la premiere partie de cette these.

La seconde partie de cette these est dédiée aux colorations d’arétes. L’objectif est de
colorer les arétes d'un graphe de telle maniere que deux arétes adjacentes ne recoivent
pas la méme couleur. Ce type de coloration prend son origine dans des problemes de
télécommunications : les sommets représentent des tours radio, les arétes des canaux de
communication entre les tours et les couleurs représentent les fréquences utilisées pour
communiquer. Dans ce contexte, les contraintes sur les couleurs des arétes adjacentes
peuvent étre interprétées comme une condition nécessaire pour éviter les interférences
entre deux canaux de communication autour d’une tour radio. Le célebre Théoréme de
Vizing [184] nous assure que A(G) + 1 couleurs suffisent pour colorer n’importe quel
graphe G, ou A(G) représente le degré maximum du graphe G (i.e. le maximum, pris sur
tous les sommets v de G, du nombre d’arétes incidentes a u).

Nous sommes intéressé par plusieurs généralisations de ce probleme. Chaque chapitre
de cette seconde partie est consacré a une notion particuliere de coloration d’arétes. Ces
généralisations sont de deux types : soit les conditions interdisant que deux arétes aient
la méme couleur sont modifiées; soit on souhaite que la coloration d’arétes nous apporte
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Introduction (en francais)

des propriétés plus fortes. Le premier type de généralisation est plutot simple a décrire :
on augmente juste le nombre de contraintes entre les couleurs d’arétes. Par exemple, si on
impose que deux arétes a distance au plus 2 aient des couleurs différentes alors on parle
de coloration forte d’arétes. Dans la deuxieme famille de colorations que nous étudions,
chaque sommet du graphe est associé a une couleur calculée a partir des couleurs de ses
arétes incidentes. Le but est de colorer les arétes de telle maniere que la coloration des
sommets soit propre (i.e. les sommets adjacents regoivent des couleurs différentes). Dans
ce cas, on parle de colorations distinguantes.

Organisation du manuscrit

Le chapitre 1 contient des pré-requis. La plupart des concepts introduits dans ce chapitre
sont nécessaires a la compréhension de cette these méme s’ils n’en sont pas les objets
d’étude. En particulier, plusieurs définitions classiques de théorie des graphes et de com-
plexité y sont présentées.

La premiere partie de cette these « Partie I: Graphes signés » compte quatre chapitres.

Le Chapitre 2 présente les graphes signés et formalise plusieurs notions qui leur sont
associées. La plupart des définitions sur les graphes signés sont données dans ce chapitre.

Dans le Chapitre 3, nous étudions la complexité et la complexité paramétrée de cer-
tains problemes concernant les homomorphismes de graphes signés. En particulier, nous
répondons a des questions du type : « Combien de sommets/arétes doit-on enlever a
(G, o) pour qu’il admette un homomorphisme vers (H,7) ». Nous nous intéressons tout
particulierement aux cas ou le graphe signé (H, ) est petit et fixé. Dans ces cas-la,
admettre un homomorphisme vers (H, ) peut souvent étre traduit en une propriété sur
le graphe signé donné en entrée. De plus, nous considérons ces questions pour deux
types d’homomorphismes de graphes signés différents et nous prouvons des dichotomies
de complexité dans chacun des cas.

Le Chapitre 4 est consacré a 1’étude du lien entre le nombre chromatique d’un graphe
signé et son nombre de cycles a travers un parametre appelé le nombre cyclomatique du
graphe. Le nombre cyclomatique d’'un graphe G est égal au nombre d’arétes qu’il faut
retirer a G pour enlever tous les cycles du graphe. Nous donnons des bornes supérieures
sur diverses notions de nombres chromatiques d’un graphe signé (en incluant des versions
liste), qui sont linéaires en le nombre cyclomatique du graphe.

Dans le Chapitre 5, nous étudions I'impact du produit Cartésien sur les graphes signés.
Le produit Cartésien des graphes signés est une opération qui prend en entrée deux (ou
plusieurs) graphes signés et en crée un nouveau qui est le produit de chacun des facteurs
donnés en entrée. Comme n’importe quel produit, nous pouvons nous intéresser a ses
propriétés algébriques, et en particulier nous pouvons nous demander si I'on peut écrire
n’importe quel graphe signé sous la forme d’un unique produit de facteurs premiers (i.e.
des facteurs qui ne sont pas eux-mémes le produit de graphes signés plus petits). Nous
démontrons non seulement un théoreme de factorisation unique en facteurs premiers mais
nous donnons aussi un algorithme permettant de trouver cette factorisation en temps
linéaire. Nous étudions aussi les liens entre le produit Cartésien et le nombre chromatique
des graphes signés. Nous calculons le nombre chromatique de certains produits et nous
en déduisons des bornes supérieures sur le nombre chromatique d’'un produit en fonction
des nombres chromatiques de ses facteurs.
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Introduction (en frangais)

La deuxieme partie de cette these « Partie II: Coloration d’aréte avec contraintes »
compte cing chapitres.

Le premier chapitre, Chapitre 6, contient une breve introduction aux différentes no-
tions de coloration d’arétes qui sont étudiées dans les chapitres suivants.

Dans le Chapitre 7, nous étudions un compromis entre la coloration propre d’arétes
et la coloration forte d’arétes sur les graphes subcubiques. Etant donné un entier ¢,
nous donnons une borne supérieure sur le nombre de couleurs requis pour avoir une
coloration propre d’arétes d’un graphe subcubique telle que deux arétes a distance au
plus 2 ayant la méme couleur soient colorées par 'une des ¢t premieres couleurs. Les ¢
premieres couleurs fonctionnent selon les régles de la coloration propre d’arétes alors que
les autres fonctionnent selon les regles de la coloration forte d’arétes.

Le Chapitre 8 présente notre étude de la complexité de la coloration injective d’arétes
pour diverses classes de graphes. Une coloration injective d’arétes est une coloration
d’arétes ou pour chaque chemin wvwz du graphe, les arétes uv et wx ne regoivent pas la
méme couleur. Nous montrons que calculer le nombre minimum de couleurs nécessaires
pour avoir une coloration injective d’arétes est un probleme NP-complet quand le nombre
de couleurs est petit (3 ou 4) sur des classes de graphes peu denses. Nous montrons aussi

que O(y/A(G)) couleurs suffisent pour que le probleme soit NP-complet. Nous donnons
aussi un algorithme FPT pour tester si ¢ couleurs suffisent ou non pour colorer un graphe,
paramétré par la largeur d’arborescence du graphe.

Dans le Chapitre 9, nous prouvons que A(G) + 1 couleurs suffisent pour avoir une
coloration AVD d’un graphe sous différentes conditions. Une coloration AVD est une
coloration propre d’arétes telle que deux sommets adjacents n’aient pas le méme ensemble
de couleurs sur leurs arétes incidentes. Nous prouvons ce résultat quand le degré maximum
du graphe est significativement plus grand que son degré moyen maximum, ou quand le
graphe est planaire et a un degré maximum supérieur ou égal a 12. Ces deux résultats
reposent sur deux arguments clés : un algorithme de recoloration qui permet d’enlever
des petits sommets voisins et un argument de dénombrement qui permet d’enlever les
sommets avec beaucoup de petits voisins.

Finalement, dans le Chapitre 10, nous prouvons la 1-2-3 Conjecture multiplicative :
pour tout graphe connexe (non réduit & une aréte), on peut colorer ses arétes avec les
couleurs 1, 2 et 3 de telle maniere que la coloration (de sommets) obtenue en associant
a un sommet le produit des couleurs de ses arétes incidentes est propre. Nous proposons
aussi une conjecture plus faible dans le cas ou nous n’avons que deux couleurs pour les
arétes. Enfin, nous étudions la version liste de ce probleme dans le cas général ou pour
certaines classes de graphes particulieres.
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Introduction (in english)

Introduction (in English)

The goal of this thesis is to study some graph coloring problems. A graph is a mathematical
structure composed of a finite number of vertices and a finite number of edges joining pairs
of vertices. Graphs are an abstract representation which can be used in diverse domains,
for example: road networks, communication networks, communities analysis, databases,
DNA analysis, etc.

An interesting use of graphs is in the domain of social psychology which studies the
dynamic of relationships between entities. For example, in [7], they use graphs to describe
the relationships between countries involved in World War 1. For this they use a graph
model where edges can be of two types: positive and negative. Positive edges represent
friendship while negative edges represent enmity. Such a graph is called a signed graph
and is generally noted as an ordered pair (G, o). Signed graphs were introduced by Harary
in [92].

The main ideas behind this concept are as follows. Suppose that you have three
countries (or persons) A, B and C, having relationships with each other. Then some
situations can be characterized as stable while others can be characterized as unstable.
This of course generalizes with more than three countries (see [7]). Figure 2 represents
the four possible situations between our three countries.

(d)

Figure 2: The four possible relationship situations between A, B and C. Positive edges are
drawn with full blue lines while negative edges are drawn with dashed red lines.

Let us go into more details.

» The first possible case is when the three countries are all friends (See Figure 2(a)).
In this case, the situation is stable. This does not imply that it cannot change
but that a change in the relationships does not originate from instabilities in the
graph. Such examples of this stable relationship are numerous, for example, one can
consider the European Union where every member country is allied with the others.

o The second possible case is when the two countries, say A and C| are allied against
the third one (See Figure 2(b)). In this case, the situation is also stable. This is
the classical block versus block situation in geopolitics. For example, consider the
alliance between the Rohan and the Gondor against the armies of Sauron in The
Lord of the Rings: The Return of the King.
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e The third possible case is when two countries, say A and C', are enemies while
the third one, B, is friend with both of them (See Figure 2(c)). This situation is
unstable: B is forced to choose between is friendship with A and his friendship with
C. Note that it is also possible that A and C reconciliate through their common
friend. In all cases, this situation is bound to change because of the relationships
between A, B and C. For example, in Star Wars: Episode III — Revenge of the Sith,
Anakin had to choose between Palpatine and the Jedi Order.

o The fourth possible case is when all three countries are enemies (See Figure 2(d)).
This situation is also unstable, as the saying goes: “the enemy of my enemy is my
friend”. Hence it is likely that two of the three participants will form an alliance
against the third. For example, in Game of Thrones and in A Song of Ice and Fire,
the Night’s Watch, the Free Folk and the White Walkers were in a three way war
until the two former decided to ally themselves against the latter one in order to
survive.

These examples are presented with only three vertices but can be generalized to a
greater number of vertices. More generally, it is also possible to consider that A and B
do not have a relationship of any kind: in this case, no edge is drawn between A and B
on the signed graph.

The notion of “stability” formalized by Harary [92] under the name of balanced allows
us to study signed graphs. It is interesting to be able to compare signed graphs, to see
whether two signed graphs have similar stable and unstable situations. From this follows
the notion of homomorphisms. Informally, there is a homomorphism between two signed
graphs (G,o) and (H, ) if we can transfer stable (resp. unstable) cycles of (G,o) to
stable (resp. unstable) cycles of (H, 7). Applying homomorphisms is also a way to do
some clustering on the vertices of a signed graph, that is to say to find vertices which
behave in a similar fashion.

The study of homomorphisms of signed graphs (and of some derived notions) is the
focus of the first part of this thesis.

The second part of this thesis is devoted to edge-coloring of graphs. The goal here
is quite simple to describe. We want to color each edge of the graph so that no two
adjacent edges receive the same color. This problem takes root in telecommunications:
the vertices are radio towers, edges are communication channels between the towers and
the colors represent the frequencies used to communicate. In this context, the constraint
on the colors can be interpreted as a necessary condition to avoid interference between
two communication channels around a tower. A famous theorem by Vizing [184] shows
that A(G)+ 1 colors are sufficient to properly edge-color any graph G, where A(G) is the
maximum degree of the graph G (i.e. the maximum, taken over every vertex u of G, of
the number of edges incident with w).

We are interested into several generalizations of this problem. Each chapter of the
second part is devoted to a particular notion of edge-coloring. These generalizations are
of two main types: either we change the condition that forbids two edges to be assigned the
same color; or we want to obtain stronger properties on the edge-coloring. The first type
of generalization is quite simple to describe: we just increase the number of constraints on
the edges. For example, if any two edges at distance 2 must receive different colors, then
we say our coloring is a strong edge-coloring of GG. In the second family of generalizations,
each vertex is associated with a color computed from the edge-colors of its incident edges.
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The goal is to make this vertex coloring proper (i.e. no two adjacent vertices receive the
same color). We talk about distinguishing colorings.

Layout of the manuscript

Chapter 1 contains some prerequisite notions. Most concepts introduced in this chapter
are not the focal point of this thesis but are necessary to its understanding. In particular,
many classical graph and complexity definitions are introduced in this chapter.

The first part “Part I: Signed graphs” comprises four chapters.

Chapter 2 presents signed graphs in a more complete and formal setting. Most defi-
nitions on signed graphs are given in this chapter.

Chapter 3 contains our study of the complexity and parameterized complexity of some
problems concerning homomorphisms of signed graphs. In particular we answer questions
such as: “how many vertices/edges do we need to remove from (G, o) so that it admits a
homomorphism to (H,7)”. We mainly focuses on cases where the signed graph (H,) is
fixed and is quite small. In these cases, admitting a homomorphism to (H, 7) can often be
translated to a simple property on the input signed graph. Moreover, we consider these
questions for two types of homomorphisms of signed graphs and prove dichotomies for
the complexity in each considered case.

In Chapter 4, we study the relationship between the chromatic number of a signed
graph and its number of cycles through a parameter called the cyclomatic number of a
graph. The cyclomatic number of a graph G is simply the number of edges that need to
be removed from G so that no cycle remains in G. We give upper bounds on multiple
notions of the chromatic number of a signed graph (including some list versions), which
are linear in the cyclomatic number of the signed graph.

Chapter 5 contains our study of the impact of the Cartesian product on signed graphs.
The Cartesian product of signed graphs is a product operation: it takes two (or more)
signed graphs and produce a new signed graph which is the product of each of the factors.
Like any product, we can question its algebraic behavior, and in particular whether we
can write any signed graph as a product of prime signed graphs (in the sense that these
prime signed graphs cannot be written as the product of smaller signed graphs). We
not only provide a unique prime factorization theorem for signed graphs but also give an
algorithm finding a prime decomposition in linear time. We also study the relationship
between the Cartesian product and the chromatic number of signed graphs. We study the
chromatic number of some products and derive upper bounds on the chromatic number
of a product depending on the chromatic numbers of each of its factors.

The second part “Part II: Edge-coloring with constraints” comprises five chapters.

Chapter 6 gives a brief introduction to the different notions of edge-coloring that are
studied in the following chapters.

In Chapter 7, we study a compromise between two types of edge-coloring on subcubic
graphs. Given a number ¢, we give an upper bound on the number of colors required
to properly edge-color a subcubic graph so that, except for the first ¢ colors, any pair of
edges with the same color are at distance at least 3 in the graph. This coloring notion
is a mixture of proper edge-coloring and strong edge-coloring. Indeed, the first ¢ colors
behave according to the rules of proper edge-coloring while the remaining colors behave
according to the rules of strong edge-coloring.
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Chapter 8 presents our study of the complexity of injective edge-coloring on various
classes of graphs. An injective edge-coloring is an edge-coloring where for any path uvwzx
of the graph, the edges uv and wx do not have the same color. We show NP-completeness
when the number of colors is small (3 or 4) on some sparse classes of graph. We also

show that O(y/A(G)) colors are sufficient for the problem to be NP-complete. We also
provide an FPT algorithm for testing whether ¢ colors are sufficient or not for some graph,
parameterized by the treewidth of the input graph.

In Chapter 9, we prove that A(G) + 1 colors are sufficient in order to have an adja-
cent vertex distinguishing (AVD) coloring a graph under sufficient conditions. An AVD
coloring is a proper edge-coloring for which no two adjacent vertices have the same set of
colors on their incident edges. We prove this result when the maximum degree A(G) of
a graph is significantly greater than its maximum average degree and when the graph is
planar and has maximum degree at least 12. Both results rely on two clever arguments:
a recoloring algorithm which allows us to remove small adjacent vertices and a counting
argument which allows to remove vertices with many small neighbors.

Finally in Chapter 10, we prove the Multiplicative 1-2-3 Conjecture, i.e. that every
connected graph (which is not just an edge) can be edge-colored with colors 1, 2 and 3 so
that the coloring of GG, obtained by associating with each vertex the product of the colors
on edges incident with u, is proper. We also propose a weaker conjecture when only the
labels 1 and 2 are available. Finally, we study the list version of the problem for general
graphs and for particular classes of graphs.
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Chapter 1

Preliminaries

This chapter presents general concepts that are necessary to the understanding of this
thesis.

In Section 1.1, we present the core concept of this thesis: graphs. We introduce
notation and present the basic definitions of Graph Theory. We also present some famous
graph parameters and important graph classes.

In Section 1.2, we present the notion of graph coloring. We first focus on vertex
coloring and its links with the notion of homomorphism. We then present other various
ways of coloring a graph.

In Section 1.3, we introduce the fundamental notions of Complexity Theory required
to understand this thesis. We most notably present the notion of NP-completeness and
the notion of parameterized complexity.

Finally, in Section 1.4, we recall some classical algebra concepts. Among the four, this
section is the least central in this thesis but it might shed some light on some particular
sections of the following chapters.
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1.1 Graphs: definitions, notation

We generally follow terminology and notation of [191].

An undirected graph G is a triplet (V(G), E(G), ) where V(G) and E(G) are two
disjoint sets, the set of vertices and the set of edges respectively. Here ¢ is an incidence
relation which associate to each edge two incident vertices called its endpoints. In this
thesis, the term “graph” refers to an undirected graph.

A loop in a graph G is an edge whose endpoints are equal. We often consider graphs
without loops, called loopless graphs. If there are edges with the same endpoints v and v
in a graph G, we say that uv is a multi-edge or that the edges between v and v are multiple
edges. The multiplicity of a multi-edge uv is the number of edges incident with both
and v. An undirected graph is simple if it does not have loops nor multiple edges. To
avoid confusion, we use the term multi-graph for a graph which can have multiple edges.
Note that most graphs in this thesis are simple.

For simplicity, we often “forget” the incidence relation of a graph when we have no
multiple edges. An edge e incident with u and v is treated as a pair {u, v}, denoted uv
for concision, where u and v are two vertices of G. An undirected graph is then noted
(V(GQ), E(G)) where E(G) C V(G)?. Note that we often abuse the notation (V(G), E(G))
to also refer to multi-graphs, in this case, the incidence relation is implicit.

The order of G is |V (G)| and its size is |[E(G)|. A graph with no edges is an empty
graph. The graph with no vertices nor edges is the null graph G.

Two vertices u and v of a graph G are adjacent when wv is an edge of G. Two
edges e and €’ of a graph G are adjacent when e and e’ have a common endpoint. The
neighborhood Ng(u) of a vertex w in the graph G is the set of vertices adjacent to u in G.
When the graph G is clear from the context, we note N(u) for the neighborhood of u
in GG. A vertex with no neighbors is an isolated vertex.

In a loopless graph, the degree of a vertex u in G, denoted dg(u) or simply d(u), is
the number of edges incident with u. If the graph is simple then the degree of u is also
the number of neighbors of u, [N (u)|. When loops are allowed, the degree of a vertex u is
the number of times u is an endpoint of an edge of G. In other words, a loop count twice
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for the degree of a vertex. A k-vertex (resp. k™ -vertex , resp. kT -vertex) of G is a vertex
of degree k (resp. at most k, resp. at least k). A k-neighbor (resp. k~-neighbor , resp.
kT -neighbor) of a vertex u is a k-vertex (resp. k~-vertex , resp. kT-vertex) belonging

to N(u).

Let us see an example. Let P be the Petersen graph drawn in Figure 1.1. The graph P
has order 10 and size 15. The neighborhood of the vertex ay is the set {bg, as,as}. In this
graph all vertices have degree 3.

Figure 1.1: A simple graph: the Petersen graph.

An isomorphism from G to H is a bijection ¢ from V(G) to V(H) such that for every
vertices z and y of G, zy € E(G) if and only if p(z)p(y) € E(H). In this case, we
note G = H. An automorphism of G is an isomorphism from G to G. In general, a graph
can have multiple automorphisms. In the rest of this thesis, we consider graphs up to
isomorphism (see also Section 1.4.2).

1.1.1 Other types of graphs

There are multiple ways to define a graph. These different varieties of graphs are all
dependant on the definition of E(G).

As mentioned before, depending on our definition of the set of edges, we can allow
loops and/or multiple edges in our graphs. See Figure 1.2(a) for an example of graph
with loops and multiple edges.

(a) A graph with loops and (b) A directed graph. (c) An oriented graph.
multiple edges.

Figure 1.2: Different varieties of graphs.

Another type of graphs is the notion of directed graphs, where E(G) is replaced
by A(G), the set of arcs. The set A(G) is the set of ordered pairs (instead of pairs) (u,v)
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where u and v are two vertices. An arc (u,v) can also be noted wb. An oriented graph is
a simple directed graph G with the extra condition that if w6 € A(G) then vt ¢ A(G). In
other terms an oriented graph is a directed graph where each pair of vertices can have at
most one arc between them. Oriented graphs can be obtained from a simple undirected
graph by choosing an orientation for each edge. See Figure 1.2(b) and Figure 1.2(c) for
examples of such graphs. Of course it is possible to combine the notion of directed graphs
with the notion of loops and multi-edges. For a directed graph G, the indegree of a ver-
tex u is the number of arcs of the form o7 in A(G), and the outdegree of a vertex u is the
number of arcs of the form 6 in A(G).

A mized graph G is a triplet (V(G), E(G), A(G)) where V(G) is the set of vertices
of G, E(G) is the set of edges of G and A(G) is the set of arcs of G. Informally, a mixed
graph is a graph with edges and arcs. One can consider such graphs to be simple, in which
case they have no loops and for every two vertices u and v of GG, G does not contain both
the edge uv and the arc ud.
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(a) A 3-edge-colored graph. (b) A (2,2)-mixed graph.

Figure 1.3: Graphs with multiple edge/arc types.

A k-edge-colored graph is a graph G where the set of edges is partitioned into k
sets E1(G), ..., Ex(G). We note such a graph (V(G), E1(G), ..., Ex(G)). The set E;(G)
is the set of edges colored i in G. See Figure 1.3(a) for an example of a 3-edge-colored
graph. Note that we will mainly work with 2-edge-colored graphs in this thesis. By
default, the two colors used in a 2-edge-colored graph will be the color blue and the color
red.

A (m,n)-mized graph is a graph G with m arc types and n edge types. We note such
a graph (V(G), A1(G), ..., An(G), E1(G), ..., E,(G)). The set E;(G) is the set of edges
colored ¢ in G and the set A;(G) is the set of arcs colored j in G. See Figure 1.3(b)
for an example of a (2,2)-mixed graph. Note that a (0, 1)-mixed graph is an undirected
graph, a (1,0)-mixed graph is a directed graph, a (1,1)-mixed graph is a mixed graph
and a (0, k)-mixed graph is a k-edge-colored graph.

1.1.2 Subgraphs and some important subgraphs

In this section, we present the notion of subgraph.

Definition 1.1 (Subgraphs). Let H and G be two graphs. We say that H is a subgraph
of G if and only if V(H) C V(G) and E(H) C E(G). Let X be a subset of vertices of G,
the induced subgraph G[X| of G is the subgraph of G on vertex set X and where, for every
two vertices u and v of X, uv € E(G[X]) if and only if wv € E(G). If H is a subgraph
of G and H # G, then H is a proper subgraph of G.
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The notion of subgraph is important in Graph Theory as it formalizes the notion of
“containing a particular motif”. It also allows us to focus on particular parts of a graph.
See Figure 1.4 for some examples of subgraphs.

(a) A graph G. (b) A (non-induced) subgraph  (c¢) An induced subgraph of G.
of G.

Figure 1.4: A graph (a), and one of its non-induced subgraphs (b) and one of its induced
subgraphs (c).

Note that we can create subgraphs by removing edges and vertices from a graph G.

Definition 1.2 (Deleting vertices and edges). Let G be a graph and S, (resp. S.) be a
subset of vertices (resp. edges) of G. The graph G — S, is the subgraph of G obtained
from G by removing the vertices of .S, and the edges incident with any vertex of S,. The
graph G — S, is the subgraph of G obtained from G by removing the edges of S..

Let us see some important subgraphs that a graph GG can contain.

Definition 1.3 (Complete graph, clique, independent set). The complete graph K, is the
graph of order p such that for every pair of distinct vertices u and v of K, uv is an edge
of K,. If H is a subgraph of G isomorphic to K, then we say that H is clique (of order p)
of G. An independent set of order p in a graph G is a set of p vertices which are pairwise
non-adjacent.

In some sense, a clique is the “opposite” of an independent set, the former is a subgraph
with all possible edges while the later is a subgraph with no edges. This idea can be
formalized with the notion of complement graph.

Definition 1.4 (Complement graph). Let G be a graph. The complement of G is the
graph, denoted G, defined by V(G) = V(G) and for any two distinct vertices u and v
of G, wv € E(G) if and only if uv ¢ E(G). Note that the complement of G is the graph G
itself.

Formally, G has an independent set of order p if and only if G has a clique of order p.
These two notions allow us to define two graph parameters.

Definition 1.5 (clique number, independent number). The cligue number of G, de-
noted w(G), is the order of the largest clique of G. The independence number of G,
denoted «(G), is the order of the largest independent set of G.

Note that a(G) = w(G) for every graph G. See Figure 1.5 for some examples.
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(a) A graph G. (b) Its complementary G. (c) A complete graph of or-
der 4.

Figure 1.5: A graph G with o(G) = 2 and w(G) = 3 (a), its complement G (b) and a complete
graph of order 4 (c).

1.1.3 Walks

Another important substructure in a graph is the notion of walks which allows us to
traverse a graph.

Definition 1.6 (Walk, closed walk). A walk in a graph G is a list s, ..., s, of vertices
of G such that s;s;11 € E(G) for every i in [0,n]. An (s, s,)-walk is a walk whose first
vertex is s and whose last vertex is s,,. More generally, if A and B are two sets of vertices,
then an (A, B)-walk is an (a,b)-walk for some vertices a € A and b € B.

A closed walk is a walk with sg = s,,. An internal vertex of a walk is a vertex of the
walk which is neither the first nor the last vertex of the walk.

The length (number of edges, counted with multiplicity) of a walk W = sq,...,s,
is n, and its order (number of vertices, counted with multiplicity) is n if W is a closed
walk, or n + 1 otherwise. When no confusion is possible, we may write sgs; ... s, for the
sequence Sg, S1, ..., S, of a walk.

Note that a walk in G is not stricto sensu a subgraph, it is a sequence of vertices.
Among walks, paths and cycles play an important role.

Definition 1.7 (Path, cycle). If all vertices of a walk are pairwise distinct, then the walk
is a path. An (sg, s,)-path is a (sg, s, )-walk which is a path. If A and B are two sets of
vertices, then an (A, B)-path is an (a, b)-path for some vertices a € A and b € B. A closed
walk where all vertices are pairwise distinct, except so and s, is a cycle.

We may consider the sequence of vertices s, . . ., s of G which is a path (resp. cycle) as
the subgraph formed by these vertices and the edges of the form s;s,41 for ¢ € [0,k — 1].
The path of order k is noted P;. The cycle of order k is noted Cy. An even cycle (resp.
odd cycle) is a cycle of even length (resp. odd length). A cycle of length 3 is also called a
triangle.

With the notion of cycle, we can define another important graph parameter.

Definition 1.8 (Girth). The girth of a graph G is the length of a smallest induced cycle
of G.

See Figure 1.6 for examples of a walk, a closed walk, a path and a cycle in graphs of
girth 3 and 4.
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(a) A graph G of girth 3 with a path hk¢ (repre-  (b) A graph G of girth 4 with a cycle hjlk (rep-
sented in red dotted edges) and a walk adefgcb  resented in red dotted edges) and a closed walk
(represented in blue dashed edges). edf gede (represented in blue dashed edges).

Figure 1.6: Examples of a walk, a closed walk, a path and a cycle in graphs of girth 3 and 4.

1.1.4 Applications of paths: connectivity and distance in graphs
With the notion of paths (or walks), we can define the notion of connected graphs.

Definition 1.9 (Connected graph, connected component). A graph is connected if there
exists a path between u and v for every pair of vertices v and v of G. A connected
component of G is a maximal connected subgraph of G. A graph is disconnected if it has
at least two connected components. An cut-vertexr is a vertex whose removal from the
graph increases the number of connected components.

A stronger notion is the notion of k-connected graphs.

Definition 1.10 (k-connected graph, connectivity). A graph is k-connected if for every
pair of vertices u and v of GG, there exist k paths, with disjoint internal vertices, between u
and v. The connectivity of a graph G is the largest integer k for which G is k-connected.
A 2-connected graph is also called a biconnected graph. A k-connected component of G is
a maximal k-connected subgraph of G.

See Figure 1.7 for some examples of connectivities.

< 1 X

(a) A disconnected graph with ~ (b) A 1l-connected graph with (c) A 2-connected graph.
two connected components. one cut-vertex and two 2-
connected components.

Figure 1.7: Graphs with different connectivities.

Definition 1.11 (Edge cut). For a graph G and X,Y C V(G), let us note E(X,Y) for
the set of edges with one endpoint in X and the other endpoint in Y. An edge cut is an
edge set of the form F(X,V(G) \ X).

Note that for every graph G, if X is a proper non-empty subset of V(G) (i.e. @ #
X C V(@)) then the graph G — E(X,V(G) \ X) is disconnected.

Another useful application of paths is the notion of distance.

On various graph coloring problems page 23



1.1. Graphs: definitions, notation

Definition 1.12 (Distance). Let u and v be two vertices of G. The distance between u
and v, denoted dg(u,v) is the length of a shortest path connecting v and v. If there is no
path between u and v, then dg(u,v) = +00. When the context is clear, we note d(u,v)
instead of dg(u,v).

From this notion, we can define the concept of graph powers.

Definition 1.13 (Graph power). Let G be a graph and k be an integer. The k-th power
of G, denoted G*, is the graph with vertex set V(G) in which two vertices are adjacent if
and only if they are at distance at most k. The graph G2 is also called the square of G.

In particular, G° is an independent set and G! = G. See Figure 1.8 for one example
of distance between vertices and one example of square graph.

(a) A graph G. (b) The graph G2.

alblc|d|e|f
al0|112]3[4]|3
b(1]0]12|3]2
cl|[2/1]0(1]2]1
d|3|2[1/0]1]2
el|413]2]1|0]1
f131211]2[1/0

(c) The distances in the graph G.

Figure 1.8: Example of distances in a graph and its square graph.

1.1.5 Bipartite graphs

The notion of cycle help us characterize one of the most studied class of graph: bipartite
graphs.

Definition 1.14 (Bipartite graph, bipartite complete graph). A graph G is bipartite if
we can partition V(G) into AW B (where W is the disjoint union operation) such that
each edge xy of G has one endpoint in A and one endpoint in B. In particular, bipartite
graphs are exactly graphs without odd cycles.

The complete bipartite graph K, , is the graph composed of two sets of vertices: A of
size p and B of size ¢q. The sets A and B are independent sets and for every u € A and
every v € B, uv € E(K,,).

See Figure 1.9 for two examples of bipartite graphs.

1.1.6 Line graphs

Let us continue with one more type of graph constructed from a graph G, the line graph,
which is the graph of relationship between the edges of G.
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SoANE

(a) A bipartite graph. (b) The bipartite graph K, 3.

Figure 1.9: Examples of bipartite graphs. For both graphs, the set of vertices is partitioned
into the set of white vertices and the set of black vertices.

Definition 1.15 (Line graph). The line graph L(G) of a graph G is the graph whose
vertex set is the set of edges of G' and for which two vertices of L(G) (i.e. two edges of G)
are adjacent in L(G) if and only if they are adjacent as edges in G. The degree of an
edge e of G is the degree of the vertex corresponding to e in L(G). Alternatively, it is the
number of edges adjacent to e in G.

See Figure 1.10 for an example of a line graph.

Figure 1.10: The line graph (represented in red) of the Petersen graph (represented in black).

We can also define a notion of distance between edges of a graph G using L(G).

Definition 1.16 (Distance of edges). Let e and €' be two edges of G. The distance
between e and €', denoted dg(e,€’) is the length of a shortest path connecting e and ¢’
in the line graph L(G). If there is no path between e and €', then dg(e,€’) = +00. The
distance between e and €’ can also be defined as the smallest number of vertices of a path
v1,...,v; of G such that v; € e and vy, € €.

Note that the distance between two edges e and ¢’ of a graph G could also have been
defined as the minimum of dg(a,b) for a € e and b € ¢'.

1.1.7 Graph classes and parameters related to the degrees of
vertices

Let us start by presenting some important graph parameters.
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Definition 1.17 (Minimum degree, maximum degree). Let G be a graph. The minimum
degree of G, denoted 0(G), is the minimum of the degrees d(u) where u is a vertex of G.
The mazimum degree of G, denoted A(G), is the maximum of the degrees d(u) where u
is a vertex of G.

For example, the minimum degree of a path is 1 while the maximum degree of a path
of length at least 2 is 2. The Petersen graph (see Figure 1.1) has minimum degree and
maximum degree 3.

The notion of degree can help us characterize some graph classes.

Definition 1.18 (Regular graphs). A graph is regular if all of its vertices have the same
degree: 0(G) = A(G). A 3-regular graph is a cubic graph. A graph G with A(G) < 3 is

a subcubic graph.
Another important class is the following one.

Definition 1.19 (Degeneracy). A graph G is d-degenerate if all of its subgraphs contain
a vertex of degree at most d.

A particular class of degenerated graphs is the class of forests.

Definition 1.20 (Forests and trees). A forest F' is a 1-degenerate graph. Alternatively,
a forest is an acyclic graph (i.e. a graph with no cycle). A tree is a connected forest. A
leaf of a forest is a vertex of degree 1. A subgraph of a graph G which is isomorphic to a
forest (resp. to a tree) is a subforest of G (resp. a subtree of G).

A important type of subforest is the following one.

Definition 1.21 (Spanning forest, spanning tree). Let G be a graph (resp. a connected
graph). A spanning forest is a subforest of G on vertex set V(G) which has the same
number of connected components as G. A spanning tree is a spanning forest of a connected
graph.

See Figure 1.11 for an example of spanning tree.

Figure 1.11: A graph G and one of its spanning trees represented with red dashed edges.

Another notion related to the degree is the notion of average degree.

Definition 1.22 (Average degree, maximum average degree). The average degree of a
graph G, denoted ad(G), is the average of the degrees of the vertices of G:
2|E(G)]
ad(G) = ——=
V(G
The mazimum average degree of a graph G, denoted mad(G), is the maximum of ad(H)
taken over all subgraphs H of G.
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The notion of average degree allows us to determine whether a graph is dense or not.
If ad(G) = o(|]V(G)|), then the graph G is sparse, otherwise it is dense.

Definition 1.23 (Hereditary property, hereditary class). A graph property is hereditary
if for every G which verifies the property, the property is true for all subgraphs of G. A
graph class is hereditary if for every GG in the class, all subgraphs of G also belong to the
class.

Note that the average degree is not hereditary, for example even if the average degree
of the graph composed of a clique of order p and (p — 1)? isolated vertices has average
degree 1, it contains a subgraph of average degree p — 1. This is why the notion of
maximum average degree is important: an upper bound on mad(G) is also valid for the
maximum average degree of any subgraph of GG. See Figure 1.12 for an example of these
parameters.

Figure 1.12: A graph G of minimum degree 1, maximum degree 5, average degree % and

maximum average degree % The subgraph of G achieving an average degree of % is represented
with red dashed edges.

Note that a d-degenerate graph GG has at most dn edges and thus has average degree
at most 2d. Moreover, the class of d-degenerate graphs is hereditary, hence if G is d-
degenerate, then mad(G) < 2d. Conversely, if mad(G) < k then G is (k — 1)-degenerate.

1.1.8 Planar graphs

One particularly interesting class of graphs is the class of planar graphs. To define them,
we first need the notion of planar embedding.

Definition 1.24 (Drawing of a graph, planar embedding). A drawing M of a graph G
is a function which associate with each vertex v a coordinate M (v) in R? and which
associate with each edge uv an injective continuous function M (uv) : [0,1] — R? such
that {M(0), M (1)} = {M(u), M(v)}.

Moreover, the coordinates of the vertices are distinct, and if uv is an edge and w is
a vertex different from u and v, then M (w) does not belong to the embedding of the
edge uv. Finally, for every two edges e; and ey and every two real numbers ¢; and t,
with 0 <t; <1land 0 <ty <1, if M(ey)(t1) = M(ez)(t2) then this point is a crossing.

A planar embedding is a drawing of a graph without crossings.

Definition 1.25 (Planar graph). A planar graph is a graph G which admits a planar
embedding M. A plane graph is a planar graph G with a particular planar embedding M
of G.
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See Figure 1.13 for an example of a planar graph. From Figure 1.13, one can see that
a planar graph may be drawn on the plane with crossings. Moreover, note that a planar
graph can have multiple non-topologically equivalent planar embeddings. For example,
in Figure 1.13(c), placing the vertex e in between a and b yield another planar embedding
which is not topologically equivalent to the one in the figure.

(a) A planar graph: Ky ... (b) ... and the same graph drawn with a planar
embedding.

(c) Another planar graph.

Figure 1.13: Two planar graphs.

Of course, not all graphs are planar. Two minimal (for the subgraph relation) non-
planar graphs are K5 and K33 (see Figure 1.14).

(a) K5. (b) K373.
Figure 1.14: Two non-planar graphs.
In fact, these two graphs are essential to the study of planar graphs. A subdivision of

a graph G is a graph obtained from G by replacing the edges of G' by arbitrary paths of
length at least 1.

Theorem 1.26 (Kuratowski’s Theorem [135]). A graph is planar if and only if it does
not contain a subgraph which is a subdivision of K5 or Ks3.

Also note that it is possible to determine in time O(|E(G)|) whether G is planar or
not thanks to Kuratowski’s Theorem [194].
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Definition 1.27 (Face). Let G be a planar graph together with a planar embedding M.
A face of G in M is a maximal connected region of the plane which does not contain
points of the embedding (i.e. no image of the vertices nor the curves which represent the
edges). The outer face is the only unbounded face of G in M. Let us note F(G, M) the
set of faces of G in M.

A face f is incident with a vertex v (resp. an edge e) if and only if M (v) (resp. the
image of M (e)) belongs to (resp. is included in) the boundary of F', i.e. M (v) (resp. the
image of M(e)) belongs to (resp. is included in) the closure of F. Two faces are adjacent
if and only if they are incident with a common edge e. The length or degree of a face f,
denoted d(f), is the number of edges incident with f counted with multiplicity (7.e. if an
edge is incident with only one face, we count this edge twice for this face). We often note
a face by the ordered list of its vertices.

The graph in Figure 1.13(c) has eight faces: abced, adl, cdf, cgf, beghbi, abhjl, Ljhk
and the unbounded face ¢khg fded.

A well known property of planar graphs is given by Euler’s formula, which connects
the number of vertices, the number of edges and the number of faces of a graph.

Theorem 1.28 (Euler’s Formula). Let G be a planar graph with a planar embedding M .
We have:
IV(G)| = |E(G)| + |F(G, M)| = 2.

In particular the number of faces of G in M does not depends on the planar embedding M .

This result can easily be shown by induction on the number of vertices. By using the
fact that 3,cy ) d(v) = 2|E(G)| = X serem) d(f), one can note that Euler’s Formula
is equivalent to the following identity:

Y o(dw)—=6)+ > 2(d(f) —3)=—12. (1.1)

vEV(G) fEF(G,M)

A classical way to obtain contradictions on planar graphs is to suppose the existence of
a planar graph verifying some property and then showing that this planar graph does not
follow Euler’s Formula. This implies that no planar graph verifies the supposed property.

Note that Euler’s Formula give a relationship between the girth and the maximum
average degree of a planar graph when observing that 2 |E(G)| > g |F(G, M)|.
Proposition 1.29. If G is a planar graph with girth g then mad(G) < 92792'

Also note that Equation (1.1) implies that a simple planar graph is 5-degenerate.

1.1.9 Treewidth

Another important graph parameter of Graph Theory that we use in the context of
parameterized complexity (see Section 1.3), is the notion of treewidth.

Definition 1.30 (Rooted tree). A rooted tree is a tree T' where we distinguish one vertex
called the root of T'. In a rooted tree, if uv is an edge and d(r,u) < d(r,v), then we say
that u is the parent of v in T, or that v is the child of v in T. A vertex of a rooted tree
is often called a node. The subtree of T' rooted at u is the rooted tree obtained from 7' by
removing the edge between v and its parent and keeping only the vertices which are in
the same connected components as wu.
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The notion of treewidth is defined as follows.

Definition 1.31 (Tree decomposition, treewidth). A tree decomposition of a graph G is a
pair 7 = (7T, (Xu)uev(r)) Where T is a rooted tree and where, for every node u of T', X, is
a subset of V(G) associated with u, called the bag of u, verifying the following properties:

1. for every vertex v of GG, there is a node u of T" such that v € X,

2. for every vertex v of GG, the set of nodes whose bag contains v induces a subtree
of T,

3. for every edge vw of G, there is a node u whose bag contains both v and w.

The width w(T') of the tree decomposition T is the largest size of a bag X, for u € V(T),
minus 1:
w(T) = max |X,|— 1.
ueV(T)

The treewidth tw(G) of a graph G is the smallest width of a tree decomposition of G.

See Figure 1.15 for an example of a tree decomposition.

(a) A graph G. (b) A tree decomposition of G of width 3.

Figure 1.15: A graph and a tree decomposition of this graph.

Let us see some examples: a forest [ has treewidth 1, the complete graph K, has
treewidth p — 1 and a cycle has treewidth 2.

Definition 1.32 (Grid). A grid G, is a graph on nm vertices (v; ;)1<i<n, 1<j<m Where v; ;
and vy are adjacent if and only if i =k and |[j —¢| =1, or j =¢ and |i — k| = 1.

This famous theorem from Robertson and Seymour shows that planar graphs have
unbounded treewidth.

Theorem 1.33 ([167]). For every integer k, there is a grid G with tw(G) > k.

One can add constraints to the tree decomposition to make it easier to work with.
Nice tree decompositions [130] are a well-known tool for designing algorithms on graphs
of bounded treewidth using dynamic programming.

Definition 1.34 (Nice tree decomposition). A nice tree decomposition of a graph G is a
tree decomposition 7', rooted at a node Root. Each node of T' is of one of the following

types.
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e A join node has exactly two children, with the same bags as their parent join node.

e An introduce node has a unique child and contains exactly one more vertex in its
bag than its child’s bag.

o A forget node also has a unique child, but the forget node’s bag has exactly one less
vertex than its child’s bag.

o A leaf node is a leaf of the tree and contains no vertices.

This type of decomposition can be obtained from a tree decomposition in polynomial
time and will be useful in Chapter 8.

1.2 Colorings and Homomorphisms

Each chapter of this thesis will revolve around the idea of coloring graphs. Depending on
the type of graphs, we may define multiple notions of coloring. In this section, we first
present the classical notion of vertex coloring, and then the notion of homomorphism of
graphs, which gives another point of view on vertex coloring. Finally we describe other
classical notions of coloring: oriented coloring, vertex coloring of (n,m)-mixed graphs,
edge-coloring and list coloring.

Note that each part/chapter of this thesis focuses on a particular coloring notion which
will be described in the corresponding section.

1.2.1 Vertex coloring

Our first notion of coloring is the notion of vertex coloring.

Definition 1.35 (Vertex coloring and chromatic number). A vertexr k-coloring of a
graph G is a function from V(G) to the set of colors [k]. A vertex k-coloring of a
graph G is proper if no two adjacent vertices receive the same color.

The chromatic number x(G) of a graph G is the smallest k£ such that G admits a
proper vertex k-coloring.

Note that a proper vertex coloring is ill-defined on graphs with loops as a vertex is
adjacent to itself. Also note that multiple edges do not matter here: if v and v are
adjacent, then it does not matter whether there are 1, 2 or 10 edges between them for
the coloring. This is why we often only consider proper vertex coloring on simple graphs.
Also note that a simple graph G always admits a proper vertex |V (G)|-coloring, hence
the chromatic number of a simple graph is always finite.

Remark. Unless stated otherwise, in this thesis, a k-coloring always refer to a vertex
k-coloring.

Even if formally our colors are elements of [k], when drawing a coloring we associate
with each element of [k] an RGB color. See Figure 1.16 for an example of a proper vertex
3-coloring. The proper vertex 3-coloring in Figure 1.16 implies that the chromatic number
of the Petersen graph is at most 3.

Let us collect some easy facts on the chromatic number.

Proposition 1.36 (Folklore). Let G be a graph. The following statements are true.
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3

Figure 1.16: A proper vertex 3-coloring of the Petersen graph.

The graph G is an empty graph if and only if x(G) = 1,

the graph G is bipartite if and only if x(G) < 2,

if G is a forest or an even cycle, then x(G) = 2,

if G is an odd cycle, then x(G) = 3,

if H is a subgraph of G, then x(H) < x(G),

if G has cliqgue number w(G), then w(G) < x(G),

if G has order p, then G is the complete graph K, if and only if x(G) = p,

Sl N T T I R

if G has connected components Gy, ..., G, then the chromatic number of G 1is
the maximum of the chromatic numbers of its connected components: x(G) =

max(x(G1), ..., x(Gk)).

In particular, the previous theorem implies that the chromatic number of the Petersen
graph is 3 as it contains an odd cycle. Another way to obtain the upper bound for the
Petersen graph is to use Brook’s Theorem.

Theorem 1.37 (Brooks’ Theorem [30]). Let G be a connected graph, we have x(G) <
A(G) + 1. Moreover x(G) = A(G) + 1 if and only if G is a complete graph or G is an
odd cycle.

We often like to find bounds on the chromatic number of a graph which either depend
on other graphs parameters (like Brook’s Theorem) or which are only true for particular
graphs classes. The most famous theorem in this regard is the Four-Color Theorem.

Theorem 1.38 (Four-Color Theorem [8, 9]). If G is a planar graph, then x(G) < 4.

The proof of the Four-Color Theorem is famous as it is the first proof of a major result
to be computer assisted. Indeed it relies on the verification of 1834 configurations (this
number was later reduced) which is something complicated for a human to do. It uses a
process call “discharging” that we will use in Chapter 9. See Figure 1.17 for an example
of a 4-coloring of a planar graph.

Note that it is easy to prove that six colors suffices for planar graphs as they are
5-degenerate. It is also not that hard to show that five colors suffices.

As mentioned there is a link between degeneracy and the chromatic number.

Theorem 1.39 (Folklore). If G is a d-degenerate graph, then x(G) < d+ 1.
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Figure 1.17: A proper vertex 4-coloring of a planar graph.

1.2.2 Homomorphisms
Another point of view on proper vertex coloring is through the concept of homomorphisms.

Definition 1.40 (Homomorphism). A homomorphism from G to H is a function ¢
from V(G) to V(H) such that for every x,y € V(G), vy € E(G) implies p(z)p(y) € E(H).
When there is a homomorphism ¢ from G to H, we note ¢ : G — H or simply G — H.

See Figure 1.18 for an example of homomorphism.

. 9"9 .

O—2

Figure 1.18: Two graphs G and H such that G — H. One such homomorphism ¢ can be
defined as ¢(a) = p(c) = ¢(g) = ¢(i) = 1, ¢(b) = 2, p(e) = 3 and @(d) = ¢(f) = (h) = 4.

Note that one can compose homomorphisms: if G — H and H — J, then G — J.
Also note that a homomorphism from G to H does not need to be surjective, H can have
more vertices and edges than the image of G.

Let v and v be two non-adjacent vertices of a graph G. Identifying u and v consists
in creating the graph H from G, where V(H) = V(G) \ {u,v} U{uv} and E(H) is the set
{wz € E(G): w,ze€ V(G)\ {u,v}}U{(uv,w) : w € (Ng(u) U Ng(v))}. In other words,
H is the graph obtained by replacing v and v by a new vertex uv which is adjacent to
every vertex adjacent to w or v. In particular, if H is the graph obtained from G by
identifying v and v, then G — H and the corresponding homomorphism is surjective.
See Figure 1.19 for an example of identification.

As mentioned before, there is a deep link between the notion of homomorphism and
the notion of proper vertex coloring.

Proposition 1.41. Let G be a graph and k be an integer. The graph G admits a proper
k-coloring if and only if G — K.

The previous proposition implies that one can transform a homomorphism from G
into a coloring of G. One way to transform a coloring into a homomorphism is to succes-
sively identify vertices of the same color. This implies that we can use these two notions
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(a) A graph G. (b) The graph H obtained from G by identifying
g and i.

Figure 1.19: Identification of vertices.

interchangeably. See Figure 1.20 for an example of a homomorphism constructed from a
coloring.

Figure 1.20: The proper vertex 4-coloring of the planar graph in Figure 1.17 transformed into
a homomorphism to Kj.

Definition 1.42 (H-coloring). If ¢ is a homomorphism from G to H, we say that ¢ is
a H-coloring of G. Indeed, one can see the vertices of H as colors in a vertex coloring.
Hence the chromatic number of G can also be defined as the smallest order of a simple
graph H such that G admits a H-coloring. As seen in Proposition 1.41, we can always
suppose that such a graph H is complete.

The core of a graph H is the smallest subgraph C' of H such that H — C. A core
is a graph which is his own core. The core C of a graph H is unique but one might find
multiples copies of C' in H. When trying to construct a homomorphism from G to H, it
is interesting to replace H by the core of H as G admits a homomorphism to H if and
only if it admits a homomorphism to the core of H. For example, the core of a bipartite
graph is K5. See Figure 1.21 for some examples.

1.2.3 Homomorphisms on more complex graphs

The notion of homomorphism does not limit itself to undirected graphs. In each example

below, we present the definition of a homomorphism for different varieties of graphs, in

each case, we can derive the notions of core and H-coloring as in the previous section.
First it is possible to consider homomorphisms of multi-graphs.
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(a) (b)

Figure 1.21: Some graphs and their core represented in bold edges.

Definition 1.43 (Homomorphism of multi-graphs). For two multi-graphs G and H, a
homomorphism from G to H is a function ¢ : V(G) — V(H) such that if e € F(G)
is incident with u and v then there is an edge ¢’ € E(H) incident with ¢(u) and ¢(v).
When we want to distinguish the parallel edges, one might require that ¢ also associate
to an edge of GG, incident with u and v, an edge of H among all edges incident with ¢(u)

and ¢(v).
Note that a graph with parallel edges is not a core, hence when trying to decide
whether a multi-graph G admits a homomorphism to another multi-graph H, it is better

to remove all but one edge of each set of parallel edges in H. Therefore, in this setting,
we do not need to distinguish the parallel edges.

For oriented and directed graphs, there is also a notion of homomorphism.
Definition 1.44 (Homomorphism of directed/oriented graphs). For two directed /oriented

graphs & and ﬁ, a homomorphism from & to H is a function @ : V(a) — V(ﬁ) such
that if @ is an arc of &' then there is an arc @(u)gp(v; in H.

This notion is particularly important for oriented colorings.

Definition 1.45 (Oriented k-coloring). An oriented k-coloring of an oriented graph 8

is function ¢ from V(B) to [k] such that for every arc wd, p(u) # ¢(v) and such that no
two arcs w0 and 7 verify ¢(u) = ¢(y) and ¢©(v) = p(z). In other words, an oriented k-
coloring is a k-coloring in which all arcs between a vertex colored ¢ and a vertex colored j

have the same orientation. The oriented chromatic number of 8, denoted x,(G), is the

smallest k& for which 8 admits an oriented k-coloring.

As hinted before, an oriented graph Zf admits an oriented k-coloring if and only 3
admits a homomorphism to an oriented graph of order at most k.

Finally, we can define the notion of homomorphism for (n,m)-mixed graphs.

Definition 1.46 (Homomorphism of (n,m)-mixed graphs). Let G be a (n,m)-mixed
graph and H be a (p, ¢)-mixed graph. The function ¢ : V(G) — V(H) is a homomophism
from G to H if and only if:

1. for every edge uv € E;(G), i < n, we have p > i and p(u)p(v) € E;(H),
2. for every arc wb € A;(G), j < m, we have ¢ > j and gp(u)cp(v; € A;(H).

In this case, we note G — () H.
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Note that, for this definition, G and H do not have to be the same kind of (n, m)-mixed
graphs, this is an abuse of terminology. This notion homomorphism can be specialized
for k-edge-colored graphs. For simplicity, we note G — H instead of G —,0) H.

1.2.4 Edge-coloring

Our second coloring notion is the notion of edge-coloring.

Definition 1.47 (Edge-coloring and chromatic index). A k-edge-coloring of a graph G is
a function from E(G) to the set of colors [k]. A k-edge-coloring of a graph G is proper if
no two adjacent edges receive the same color.

The chromatic index x'(G) of a graph G is the smallest k such that G admits a proper
k-edge-coloring. By definition, x'(G) = x(L(G)) where L(G) is the line graph of G.

See Figure 1.22 for an example of a proper 4-edge-coloring of the Petersen graph.

VAR

Figure 1.22: A proper 4-edge-coloring of the Petersen graph.

Note that, contrary to vertex coloring, the definition of proper edge-coloring works
perfectly for multi-graphs. Also, it is important not to confound a k-edge-colored graph G
and a k-edge-coloring of a graph G5. In the first case, the edge-coloring is often non-proper
and is part of the structure of the graph. In the second case, the edge-coloring is something
constructed for the graph G, it is an additional object that complements the graph but
is not part of it.

As for the chromatic number, let us see some easy facts about the chromatic index.

Proposition 1.48 (Folklore). Let G be a graph. The following statements are true.
If G has maximum degree A(G), then x'(G) > A(G),

if G is a forest or an even cycle, then X' (G) = A(G),

if G is an odd cycle, then X'(G) = 3,

if H is a subgraph of G, then x'(H) < X'(G),

v o e =~

if G has connected components G, ..., Gy, then the chromatic index of G is the
mazimum of the chromatic indices of its connected components:

X'(G) = max(xX'(Gh), .-, X'(Gr)).
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In particular, the previous proposition implies that the chromatic index of the Petersen
graph is at least 3 as it contains a vertex of degree 3. In fact one can show that three
colors are not sufficient in order to properly edge-color the Petersen graph.

In Section 1.2.1, we presented Brooks” Theorem. Note that there is a similar theorem
for edge-coloring: Vizing’s Theorem.

Theorem 1.49 (Vizing’s Theorem [184)). Let G be a simple connected graph, we have
X'(G) < A(G) + 1.

Note that contrary to Brooks” Theorem, Vizing’s Theorem does not characterize the
graphs for which A(G) colors suffices, called class I graphs, and the graphs which re-
quire A(G) + 1 colors, called class II graphs. Since then, no universal criteria has been
found to determine whether a graph is class I or class II.

Remark. In the context of distinguishing labellings, an edge-coloring is also called a
labelling and an edge-color is called a label.

1.2.5 List coloring

Often we can convert a notion of coloring into its list version. Let us start with vertex
coloring.

Definition 1.50 (List coloring [66]). A k-list assignment L for a graph G is a function
which associates with each vertex of G a (finite) subset of N of size at least k. For a
list assignment L of G, a (vertex) L-coloring is a choice function ¢ which maps every
vertex v € V(G) to an element c¢(u) € L(u). An L-coloring c is proper if and only if ¢ is
a proper vertex coloring of GG. In this case, we say that G is L-choosable.

The choosability of a graph G, denoted ch(G), is the smallest £ € N for which G is
L-choosable for every k-list assignment L of G. A graph of choosability k is called a
k-choosable graph.

Again note that ch(G) < |V(G)| for every graph G. Also note that a proper k-coloring
is a proper L-coloring of G where L(u) = [k] for every u € V(G), hence x(G) < ch(G).
Note however that the gap between x(G) and ch(G) can be arbitrarily large.

Theorem 1.51 ([66]). For every k € N, there exists a bipartite graph G with choosability
at least k.

The notion of edge coloring also has its list version.

Definition 1.52 (List edge-coloring [66]). A k-list edge-assignment L for a graph G is a
function which associates with each edge of G a (finite) subset of N of size at least k. For
a list edge assignment L of G, an L-edge-coloring is a choice function ¢ which maps every
edge e € E(G) to an element c(e) € L(e). An L-edge-coloring c is proper if and only if ¢
is a proper edge-coloring of GG. In this case, we say that G is L-edge-choosable.

The edge-choosability of a graph G, denoted ch’(G), is the smallest & € N for which G
is L-edge-choosable for every k-list edge-assignment L of G.

Note that a proper k-edge-coloring is a proper L-edge-coloring of G where L(e) = [k]
for every e € E(G), hence Y/(G) < ch'(G). Contrary to the vertex coloring case, it is
conjectured that x'(G) = ch’(G) for every graph G.

On various graph coloring problems page 37



1.3. NP-completeness and FPT

Remark. In the context of distinguishing labellings, an L-edge-coloring is also called an
L-labelling.

Let us see why the concept of list coloring is useful. We only consider here the vertex
coloring case but the same arguments apply for edge-coloring. Suppose that we want to
find a proper k-coloring of a graph GG. Let H be a “small” subgraph of G such that there
is a proper vertex k-coloring ¢; of G — V(H) (obtained by induction, for example).

To color G, we want to extend the coloring ¢; of G — V(H) to the vertices of H.
For each vertex u of V(H), we create a list L(u) containing the colors among [k] which
are not already assigned to a neighbor of u in G — V(H) by ¢;. If H admits a proper
L-coloring ¢y, then the coloring ¢ of G, defined by c(u) = ¢;(u) if w € V(G) \ V(H) and
c(u) = co(u) if w € V(H), is a proper vertex k-coloring of G.

Note that this does not hold if we take any arbitrary proper k-coloring of H. Also note
that the difficult parts in this process are finding the subgraph H and the L-coloring cs.
We present in Section 1.4.4 a way to find this L-coloring by using an algebraic method:
the Combinatorial Nullstellensatz.

1.3 NP-completeness and FPT

In this section, we introduce various complexity notions that are used throughout this
thesis. We start with a quick reminder of general complexity notions in section 1.3.1
and a quick overview of different ways to represent graphs in algorithms in Section 1.3.2.
Section 1.3.3 presents the concept of NP-complete problem while Section 1.3.4 focuses on
parameterized complexity. We conclude this section with a list of additional complexity
problems in Section 1.3.5.

Since the theory of calculability and Turing machines are not the focus of this thesis,
we do not get into the rigorous formalism of the field here. Nonetheless, we refer the
reader to [53, 160, 173] for more details on the topics covered in this section.

1.3.1 Basics of Complexity Theory

An algorithm A is a sequence of elementary operations (see RAM model [160, section
2.6]) which can be performed on an input z respecting a given format (e.g. the input is
an integer, a graph ...).

The time ta(z) of an algorithm A on input z is the total number of elementary
operations performed by A on input x before A stops. For every non-negative integer n,
the time complexity t 4(n) of an algorithm A is the maximum of ¢ 4(x) over all inputs «
of size at most n.

The space s(x) of an algorithm A on input z is the maximum number of memory
locations used simultaneously by A on input z before A stops. For every non-negative
integer n, the space complexity s4(n) of an algorithm A is the maximum of s4(x) over all
inputs x of size at most n.

While we mainly focus on time complexity from now on, note that analogous notions
exist for space complexity.

We characterize the complexity of an algorithm A by the growth of the function ¢ 4(n):
an algorithm is linear (resp. polynomial, resp. exponential ...) if t4(n) = O(n) (resp.
ta(n) = O(n®) for some constant c, resp. t4(n) = 20" for some positive constant c ...).
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A problem P consists in solving a given problematic given an input. A problem is
a decision problem if the problematic is a yes/no question. An instance Z of P is a
positive instance of P if and only if the answer to the problematic of P is yes. An algo-
rithm A solves a problem P if for every input z of the problem, A outputs .A(z) such that
A(x) is the answer to the question of the problem on input x. An example of a problem is:

ARRAY SEARCH
Input: An array A, its size n and an element z.
Output: The index of z in A if x is in A and -1 otherwise.

A problem P is in P if there exists a polynomial algorithm solving P. Intuitively, P is
the class of problems that can be solved in “reasonable time”. A goal of the Complexity
Theory is to determine which problems belong to P and which problems do not. For
example, the problem ARRAY SEARCH is in P as it suffices to go sequentially through the
array to find the solution.

Another important class of problems is the class NP, for Non-deterministic Polyno-
mial. It can be informally defined as the set of decision problems for which we can verify,
in polynomial time, whether some given candidate solution z is really a solution of the
problem. Intuitively, NP is the class of problems for which we can verify if an input is
a solution in “reasonable time”. In particular, P C NP. For more precise definitions (in
terms of non-deterministic Turing machines), we refer the reader to [160, 173]. For exam-
ple, the following problem is in NP.

3-COLORING
Input: A graph G.
Question: Does the graph G admit a proper 3-coloring?

Indeed, even if it is not simple to construct a proper 3-coloring of a graph G, if we are
given a 3-coloring of G, it is easy to verify that this coloring is proper.

1.3.2 Algorithmic representations of graphs

In this section, we see how to represent graphs in algorithms. Let G be a graph with
V(G) = {v1,...,v,}. We give an example of such a graph in Figure 1.23 and its two
representations in Figure 1.24 and Figure 1.25.

Figure 1.23: A graph G on 6 vertices.

The first method to represent G is by an adjacency matric M € M, ({0,1}), i.e. a
matrix of size n by n such that m,;, the coefficient of line ¢ and column j, is 0 if v,v; ¢ E(G)
and 1 otherwise. For this data structure, it takes constant time to test whether two
vertices are adjacent, however, it takes O(n) time to recover all the neighbors of a given
vertex. This data structure is more adapted for dense graphs where the number of edges
m is ©(n?). Finally, note that the adjacency matrix of an undirected graph is symmetric.
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01 0100
101000
010110
101010
001101
00 0O0T1PQ0

Figure 1.24: The adjacency matrix of the graph G.

The other method to represent G is by an adjacency list, i.e. an array A of n lists
where the cell A[i] contains the list of neighbors of the vertex v;. For this data structure,
it takes O(A(G)) time to test whether two vertices are adjacent, however, it takes O(d(u))
time to recover all the neighbors of a given vertex u. Note that if the lists are implemented
as sorted arrays, then it actually takes log(A(G)) time to find if two vertices are adjacent
using dichotomy. This method is more adapted for sparse graphs where the number of
edges m is O(n), like for planar graphs.

V1 i—) Vg | Ug

(%) i—) V1| U3

Vs i—) V2 | Vg | Us
V4 i—> V1 | V3 | Us
Vs i—) V3 | Vg | Vg
Vg i—) Vs

Figure 1.25: The adjacency list of the graph G.

The choice of the representation depends on which operations on graphs are more
important in the algorithm. If it is more important to test the adjacency, then we prefer
using adjacency matrices. If it is more important to traverse the graph (and thus to get
the list of neighbors of a vertex), then we prefer using adjacency lists.

Note that there exist more data structures which represent graphs. For more complex
problems, it is often efficient to add more information in the data structure, like repre-
senting faces for planar graphs. One might even find useful to have both the adjacency
matrix and the adjacency list of a graph.

1.3.3 NP-completeness

One of the major questions in Complexity Theory is to determine whether P = NP, or
not; the problem might even be undecidable. This problem is one of the Millennium
Prize Problems stated by the Clay Mathematics Institute in 2000 and has gathered a lot
of attention through the years.

One approach used to attack the question is to try to show that the “hardest” problems
in NP can be solved in polynomial time. While this has yet to be achieved, the developed
notions of reductions and NP-completeness are powerful tools to show that it is very
unlikely that some problems admit polynomial time algorithms.
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Definition 1.53 (Polynomial reduction). A decision problem P reduces (in polynomial
time) to a decision problem P’ if and only if there exists a computable polynomial func-
tion f (i.e. an algorithm) such that for every instance Z of P, Z is a positive instance
of P if and only if f(Z) is a positive instance of P’.

Definition 1.54 (NP-hardness, NP-completeness). A problem P is NP-hard if any prob-
lem P’ in NP reduces to P. A problem is NP-complete if it is NP-hard and belongs to the
class NP.

Intuitively, NP-complete problems are the hardest problems in the NP complexity
class. The most known of these is the SAT-CNF problem. In order to present this
problem, we need to talk first about Boolean formulas.

Definition 1.55 (Boolean formulas). The set of Boolean formulas BF is constructed as
follows:

1. BF contains all variables x, xs, ...,

2. if ¢ is a Boolean formula, BF contains —¢, the negation of ¢ which is true if and
only if ¢ is false,

3. if 1 and ¢y are two Boolean formulas, BF contains 1 A s, the conjunction of ¢
and 9 which is true if and only if ¢; and @9 are both true,

4. if ¢y and ¢y are two Boolean formulas, BF contains (1 V @9, the disjunction of ¢,
and 9 which is false if and only if ¢ and ¢, are both false.

To simplify notation, we often note T; for —x; when z; is a variable. A [iteral is either a
variable x; or its negation T;. A clause C' is a disjunction of literals, i.e. C' = ({1 V {3 V
-+ -V {g) where each /¢; is a literal. The size of a clause C' is the number of literals in the
clause. A Boolean formula ¢ is in conjunctive normal form (CNF) if it is a conjunction
of clauses, i.e. p = C; ACy A\ --- A, where each C; is a clause. For concision, we use the
term CNF formula to refer to a Boolean formula in conjunctive normal form. A wariable
assignment is a function from the set of variables to the set of truth values {true, false}. A
variable assignment satisfies a CNF formula if and only if there is at least one true literal
in each clause.

We can now define the SAT-CNF problem.
SAT-CNF

Input: A Boolean formula ¢ in conjunctive normal form with n variables and m
clauses.
Question: Is there a variable assignment satisfying ¢?

This problem was the first to be shown to be NP-complete by Cook [50] and Levin
[139] independently.

Theorem 1.56 (Cook-Levin [50, 139]). The problem SAT-CNF is NP-complete.

We present two other famous problems:

2-SAT

Input: A Boolean formula ¢ in conjunctive normal form with n variables and m
clauses where each clause has size at most 2.

Question: Is there a variable assignment satisfying 7
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3-SAT

Input: A Boolean formula ¢ in conjunctive normal form with n variables and m
clauses where each clause has size at most 3.

Question: Is there a variable assignment satisfying 7

One can easily generalize the previous problems to k-SAT. It is known since 1967,
with the work of Krom, that 2-SAT is in P. The key idea is to rewrite a 2-SAT formula as
a sequence of implications. However no such algorithm has been found for 3-SAT, in fact
3-SAT is one of the 21 NP-complete problems presented by Karp in his 1972 paper [126].

Theorem 1.57 ([126]). The problem 3-SAT is NP-complete.

The proof is done by reduction (see Definition 1.53). We first present the general
methodology of a proof by reduction before using the proof of Theorem 1.57 as an example
of this type of proofs, that we will use in Chapter 3 and Chapter 8.

Proof of NP-completeness by reduction. Let P be our problem. The first step of
such a proof is to show that P is in NP. This is generally quite easy as it suffices to show
that one can verify that a proposed solution is indeed a solution of P. This usually boils
down to verifying all the required constraints on the solution.

The second step is the actual reduction. Let P’ be an NP-hard problem, we want to
show that P’ reduces to P. For this, take an arbitrary instance Z' of P’. We want to
create an instance Z of P which “encodes” the instance Z' of P’. The goal is to show
that 7’ is a solution of P’ if and only if Z is a solution of P.

Let us see an example of this type of proof.

Proof of Theorem 1.57. First, as SAT-CNF is in NP, and since an instance of 3-SAT is
also an instance of SAT-CNF,3-SAT is in NP.

We want to reduce SAT-CNF to 3-SAT. Let ¢ be a CNF Boolean formula instance
of SAT-CNF on n variables z1, ..., x, and m clauses C, ..., Cp,,. Fixi € {1,...,m}
and suppose that C; = (€1 V --- V () where each (! is a literal. The goal is to create a
new set of clauses for 3-SAT that will mimic the clause C;.

Let C* be the following set of clauses:

(69 6,V i) ATV 6 V) A @Y 6V i) A (@, v 6,V G,)

where the :L‘; are new variables. Clearly, C"* is satisfiable if and only if at least one of the
literals ¢} is true. Hence AT, C; is satisfiable if and only if A2, C* is satisfiable. This
concludes the proof. n

From the previous proof, one can see that we used clauses of size 3 in order to represent
a clause of arbitrary size. Sometimes, the reductions are more convoluted but the principle
always stays the same. In Chapter 3 and Chapter 8, we perform such reductions on several
graph problems to show their NP-completeness.

Showing the NP-completeness of a problem indicates that it is unlikely that the prob-
lem can be solved in polynomial time, but, depending on the reduction, the size of the
constructed instance might grow linearly, quadraticly, or even worse, with the size of the
original instance. This fact is unfortunately lost in the statement of the theorem. The
following hypothesis allows us to be more precise.
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Definition 1.58 (Exponential Time Hypothesis (ETH) [145]). The Ezponential Time
Hypothesis (ETH) postulates that 3-SAT cannot be solved in time 2°(™ (n 4 m)¢, where n
and m are the input’s number of variables and clauses, and c is any integer. In particular,
this implies that 3-SAT cannot be solved in time 2°"*™) (see [53]).

Suppose that 3-SAT reduces to a problem P such that for an instance of 3-SAT
with n variables and m clauses, the constructed instance of P has size O((n+m)?). Then,
assuming ETH, we can show that there is no algorithm solving P in time 2°0v®)s¢, for any
constant integer ¢, where s is the size of the instance of P. Indeed, if such an algorithm
existed we could solve 3-SAT in time 2°"*™)(n + m)? = 2°+™) contradicting ETH.
Even if the ETH was to be false, this type of result shows that P seems “easier” to solve
than 3-SAT is.

This highlights how ETH can help us to be more precise than just saying “P is NP-
complete”. Here the function in the o notation indicates how powerful the problem is
compared to 3-SAT.

1.3.4 Parameterized complexity

A way to construct efficient algorithms for NP-complete problems is to lower our time
complexity expectations. Usually, we consider an algorithm efficient if it is polynomial. By
adding an extra parameter k to the problem, we would like to keep the polynomiality in n,
the size of the instance, while “pushing” the hardness of the problem on the parameter k.
For more details on parameterized complexity, we refer the reader to [53].

Definition 1.59 (Parameter). A parameter is a number k£ which is either given by the
problem, e.g. an integer when the problem consists in determining whether there is a
solution smaller than k£ or not, or given as a function of the input, e.g. the treewidth of
the input graph.

For example, VERTEX COVER is one of the 21 NP-complete problems of Karp [126].
Let us consider a version parameterized by the solution size.

VERTEX COVER Parameter: k.
Input: A graph G and an integer k.

Question: Is there a set S of at most k vertices of GG, such that, for each edge uv of
G, at least one of u or v belongs to S7

Definition 1.60 (Fixed Parameter Tractable). A problem P of size n and parameterized
by k is Fized Parameter Tractable (FPT ) if and only if there exists an algorithm solving P
in time f(k) - O(n®) where c is a fixed integer and f is any computable function.

Theorem 1.61 (Folklore). The problem VERTEX COVER is FPT and can be solved in
time 20%)n?2.

The previous theorem does not give a polynomial complexity but the non-polynomial
part of the complexity part does not depend on the size of the problem n. It is of course
possible to improve the previous theorem. The best known bound at the time of writing
this thesis is O(1.2738" + kn) by Chen, Kanj and Xia [44].

When working with the treewidth as a parameter, we can also use Courcelle’s theorem.
This theorem relies on the notion of monadic second-order logic of graphs which we do
not define here (for more details see [51]).
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Theorem 1.62 (Courcelle’s Theorem [51]). Every graph property definable in the monadic
second-order logic of graphs can be decided in linear time on graphs of bounded treewidth,
i.e. for a graph G of order n the problem can be decided in time f(tw(G))n.

Note that Courcelle’s theorem proves that the problem of deciding whether such a
property holds or not for a given graph is FPT but the generality of this theorem imposes
that the function f is far from optimal (it is a tower of exponentials). This is why it is
often better to construct the algorithm directly to obtain a better function of k.

It is not always possible to find an FPT algorithm for a given problem. Let XP be the
class of problems which can be solved in time O(n/*)) where f is a computable function.
Note that FPT is included in XP.

Among the problems in XP, a particular class of problems is the class W[i] where i is
an integer. We do not give the exact definition of these classes here but one can find it
in [53, Chapter 13]. By definition W[0] = FPT and W[i] C W[j] when i < j. By analogy
with NP, we say that a problem P is W[i]-hard if every problem in W[i] reduces to P in
FPT-time.

Definition 1.63 (Parameterized reduction). A parameterized decision problem P reduces
(in FPT time) to a parameterized decision problem P’ if and only if for every instance Z
of P, T is a positive instance of P with parameter k if and only if f(Z, k) is a positive
instance of P’ with parameter g(k) where g is a polynomial computable function and f
is a computable function such that the size of f(Z, k) is of the form O(h(k)|Z|°) where h
is a computable function and c is a fixed integer.

Here we are only interested in the class W[1]. The class W[1] can be seen as the class of
parameterized problems to which the problem INDEPENDENT SET, parameterized by the
solution size, reduces to in FPT-time (see [57]). Showing that a parameterized problem
is W[1]-complete implies that it is unlikely that there exists an FPT algorithm solving it.
Here is an example of such a problem.

MULTICOLORED INDEPENDENT SET Parameter: k.
Input: A graph G, an integer k and a partition of V(G) into k sets V1,...,V;.
Question: Is there a set S of exactly k vertices of GG, such that each V; contains exactly
one element of S, and S an independent set of G7

Theorem 1.64 ([162]). MULTICOLORED INDEPENDENT SET is W[1]-complete.

Hence, the previous theorem implies that it is highly unlikely that MULTICOLORED
INDEPENDENT SET admits an FPT algorithm.

Again using the ETH allows us to be more precise in the statement thanks to this
result.

Theorem 1.65 ([43]). Assuming ETH, MULTICOLORED INDEPENDENT SET cannot be
solved in time f(k) |V (G)|” where f is a computable function, and c is a fized integer.

Theorem 1.66 (Consequence of [126], see [53]). Assuming ETH, VERTEX COVER, pa-
rameterized by the solution size k, cannot be solved in time 2°F) |V (GQ)|® where c is a fived
integer.
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1.3.5 Some problems used in reductions

In this section, we list a number of problems and present their complexity. These problems
are used in Chapter 3 and Chapter 8.

OpDD CYCLE TRANSVERSAL Parameter: k.
Input: A graph G, an integer k.

Question: Is there a set of k vertices of G that can be deleted from G so that the
resulting graph is bipartite?

The NP-completeness of ODD CYCLE TRANSVERSAL follows from a result of Yan-
nakakis [206]. Moreover, ODD CYCLE TRANSVERSAL is FPT (see [166, 127]).

EDGE BIPARTIZATION Parameter: k.
Input: A graph G, an integer k.

Question: Is there a set of k edges of G that can be deleted from G so that the
resulting graph is bipartite?

EDGE BIPARTIZATION is NP-complete (see [83]) and even FPT (see [88, 163]).

VARIABLE DELETION ALMOST 2-SAT Parameter: k.
Input: A 2-CNF Boolean formula F' and an integer k.

Question: Is there a set of k variables that can be deleted from F' (together with the
clauses containing them) so that the resulting formula is satisfiable?

Even if 2-SAT is in P, VARIABLE DELETION ALMOST 2-SAT is NP-complete and
even FPT (see [53, Chapter 3.4]).

Example of proof of NP-completeness. First, note that the problem is in NP. The NP-
hardness follows from a reduction to VERTEX COVER. Let G be a graph and k be a
integer number. Introduce for each vertex v of G the variable x,. For each edge uv
introduce the set of clauses Cy: (2, V ) A (T, VTy) A (Ty V x,) A (T, V Ty). We obtain
a CNF formula F'.

If the graph G has a vertex cover S of size at most k, then we remove the variables
corresponding to the vertices of S. This removes all the clauses of F' and thus we obtain
CNF formula which is satisfiable. Conversely, if there is a set S of at most k variables
whose removal from F' creates a satisfiable formula, then we remove the vertices corre-
sponding to the variables of S in G. After removal, if some edge uv remains in G, then
Cy» remains in F after the removal of S. This is a contradiction as C,,, is a non-satisfiable
set of clauses. m

CLAUSE DELETION ALMOST 2-SAT Parameter: k.
Input: A 2-CNF Boolean formula F' and an integer k.

Question: Is there a set of k£ clauses that can be deleted from F' so that the resulting
formula is satisfiable?

CLAUSE DELETION ALMOST 2-SAT is NP-complete (see [53, Exercice 3.21] and even
FPT [165)].

k-EDGE-COLORING
Input: A graph G with maximum degree k.
Question: Does G admit a proper k-edge-coloring?
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The problem k-EDGE-COLORING was proved to be NP-Complete even for regular
graphs in [106] (for the case k = 3) and [140] (for the general case).

PLANAR VERTEX 3-COLORING
Input: A planar graph G with maximum degree 4.
Question: Does GG admit a proper vertex 3-coloring?

The problem PLANAR VERTEX 3-COLORING was proved to be NP-Complete in [83].

1.4 A little bit of algebra

In this section, we recall some classical algebraic notions. While this section is not es-
sential in order to understand this thesis, it eases the understanding of Chapter 5. We
also introduce here the Combinatorial Nullstellensatz (Theorem 1.77) which is used in
Chapter 7 and Chapter 10. For more details, we refer the reader to [203] (in French) or
any bachelor level textbook on algebra.

1.4.1 Well-founded ordering and two classical proof methods in
Graph Theory

A number of proofs in this thesis are done either by induction or by minimal counter-
example. These two types of proofs are extremely similar and rely on well-founded orders
on graphs. We first recall some definitions.

Definition 1.67 (Order). An order relation R over a set X is a subset of X2, the set of
ordered pairs of elements of X, verifying:

1. R is irreflexive (i.e. Vo € X, (x,z) ¢ R),
2. R is transitive (i.e. Vx,y,z € X, (z,y) € R and (y, 2) € R implies (z, z) € R), and
3. R is antisymmetric (i.e. Yo,y € X, (z,y) € R implies (y,z) ¢ R).

We often note xRy for (z,y) € R. A classical example of this notation is x < y where x
and y are integers and < is the order on the natural numbers.

Definition 1.68 (Well-founded order). A well-founded order R is an order over a set X
for which there is no sequence (u;);en such that (u;y1,u;) € R for all i € N i.e. there is
no infinitely decreasing sequence for R.

For example, the order < is well-founded on the set of natural numbers but is not
well-founded on the set of relative numbers. Let us now present the two proof methods.

Proof by induction. Let P be a predicate on a set X (for us it would be a set of
graphs), and let < be a well-founded order on X. To prove P(x) for every = € X it
suffices to prove that for every z € X, if P(y) holds for every y € X with y < z, then
P(x) holds.

Proof by minimal counter-example. Let P be a predicate on a set X (for us it would
be a set of graphs), and let < be a well-founded order on X. Let A = {x € X,=P(z)}.
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If A is empty, then P(x) holds for every x € X. Otherwise, by contradiction, consider x,,
a minimal element of A. Then by definition, P(y) holds for every y € X, y < x,,. In this
type of proof, we want to find a contradiction with the existence of z,,.

A proof by minimal counter-example can generally be rewritten as a proof by induction
but it is sometimes easier to write it as a minimal counter-example proof. Finally recall
that, when coloring graphs, if each part of a proof by induction is constructive, then we
can derive an algorithm from the proof to construct the coloring. These algorithms are
generally polynomial.

Let us now see how to construct well-founded orders on the set of graphs. One way to
achieve this goal is to consider the proper subgraph relation or, the weaker proper induced
subgraph relation. Even if these relations are natural, they do not offer much freedom on
which “smaller graphs” can be considered.

Another way to construct such orders is to reduce to the order on the natural numbers.
Let f be a function from the set of graphs to the set of natural numbers, and for all
graphs G and H, define G <; H if and only if f(G) < f(H). It is easy to verify
that < is a well-founded order. Some classical examples are when f,(G) = |V(G)| or
1.(G) = |E(G).

Finally we can combine multiple functions from the previous approach with each other.
Let f1, fo, ..., fr be k functions from the set of graphs to the natural numbers. The
lexicographic order < is a well-founded order where < is defined by G < H if and only if
there exists i € {1,...,k} such that f;(G) < f;(H) and for all j <1, f;(G) = f;(H). We
often note the lexicographic order by listing the functions it is composed of, for example
(IV(G)|,|E(G)]) is the lexicographic order created from the functions f, and f. of the
previous paragraph.

More generally, if <y, <o, ..., <; are k well-founded orders on the set of graphs,
then the lexicographic order (<1, <a,...,<g), noted < for short, is a well-founded order.
Here < is defined by G < H if and only if there exists i € {1,...,k} such that G <; H
and for all j < 4, neither G <; H nor H <, G.

1.4.2 Equivalence and quotient

A notion that is underlying in the theory of signed graphs (see Part I) is the notion of
equivalence. We recall some definitions here.

Definition 1.69 (Equivalence relation). An equivalence relation R over a set X is a
subset of X2, the set of ordered pairs of elements of X, verifying:

1. R is reflexive (i.e. Vz € X, (x,x) € R),
2. R is transitive (i.e. Vz,y,2 € X, (z,y) € R and (y, 2) € R implies (z,z2) € R), and
3. R is symmetric (i.e. Va,y € X, (z,y) € R implies (y,z) € R).

We often note xRy for (z,y) € R. An example of this notation is (a,b) =¢ (¢, d) where
a and c are relative integers, b and d are positive integers, and =g is equality over the
a C

rational numbers defined as (a,b) =g (c,d) if and only if ad = bc (i.e. § = § if only
if ad = be).

Definition 1.70 (Equivalence class, quotient set). The equivalence class of an element
x € X for the relation R, denoted T, is the set {y € X : xRy}. The quotient set of X for

the relation R, denoted X/R, is the set {Z: = € X}.
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Note that the T notation is also used in the context of Boolean formulas, the signifi-
cation of the notation should always be clear from the context.

Considering a property “up to equivalence” is the same as considering this property in
the quotient set. Therefore, a graph can be seen as an element of the quotient of the set
of pairs (V(G), E(G)) by the isomorphism equivalence relation. In Chapter 5 Section 5.4,
we use some notion of quotient on graphs which is defined using the notion of quotient
set.

1.4.3 Algebraic structures

Let us start by recalling some algebraic structures.

Definition 1.71 (Monoid). A monoid (G, *) is an ordered pair where GG is a set and
* : G x G — (G is a binary operation, verifying the following:

1. * is associative (i.e. V,y,2 € G, (zxy) x 2 =z *x (y x 2)),

2. (G, %) has a neutral element e (i.e. Vo € Giexx =z xe = ).

A monoid is commutative if and only if for every z,y € G, x xy = y * x. A commutative
monoid is also called an abelian monoid.

Definition 1.72 (Group). A group (G, *) is a monoid where each element has an inverse
(i.e. Vx € G,y € G,oxy = y*x = e). We generally write ! for the inverse of .
When using the + binary operation, we prefer to write —x for the inverse of x.

A group (G, %) is commutative if and only if (G, *) is commutative as a monoid. A
commutative group is also called an abelian group.

To simplify notation, we often note G for the group (G, *). If H is a subgroup of G
(i.e. H C G and (H, %) is a group), then the quotient group G/H is the group (G/N, *)
where x ~ y if and only if z*y~! € H and where the * operation, in the quotient, verifies
T*xY=2T*Y.

Definition 1.73 (Semiring). A semiring (A, 4+, X) is a triplet where A is a set and +
and x are two binary operations, verifying the following:

1. (A, +) is a commutative monoid with neutral element 0,
2. (A, x) is a monoid with neutral element 1,

3. X is distributive over + (i.e. Va,y,z € A,x X (y+2) =xxy+zxzand (y+2)xx =
yXax+zXxXz),

4. 0 is an absorbing element for x (i.e. Ve € A, 0 x z =2z x 0 =0).

A semiring is commutative if and only if (A, X) is a commutative monoid. A semiring has
the cancellation property if and only if Vz,y,z € A, (x X y = x X z implies y = z) and
(y X x = z x x implies y = z). A commutative semiring is also called an abelian semiring.

Definition 1.74 (Ring). A ring (A, +, X) is a semiring where (A, +) is a group. A ring
is commutative if and only if (A, X) is a commutative monoid. A ring has the cancellation
property if and only if it has the cancellation property as a semiring. A commutative ring
is also called an abelian ring.
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Definition 1.75 (Field). A field (F,+, x) is a ring where (F, x) is an abelian group.

In this thesis, we only consider commutative fields. Note that some authors consider
fields to are non-commutative. Note also that a field has the cancellation property.

Recall that a polynomial is a finite sum of monomials and a monomial is the product
of a coefficient and a finite list of indeterminates with possibly some repetitions.

Example 1.76. Some examples in mathematics:
. The structure (N, +), where N is the set of natural numbers, is an abelian monoid.
. The structure (Z,+), where Z is the set of relative numbers, is an abelian group.

1
2
3. The structure (N, +, x) is an abelian semiring.
4

. The structure (N[(X;)ien], +, X), where N[(X;);en] is the set of polynomials with
coefficients in N over the indeterminates (X;);en, is an abelian semiring.

ot

The structure (Z, +, x) is an abelian ring.

6. The structures (Q,+, x) and (R, +, x), where Q is the set of rational numbers, and
R is the set of real numbers, are fields.

7. The structure ({—1,1}, x) is an abelian group.

8. The structure (M, (R), +, x), where M,,(R) is the set of n x n matrices over the
set of reals, is a non-commutative ring.

9. The structure (F[X], +, x), where F[X] is the set of polynomials with coefficients
in the field I, is an abelian ring.

10. The structure F, = (Z/pZ,+, x) is an finite field.
Other examples in graphs:

11. The structure (&,W), where & is the set of graphs and W is the disjoint union
operation (i.e. G & Gy is the graph containing two disjoint copies of G; and Gs),
is an abelian monoid.

12. The structure (&, W, *), where * is either the Cartesian product of graphs [J (see
[169]), the tensor product of graphs x (see [192] volume 2 p.384), the strong product
of graphs X (see [169]) or the lexicographical product of graphs - (see [96]), is a
semiring. You can find more discussion about these products in Chapter 5.

1.4.4 Combinatorial Nullstellensatz

Let us conclude this section by presenting the Combinatorial Nullstellensatz. Take a
graph G, an induced subgraph H of G and a k-vertex coloring ¢ of H. One might want
to extend c to all vertices of G but this might be very complicated to do manually. Let
us see how to use the Combinatorial Nullstellensatz.

Theorem 1.77 (Combinatorial Nullstellensatz [4]). Let F be an arbitrary field, and let
P = P(Xy,...,X,) be a polynomial in F[Xy,...,X,]. Suppose that the coefficient of a
monomial Xt .. .X;fp, where each k; is a non-negative integer, is non-zero in P and the
degree deg(P) of P equals >-F_ k;.

If moreover Sy, ..., S, are any subsets of F with |S;| > k; fori=1,...,p, then there
are s1 € S1,...,8, € S, so that P(sy,...,s,) # 0.
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Let vy, ..., v, be the vertices of V(G) \ V(H) and vp41, ..., v, be the vertices of H.
For each vertex v; € V(G)\ V(H), let S; = {1,...,k} \ {c(u) : we€ N(v;)NV(H)}. By
definition, only the colors of S; can be assigned to v; without creating a conflict with a
neighbor of v; in H. Let P be the following polynomial:

P(X1,...,X,) = ﬁ 1 x.—X).

i=1v; €N (vi)
j<i

Suppose that ¢’ is an extension of ¢ to G such that ¢/(v;) € S;. Note that ¢ is proper if
and only if for every integer ¢ and j such that j < i < p and vv; € E(G), ¢'(i) —'(j) # 0.
In particular ¢ is proper if and only if P(c/(vy),. .., (v,)) # 0.

Let us suppose that we can apply the Combinatorial Nullstellensatz: suppose that P
has a maximal non-zero monomial X" .. .XI’,“P where ¥ | k; = deg(P) and that each k;
verifies k; < |S;|. By the Combinatorial Nullstellensatz, there are s; € Sy,...,s, € S,
such that P(sy,...,s,) # 0.

Now let ¢ be an extension of ¢ to G defined by ¢(v;) = s; for every i < p. Note that
by definition of the s;’s, P(c/(v1),...,¢(v,)) # 0 and thus ¢ is proper. Hence we were
able to extend c to G.

Note that the previous procedure relies on two parts. The first consists in finding the
sets S;’s and the polynomial P. While finding the sets is often easy, it is the set of colors
which do not create a conflict, it might be more difficult to find the polynomial depending
on the problem. In this thesis, all polynomials are fairly simple.

The second step is finding the right monomial in P and showing that it has a non-zero
coefficient. Remark that it is likely that no such monomial exists in P, in this case, one
has to start again by changing the subgraph H. When the polynomial is of constant size
(i.e. when we want to remove a fixed structure like a triangle), we can just exhibit the
monomial and its coefficient. When the polynomial can have an arbitrary size, we must
find manually a monomial and find a formula to show that it is non-zero.

We use the Combinatorial Nullstellensatz in Chapter 7 and Chapter 10.
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Chapter 2

Introduction to signed graphs

The subject of this first part is the study of different problems on signed graphs. The goal
of this chapter is to present what are signed graphs and to provide tools to manipulate
them.

Signed graphs are a type of graph with two types of edges: positive edges and negative
edges. They were introduced by Heider in [97] and latter formalized by Harary in [92]
to model problems in social psychology [40, 178]. In these applications, the vertices are
actors in a social environment (people in a given community, countries...) and the two
types of edges model some notion of friendship (people who like/dislike each over, alliances
and political tension for countries...). For more details about the diverse applications of
signed graphs, we refer the reader to Section 2.1.4.

Contents
2.1 Key definitions . . . . .. ... 00000 oo oo s s 54
2.1.1 Definition of signed graphs . . . . ... ... ... ... .. .. 54
2.1.2 Balance of cycles, equivalence of signed graphs . . . .. .. .. 55
2.1.3 Switching . . . . . ... 55
2.1.4 Applications of signed graphs . . . . . ... ... ... ... .. 58
2.2 Homomorphisms and coloring of signed graphs . .. ... .. 58
2.2.1 Homomorphisms of signed graphs . . . . . .. .. .. ... ... 59
2.2.2 Coloring of signed graphs . . . . . .. .. .. ... ... ... 60
2.2.3 Sign-preserving homomorphisms and sign-preserving colorings . 61
224 Signed cliques . . . . . . ... 62
2.3 Classesofcycles . ... ... ... ... e 63
2.4 Complexity . . . . .. i e e e e 64
2.5 Similar notions and generalizations . . . . . . ... ... .... 65

We mainly follow the terminology of [153]. Most definitions in this chapter come from
[92, 154, 208].
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2.1 Key definitions

2.1.1 Definition of signed graphs
Let us start with the formal definition of a signed graph.

Definition 2.1 (Signed graph). A signed graph (G, o) is a graph G, called the underlying
graph of (G, o), along with a function ¢ : E(G) — {+1, —1} called the signature of (G, o).
For every edge e of G, o(e) is the sign of e. For the sake of simplicity, we sometimes use
+ (resp. —) instead of +1 (resp. —1) for the sign of an edge. The edges in 0~!(+1) are
the positive edges of (G, o) and the edges in o71(—1) are the negative edges of (G, o).

If the underlying graph G of a signed graph (G, o) has some property (e.g. G is planar,
simple, bipartite, complete...) then we say that (G, o) has this property (e.g. (G,0) is
planar, simple, bipartite, complete...). A signed graph (G, o) is all-positive (resp. all-
negative) if it does not have negative edges (resp. positive edges). Unless stated otherwise,
signed graphs are simple. See Figure 2.1 for examples of signed graphs. When drawing
signed graphs, we always represent positive edges with blue edges and negative edges with
discontinuous red edges.

(a) A signed graph having the Petersen graph as underlying graph.
A

R BN

- -

......... e
(b) The complete signed graph K. (c) The complete signed graph K .

Figure 2.1: Examples of signed graphs.

Notation 2.2. We often denote a signed graph (G, o) as (G,X) where ¥ is the set of
negative edges, that is ¥ = o71(—1). This allows us to easily state the signature of the
signed graph. These two ways to represent a signed graph are equivalent and will be used
interchangeably.

We note K\ (resp. K, ) for the complete signed graph (K, @) (resp. (K, E(k}))) of

order p with only positive (resp. negative) edges. See Figure 2.1(b) and Figure 2.1(c) for
examples of complete signed graphs.
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2.1.2 Balance of cycles, equivalence of signed graphs

One key concept of the theory of signed graphs is the notion of balance.

Definition 2.3 (Balance). Let (G, o) be a signed graph and W be a walk s, ..., s, in G.
We say that W is a balanced walk if (W) = o(s9s1)o(s182) ... 0(8iSi11) .. 0(Sp_18,) =1
and an unbalanced walk otherwise. Similarly, this notion can be extended to closed walks,
paths and cycles.

A signed graph where all closed walks are balanced is said to be balanced. A signed
graph (G, o), such that (G, —0) is balanced, is antibalanced (—o is the function which
assign to each edge e of G the sign —o(e)). In general, for the same ordinary graph G,
there are several signatures o for which (G, o) is balanced.

We note an unbalanced path (resp. balanced path) of order k by U Py, (resp. BP;) and
an unbalanced cycle (resp. balanced cycle) of order k by UCj (resp. BCy). Note that
there are multiple signed cycles/paths with the same length and the same balance. These
notations refer to any cycle/path with those characteristics.

These notions of balanced and antibalanced graphs where introduced by Harary in [92].
See Figure 2.2 for an example of a balanced signed Petersen graph with some negative
edges.

Figure 2.2: A balanced signed Petersen graph.

2.1.3 Switching

The following important operation on signed graphs was introduced by Zaslavsky in [208].

Definition 2.4. Let (G,0) be a signed graph and v be a vertex of G. To switch v
is to create the signed graph (G,o¢’) where ¢’(e) = —o(e) when e is incident to v and
o'(e) = o(e) otherwise. To switch a set X of vertices of (G, o) is to create the signed
graph (G, 0’) where ¢’ is obtained by switching every vertex of X, in any order (it is not
difficult to see that the order does not matter).

See Figure 2.3 for some examples.

Lets us state some easy observations. Switching a vertex v of (G, o) twice does nothing.
Switching a set X of vertices of (G, o) creates the signed graph (G, o’) where for every
edge uv of G, o(uv) = —o’(uv) if and only if one of u and v belongs to X and the other
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(a) The signed graph (G, o). (b) The signed graph (G, o). (¢) The signed graph (G, d").

Figure 2.3: Example of switchings. The signed graph (G,¢’) is obtained from (G,o) by
switching d. The signed graph (G,c”) is obtained from (G, o¢’) by switching f. Alternatively,
(G, 0") is obtained from (G, o) by switching { f, d}.

does not belong to X. Switching a set X of vertices of (G, o) creates the same signed
graph as switching the set V(G) \ X. The previous observations imply the following
remark.

Remark. The switching operation on a signed graph (G, o) consists exactly in choosing
an edge cut F(X,V(G)\X) of G and negating the signs of all the edges of E(X, V(G)\ X).

Zaslavsky in [208] defined the notion of equivalent signed graphs.

Definition 2.5 (Equivalence of signed graphs). Two signed graphs (G, o01) and (G, 09)
on the same underlying graph G are equivalent if and only if we can obtain (G, o2) from
(G, 1) by switching a subset of vertices of (G, o1). In this case, we note (G, 1) = (G, 03).
We also say that the two signatures o; and o are equivalent and we note o1 = o5.

One can observe that switching does not change the balance of closed walks. This
follows from the following observation.

Observation 2.6 (Zaslavsky [208]). If C is a cycle of a graph G, then switching any
number of vertices of G does not change the sign of C.

This implies that every signed graph obtained from (G, o) by switching a subset of
vertices has the same set of balanced (resp. unbalanced) closed walks. In fact, the set of
signed graphs on the underlying graph G with the same set of balanced (resp. unbalanced)
closed walks as (G, o) is exactly the equivalence class of (G, o).

Theorem 2.7 (Zaslavsky [208]). Two signed graphs on the same underlying graph G are
equivalent if and only if they have the same set of balanced cycles.

The previous theorem implies that we can work with the balance of closed walks or
with switchings depending on which notion is the easiest to use when treating equivalence
of signed graphs.

As mentioned before, two signed graphs (G, 1) and (G, 02) can both be balanced even
if 01 # 09. Nonetheless, as highlighted by their equivalence, these two signed graphs have
similar properties.

Let us see some examples. The signed Petersen graph in Figure 2.2 is equivalent to the
signed Petersen graph with only positive edges. Two signed cycles of the same length are
equivalent if they have the same parity of positive (resp. negative) edges. In particular all
paths (resp. cycles) with the same length (resp. the same length and the same balance)
are equivalent. Two signed forests with the same underlying graph are equivalent. See
Figure 2.4 for one more example.

The following theorem follows from the proof of Theorem 2.7.

page 56 Dimitri Lajou



Chapter 2. Introduction to signed graphs

Figure 2.4: Three equivalent signed graphs.

Theorem 2.8 (Zaslavsky [208]). For any two signed graphs (G,o1) and (G,09) on the
same underlying graph G, we can test in O(|E(G)|) time whether they are equivalent or
not.

Independently, Harary and Kabell proposed an algorithm to determine if a graph is
balanced using similar techniques [94].

In order to understand how Zaslavsky’s algorithm works, we need to understand how
to switch a signed tree so that the resulting signed tree is all-positive. Let (T, 7) be
our signed tree. Suppose that uv is a negative edge of (T, 7). Let V, be the set of
vertices connected to the vertex u in T'— uv. Switching V,, modifies the sign of the edge
cut E(V,,V(T)\V,). As T is a tree, only uv changes sign and becomes positive. Hence we
were able to reduce the number of negative edges in our tree. By repeating this process,
we can create the all-positive signed tree (T, &).

Now consider that we are given two signed graphs (G,o01) and (G, 03) on the same
underlying graph G. W.l.o.g. we assume that G is connected, otherwise we could perform
the same procedure on each connected component. Choose a spanning tree 7" in G' and
perform switchings on both graphs in such a way that 7" becomes all-positive. We obtain
(G,07) and (G, d}) after the last step. If of = o} then (G, 0}) and (G, o}) are equivalent,
otherwise they are not. Indeed, if an edge uv verifies o (uv) # o (uv) then wv ¢ E(T).
Consider the unique positive path in 7" joining u and v, the cycle composed of this path
and the edge uv is balanced in one signed graph and unbalanced in the other, hence the
two graphs are not equivalent.

Using a spanning tree is a powerful technique when studying signed graphs. We use
this technique explicitly and implicitly in Chapter 4 and Chapter 5.

2.1.4 Applications of signed graphs

As mentioned in the introduction, signed graphs were designed to model social relation-
ships. The sign of the edge between two vertices models the relationship between the
vertices. A classical example of this is the study of the relationships between countries
involved in both World wars [7].

A central notion of the theory of signed graphs, the balance of cycles, takes a partic-
ular meaning in social studies: this notion characterizes stable situations from unstable
situations. An example, in the context of countries, can be described as follows: consider
three countries A, B and C, B is allied with A and C' while A and C' are about to declare
war. In this example, the country B will side with one of A or C, thus changing the
nature of their relationship. The same situation but where A and B are already at war, is
stable since the war declaration between A and C' will not change the relation between A
and B nor between B and C. Stable situations are represented by balanced cycles while
unbalanced cycles represent unbalanced situations.
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Another notion, called the frustration index of a signed graph, is the minimum number
of edges to remove from a signed graph (G, o) in order to obtain a balanced signed graph.
This notion was introduced by Harary [93] under the name of line index of a signed graph.
This notion has been extensively studied (e.g. see [67, 94, 111, 149]) and has applications
in particular in physics. One such application is for ferromagnetic materials under the
Ising model [182, 193]: each vertex has spin up or down, these vertices can switch spin
(i.e. exchange up with down) which also changes the interaction between the vertices. As
the state with the least negative edges, which can be obtained by switching, corresponds
to a minimisation of the energy of the system, these materials tend to converge to this
state. Unfortunately, computing the frustration index is NP-hard [111].

2.2 Homomorphisms and coloring of signed graphs

As we will see, there are multiple definitions of coloring for signed graphs. One of those
colorings was introduced by Zaslavsky in [208]. In this thesis, we will not consider this
coloring.

The one we are the most interested in is the notion of coloring presented by Naserasr,
Rollova and Sopena in [154]. This notion relies on the generalization of the concept of
homomorphism in the context of signed graphs.

2.2.1 Homomorphisms of signed graphs

Let us see how the concept of homomorphism is defined on signed graphs.

Definition 2.9 (Homomorphism of signed graphs). A homomorphism from a signed graph
(G, 0) to a signed graph (H, ) is a homomorphism ¢ from G to H which maps balanced
(resp. unbalanced) closed walks of (G, o) to balanced (resp. unbalanced) closed walks
of (H,).

Alternatively, a homomorphism ¢ from (G, o) to (H,7) is a homomorphism from G
to H such that there exists a signature ¢’ of G with ¢’ = o, such that if uv is an edge of
G, then 7(p(u)p(v)) = o' (uv).

When there is a homomorphism from (G, o) to (H, ), we note (G,0) — (H,7) and
say that (G, o) maps to (H,m). Here (H, ) is the target graph of the homomorphism.

See Figure 2.5 for an example of homomorphism of signed graphs.

(a) The signed graph (G, o). (b) The signed graph (G, o). (c) The signed graph (H, ).

Figure 2.5: An example of a homomorphism ¢ from a signed graph (G, o) to a signed graph
(H,m) where p(a) = ¢(d) = 1, ¢(b) = 2, ¢(f) = ¢(c) = 3 and p(e) = 4. The signed graph
(G,0') is a signed graph equivalent to (G, o) such that the edges of (G,¢’) and their images
through ¢ have the same sign.
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Proposition 2.10 (Naserasr, Rollovd and Sopena [154]). The following statements hold.

1. If (G,0) —s (H,7), (G,0) = (G,0') and (H,n) = (H,n') then (G,0') — (H,7'),
2. Zf (A7 UA) —s (B7UB) and (Bva—B) —s (Cv O_C) then <A70A) —s (07 UC')'

Note that the previous proposition implies that, when trying to construct a homomor-
phism from (G, o) to (H, ), we can always switch the signed graph (H, ) in order to fix
a simpler target graph.

Definition 2.11 (Chromatic number of signed graphs). Let (G, o) be a signed graph.
The chromatic number of (G, o), denoted x(G, o), is the order of the smallest simple
signed graph (H,m) for which (G,0) — (H, 7).

Note that by definition, xs(G,0) > x(G) for every signed graph (G, o).

Recall that we can construct homomorphisms of graphs through a sequence of identi-
fications. In the rest of this thesis, a digon will be a UCj, i.e. two vertices linked by two
edges, one positive and one negative. As we require the target graph in a homomorphism
of signed graphs to be simple, we must be sure to never create digons nor loops when
identifying vertices. A digon is created when we identify two vertices u and v which are
endpoints of a U P3 path.

Hence, before identifying two non-adjacent vertices u and v, we need to switch the
signed graph in order to remove every U P; containing u and v. Note that this is not
always possible. For example, in the unbalanced cycle UCY, we cannot identify any pair
of vertices.

We say that two vertices u and v of a signed graph (G, o) are identifiable if and only
if there exist o’ equivalent to o such that, in (G,0’), u and v can be identified without
creating a loop nor a digon. The following theorem gives a characterization of identifiable
vertices.

Theorem 2.12 (Naserasr, Rollova and Sopena [154]). Two vertices of a signed graph are
identifiable if and only if they are not adjacent and do not belong to the same UCy.

In Figure 2.5, we identified the two pairs of vertices {a,d} and {c, f} in (G,0’) to
create (H,m). Note that (H,7) does not contain any pair of identifiable vertices by
Theorem 2.12.

2.2.2 Coloring of signed graphs

As for undirected graphs, we can define a notion of k-coloring for signed graphs. This
leads to an alternative definition of the chromatic number of signed graphs.

Definition 2.13 (k-coloring of signed graphs). A signed graph (G, ) admits a k-coloring
if there exists ¢’ = o such that (G, o’) admits a proper vertex coloring ¢ : V(G) — [k]
verifying that for every i,j € [k], all edges wv with ¢(u) = ¢ and ¢(v) = j have the same
sign in (G, 0’).

The chromatic number xs(G, o) of (G, o) is the smallest k such that (G, o) admits a
k-coloring.
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As for ordinary graphs, one can create a homomorphism from a coloring: the colors
are the vertices of the target graph. To construct a coloring of a signed graph (G, o)
from a homomorphism ¢ from (G, o) to a signed graph (H, ), it suffices to color the
vertices of G with their image through ¢ and switch (G, o) in such a way that each edge
has the same sign as its image through the homomorphism (see Figure 2.6). In order to
find which vertices to switch to achieve this signature, one can satisfy a particular 2-SAT
formula with variables (2,)uev(c) and switch the vertices assigned to true. Such a formula
can be constructed as follows: for each edge wv € E(G), if uv has the same sign as its
image through ¢ then add the two clauses (z, V 7y)(Zy V @), i.e. v and v must both be
switched or both not be switched. If uv does not have the same sign as its image then
add to the 2-SAT formula the two following clauses: (7, V Ty)(x, V 2,), i.e. exactly one
of v and v must be switched. Note that such a formula is always satisfiable by definition
of a homomorphism.

Figure 2.6: A coloring of a signed graph. This coloring is a coloring of the graph (G, ') of
Figure 2.5 obtained from the homomorphism presented in the figure.

Note that, if (G, o) is a balanced (resp. antibalanced) signed graph then x,(G, o) =
X(G). Indeed if G — H, then (G,0) —, (H,2) (recall that (H, @) is the all-positive
signed graph with underlying graph H) as every closed walk of (H, &) is balanced.

Note that a k-coloring of (G, o) is also a k-coloring of (G, —c). We can state a more
precise statement with the following observation.

Observation 2.14. Let (G,0) and (H,m) be two signed graphs.We have (G,0) —
(H, ) if and only if (G, —0) —s (H,—m). In particular, xs(G,0) = xs(G, —0).

This observation is useful when trying to simplify the case analysis. In particular in
Chapter 3, we reduce some complexity problems to others using this observation.

2.2.3 Sign-preserving homomorphisms and sign-preserving col-
orings
Let us see another important type of homomorphism and coloring of signed graphs.

Definition 2.15 (Sign-preserving homomorphism of signed graphs). A sign-preserving
homomorphism from a signed graph (G, o) to a signed graph (H, ) is a homomorphism
¢ from G to H such that for every edge e € E(G), m(¢(e)) = o(e). When there is a
sign-preserving homomorphism from (G, o) to (H, ), we note (G,0) —?® (H, ).

A signed graph (G, o) admits a sign-preserving k-coloring if (G, o) admits a proper
vertex coloring ¢ : V(G) — [k] verifying that for every i,j7 € [k], all edges uv with
c(u) =i and ¢(v) = j have the same sign.

The sign-preserving chromatic number of a signed graph (G, o), denoted x2(G,0), is
the smallest order of a simple signed graph (H,7) such that (G,o) —?® (H, ). Alterna-
tively, it is the smallest &k for which (G, o) admits a sign-preserving k-coloring.
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Note that a signed graph can be interpreted as a 2-edge-colored graph where the two
colors are +1 and —1. With this interpretation, a sign-preserving homomorphism is the
same object as a homomorphism of 2-edge-colored graphs. This is why, in the literature,
we often find the term 2-edge-colored graph to designate a signed graph for which we do
not allow switchings. Note however that by specifying that the two colors are +1 and —1
in signed graphs, we obtain an object with more structure than just the two colors as we
can reason on signs.

For example, with the notation of Figure 2.5, ¢ is a sign-preserving homomorphism
from (G,0’) to (H, ). Note that there is no sign-preserving homomorphism from (G, o)
to (H, ).

The notion of sign-preserving homomorphism is related to homomorphisms of signed
graphs through the following construction.

Definition 2.16 (Double switching graph). The double switching graph of (G, o), denoted
DSG(G, o), is the signed graph constructed as follows.

1. The vertex set of DSG(G, o) is V(G) x {0,1},

2. for every edge uv of G, we create the following four edges (u,0)(v,0), (u,1)(v, 1),
(u,0)(v,1) and (u, 1)(v,0), the first two edges having sign o(uv) and the latter two
edges having sign —o(uv).

See Figure 2.7 for an example of a double switching graph.

(a) A signed graph (G, o). (b) The double switching graph
DSG(G, o).

Figure 2.7: An example of a double switching graph. For simplicity, a vertex (z,e) of

DSG(G, o) with x € {a,b,c,d} and € € {0, 1} is noted ze.

The following theorem justifies such a construction.

Theorem 2.17 (Brewster, Foucaud, Hell and Naserasr [28]). Let (G,0) and (H,n) be
two signed graphs. The following are equivalent.

1. (G,0) — (H,7),

2. (G,0) —? DSG(H, ) and,

3. DSG(G,0) —* DSG(H, ).

We can also construct sign-preserving homomorphism by a sequence of identifications.
Here two vertices u and v can be identified if and only if they are not adjacent and if
there is no vertex w in (G, o) such that o(uw) # o(wv). The path u, w, v is an alternating

path. In general, a walk (resp closed walk) so,sq,dots, s, is alternating if and only if
0(8i8i41) # 0(Siy18i42), for every i € [0,n — 2] (resp. i € [0,n — 1]).
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2.2.4 Signed cliques

The notion of homomorphism allows us to generalize the notion of cliques.

Definition 2.18 (Signed clique). A signed graph (G, o) is a signed clique if x5(G,0) =
|V (G)|. The absolute signed clique number of a signed graph (G, o), denoted w,s(G, o) is
the order of the largest subgraph of (G, o) which is a signed clique. The relative signed
clique number of a signed graph (G, o), denoted w,s(G, o) is the greatest number of vertices
which are pairwise non-identifiable in (G, o).

Note that xs(G,0) > ws(G,0) > wes(G,0). Signed cliques are interesting as it is
easy to verify whether a given signed graph is a signed clique or not (see Theorem 2.12)
and their chromatic number is very easy to compute. Because of this, they make useful
examples for bounds on the chromatic number. See Figure 2.8(a) and Figure 2.8(b) for
some examples.

(a) A signed clique. (b) Another signed clique. (¢) An sp-clique which is not a
signed clique.

Figure 2.8: Two examples of a signed cliques (a) and (b) and an example of an sp-clique (c).

Other interesting cliques in signed graphs are sp-cliques.
Definition 2.19 (sp-clique). A signed graph (G, o) is an sp-clique if x2(G,0) = |V (G)|.

An sp-clique is the same concept as a 2-edge-colored clique. See Figure 2.8(c) for an
example.

One can easily transform an sp-clique into a signed clique by creating a new vertex
adjacent to all the other vertices of the sp-clique with positive edges.

2.3 Classes of cycles

One important part of the study of signed graphs is to study the signed cycles. As we
saw, a signed cycle can be balanced or unbalanced. Another, more usual, way to divide
cycles is through the parity of their lengths. Indeed even cycles behave differently than
odd cycles.

This implies that we can separate the set of all signed cycles into four families BC¢,ep,
BC\aa, UCeyen, and UC,44, depending on the parity of the number of negative edges (even
for BCepen, and BCyyq and odd for UC,,e, and UC,qq) and the parity of the length of the
cycle (even for BCeyen, and UCeye, and odd for BC,qq and UC,44). See Figure 2.9(a) for

some examples.

Note that every graph has balanced even closed walks as long as it is non-empty.
Indeed, if uv is an edge of a signed graph (G, o), the closed walk uvu is balanced even.
The class of graphs with only signed cycles in BC,,., is the class of bipartite balanced
signed graphs, i.e. signed graphs which are bipartite (they do not have odd cycles) and
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even length odd length
Boeven BCodd
balanced <> /\ O D' O N
‘Y. I{.
balanced <>UCA" UCoua
unbalance S < ‘) Q I:" :.:" I~/‘

(a) The usual division between balanced/unbalanced and even/odd for signed
cycles with some examples.

number of edges
even number of negative
odd number of negative

even number of positive | odd number of positive

BClyen BClaa
U Codd UCeven

(b) The same classes divided according to the parity of the number of edges of each sign.

Figure 2.9: Classes of signed cycles.

balanced (all of their cycles are balanced). Note that a bipartite balanced signed graph
(G, o) verifies x5(G, o) = x(G) = 2 since every such graph is balanced, and thus equivalent
to (G, @) which verifies xs(G, @) = x(G).

The most difficult class to manipulate is the class UC.,.,. Indeed this class contains
the signed graph UC, which forbids identifications of some non-adjacent vertices (see
Theorem 2.12).

This intuition is confirmed when looking at the chromatic number of signed cycles.

Theorem 2.20. Let (C,0) be a signed cycle. We then have:
1. x5(C,0) =2 if (C,0) € BCeyen,
2. xs(C,0) =3 if (C,0) € BCohyq U UCloya,
3. xs(Cyo) =4 1if (C,0) € UCepen-

Proof. By [60], we already have the upper bounds. A homomorphism of signed graphs
is also a homomorphism of graphs thus x(C) < x(C, o). This proves the lowers bounds
for the first two cases. Let (C,0) = UCy, and suppose xs(C,0) < 3. Then (C,0) —
(K3, m). In each case, (K3, ) can be switched either to be all-positive or to be all-negative.
This means that (C, o) can be switched either to be all-positive or to be all-negative, which
is not the case as UCy, has an odd number of negative edges and an odd number of positive
edges, a contradiction. We get the desired lower bounds in each case. O

The table in Figure 2.9(b) gives a more accurate representation of the division between
these classes. The “more complicated” class UCl,., is the furthest away from the simplest,
BCpen, and we can see the symmetry between BC\,qq and UC,4q. This representation is
important to keep in mind, as at first glance, UC,4; seems to be the more complex class
while in reality, UCeyep, is.

We can define the equivalent of a subgraph for signed graphs.

Definition 2.21 (Signed subgraph). A signed subgraph (H, oc[H]) of a signed graph (G, o)
is a signed graph such that H is a subgraph of G and for every edge e of H, o[H|(e) = o(e).
For a subset X of vertices of G, the induced signed subgraph (G,0)[X] of (G, o) (or signed
subgraph of (G, o) induced by X), is the signed subgraph (G[X],o[X]) of (G,0) for
which o[ X]| = o[G[X]].
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2.4 Complexity

Let us define two decision problems. Let (H, ) be a fixed signed graph.

SIGNED-(H, )-COLORING
Input: A signed graph (G, o).
Question: Do we have (G,0) —, (H,7)?

(H,7)-COLORING
Input: A signed graph (G, o).
Question: Do we have (G,0) —? (H,m)?

The switching core (s-core for short) of a signed graph (G, o) is the smallest subgraph
(H,m) of (G, o) for which (G,0) —, (H, 7). A signed graph (G, o) is a switching core if
(G, 0) is its own switching core. The switch-preserving core (sp-core for short) of a signed
graph (G, o) is the smallest subgraph (H,x) of (G, o) for which (G,0) —? (H, 7). A
signed graph (G, o) is an switch-preserving core if (G, o) is its own sp-core.

We have the following characterization for the complexity of SIGNED-(H, 7)-COLORING.

Theorem 2.22 (Brewster, Foucaud, Hell and Naserasr [28] and Brewster and Siggers [29]).
Let (H,m) be a signed graph. SIGNED-(H,7)-COLORING is in P if the s-core of (H,m)
has at most two edges, and is NP-complete otherwise.

To this date, there is no similar characterization for (H, 7)-COLORING.

2.5 Similar notions and generalizations

There are many parallels between the study of signed graphs and the study of oriented
graphs. In both cases, we have two types of edges: positive and negative for signed graphs
and two orientations for oriented graphs. The notion of homomorphism of oriented graphs
has many parallels with the notion of sign-preserving homomorphisms.

Oriented graphs also have their own switching operation.

Definition 2.23 (Pushable oriented graphs). Let 8 be an oriented graph. Pushing a
vertex v of 8 consists in inverting the orientation of all the edges incident with v. Two
oriented graphs are equivalent if one can transform one into the other by a sequence of
pushings. A pushable oriented graph 8 is an equivalence class of this equivalence relation.

From these notions, we can derive the corresponding homomorphism and coloring
notions. It is often interesting to look at oriented graphs when dealing with signed graphs
as they have similar behaviors. See [175] for more details on oriented coloring.

A way to generalize signed graphs is to allow the signs to belong to any group.
Definition 2.24 (Gain graph). A gain graph is a graph where the edges are given an

orientation and labelled by elements of a group G. If the edge wv is labelled by ¢ then vu
is labelled by ¢!, the inverse of g.

We could define a notion of switching on gain graphs, this would correspond to mul-
tiplying all the edges incident with a vertex v by some element of G (by taking the
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orientation into account). Note that a signed graph is a gain graph where the group is
({=1,1}, x). Note that for gain graphs most of the useful properties of signed graphs
are not guaranteed. For example, with such a definition of switching, if GG is not abelian
then the switching operation is not commutative. Moreover, some cycles with different
products may be equivalent, for example it is the case for every triangle labelled with the
group ({0,1,2},+).

One particular case which preserves many properties of signed graphs is the case of
gain graphs with groups of the form ({0, 1}", @) where p is a positive integer and @ is the
bit-wise addition. They correspond to graphs where each edge is assigned multiple signs.

Another generalization, called biased graphs, has properties similar to signed graphs
(for more details see [209, 210]).
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Chapter 3

Complexity of edge-colored and
signed graphs modification problems

Graph coloring problems such as k-COLORING are among the most fundamental prob-
lems in algorithmic graph theory. The problem H-COLORING is a homomorphism-based
generalization of k-COLORING that is extensively studied [35, 71, 98, 150].

In this chapter, we consider parameterized variants of H-COLORING (resp. SIGNED-
(H,7)-COLORING) where H is an edge-colored graph (resp. (H,m) is a signed graph).
We allow loops and multiple edges, but multiple edges of the same color are irrelevant in
H (resp. (H,m)).

For edge-colored graphs H, the H-COLORING problems are well-studied, see for ex-
ample [16, 26, 25, 27, 28]. They are special cases of Constraint Satisfaction Problems
(CSPs). A large set of CSPs can be modeled by homomorphisms from general relational
structures to a fixed relational structure H [71]. The corresponding decision problem is
noted as H-CSP. When H has only binary relations, H can be seen as an edge-colored
graph (a relation corresponds to the set of edges of a given color) and H-CSP is exactly
H-COLORING. The complexity of H-CSP has been the subject of intensive research in
the last decades, since Feder and Vardi conjectured in [71] that H-CSP is either in P or is
NP-complete — a statement that became known as the Dichotomy Conjecture. The latter
conjecture was recently solved in [33, 214] independently; the criterion for H-CSP to be
in P is based on certain algebraic properties of H. Nevertheless, determining whether
a structure H satisfies this criterion is not an easy task (even for targets as simple as
oriented trees [35]). Thus, the study of more simple and elegant complexity classifications
for relevant special cases is of high importance.

The complexity of H-COLORING when H is uncolored is well-understood: it is in P
if H contains a loop or is bipartite; otherwise it is NP-complete [98]. This was one of
the early dichotomy results in the area. On the other hand, when H is a 2-edge-colored
graph, it was proved that the class of H-COLORING problems captures the difficulty of
the whole class of H-CSP problems [28], and thus the dichotomy classification for this
class of problems is expected to be much more intricate.

Our goal is to study generalizations of H-COLORING problems for edge-colored graphs
by enhancing them as modification problems. In this setting, given a graph property P
and a graph operation m, the graph modification problem for P and m asks whether an
input graph G can be made to satisfy property P after applying operation 7 a given
number k of times. This is a classic setting studied extensively both in the realms of
classical and parameterized complexity, see for example [37, 52, 129, 141, 205]. In this
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context, the most studied graph operations are vertex-deletion and edge-deletion, see the
seminal papers [141, 205].

For a fixed graph H, let P(H ) denote the property of admitting a homomorphism to H.
Certain standard computational problems can be stated as graph modification problems
for P(H). For example, VERTEX COVER is the graph modification problem for property
P(K1) and operation vertex-deletion. Similarly, ODD CYCLE TRANSVERSAL and EDGE
BIPARTIZATION are the graph modification problems for P(K3) and vertex-deletion, and
P(Ks,) and edge-deletion, respectively.

When considering signed graphs (which can be viewed as edge-colored graphs with
only two edge-colors), another operation of interest is switching. Switching a vertex of a
signed graph transforms a signed graph into another, therefore we can view switching as
a modification operation on signed graphs for the (H, 7)-COLORING problem.

Signed graph can be manipulated with two types of homomorphisms: sign-preserving
homomorphisms, in which case they behave like 2-edge-colored graphs, or homomor-
phisms of signed graphs, for which switching is unlimited. This lead us to also consider
modification problems (vertex deletion and edge deletion) for SIGNED-(H, 7)-COLORING.

Let us now formally define the problems we will consider (the parameter is always k).

VERTEX DELETION H-COLORING Parameter: £.
Input: An edge-colored graph GG, an integer k.
Question: Is there a set S of at most k vertices of G such that (G — S) — H?

EDGE DELETION H-COLORING Parameter: k.
Input: An edge-colored graph G, an integer k.
Question: Is there a set S of at most k edges of G such that (G —S) — H?

LIMITED SWITCHINGS (H, 7)-COLORING Parameter: k.
Input: A signed graph (G, o), an integer k.

Question: Is there a set S of at most k vertices of G such that the signed graph (G, o)
obtained from (G, o) by switching every vertex of S satisfies (G,o") —*? (H,m)?

VERTEX DELETION SIGNED-(H, 7)-COLORING Parameter: k.
Input: A signed graph (G, o), an integer k.
Question: Is there a set .S of at most k vertices of G such that (G,0)—S — (H,m)?

EDGE DELETION SIGNED-(H, 7)-COLORING Parameter: k.
Input: A signed graph (G, o), an integer k.
Question: Is there a set S of at most k edges of G such that (G,0) — S — (H,m)?

In the study of the five above problems, one may assume that H (resp. (H, 7)) is some
kind of core (edge-colored core, resp. sp-core or s-core) depending on the nature of the
base problem. Indeed, our target graph H (resp. (H, 7)) being a constant of the problem,
we can transform it into its core in constant time. Note that if the target was part of
the input then computing its core (for whatever notion of core that we chose) would be
NP-complete [99].

Of course, if one of the five problems is NP-complete even for k£ = 0, then the problem
for general k is NP-complete and not in XP (unless P = NP). This is for example the
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case when H is an edge-colored graph containing only a monochromatic triangle: then
we have 3-COLORING for £ = 0 in the first three problems. Thus, from the point of
view of parameterized complexity, it is of primary interest to consider these problems for
edge-colored graphs H (resp. signed graphs (H, 7)) such that the problem for £ = 0 is
in P. In that case a simple brute-force algorithm iterating over all k-subsets of vertices of
G implies that the five problems are in XP and hence the interesting question is whether
these problems are FPT or not. For undirected graphs, the only cores H for which H-
COLORING is in P are the three connected graphs with at most one edge [98] (a single
vertex with no edge, a single vertex with a loop, two vertices joined by an edge), so in
that case the interest of these problems is limited. However, for many interesting families
of edge-colored graphs H, the problem H-COLORING is in P, and the class of such graphs
H is not very well understood, see [26, 25, 27]. Even when H is a 2-edge-colored cycle, a
2-edge-colored tree or a 2-edge-colored complete graph, there are infinitely many H’s for
which H-COLORING is NP-complete and infinitely many H for which H-COLORING is
in P [26]. For signed graphs, the complexity of SIGNED-(H, 7)-COLORING is completely
characterized (see Theorem 2.22).

Related work. Several works address the parameterized complexity of graph coloring
problems. Graph coloring problems parameterized by structural parameters are consid-
ered in [118]. In [48], the vertex-deletion variant of H-LI1ST-COLORING is studied. Graph
modification problems for COLORING in specific graph classes and for operations vertex-
deletion and edge-deletion are considered, for example in [38] (bipartite graphs, split
graphs) and [180] (comparability graphs).

Every problem VERTEX DELETION H-COLORING can be encoded as a special weighted
homomorphism problem H'-WEIGHTED-COLORING, as considered in [158]. In that set-
ting, the target H' is a graph with integer weights, and the goal is to find a homomor-
phism from some input graph G whose weight (i.e. the sum of weights of the images of
the vertices of (G) is at most some given integer k’. In our setting, we could generalize
this problem to edge-colored graphs and build H’ from H by setting all weights to 0
and adding a new vertex x adjacent to all vertices of H with weight 1. Now, finding a
weighted homomorphism from G to H with weight as most k is the same as having a
positive solution to VERTEX DELETION H-COLORING (vertices mapped to x represent
the deleted vertices in S). A similar notion was studied for general CSPs in [34]. In that
setting, only one “free” target vertex has weight 0 and all the others, weight 1, and the
goal is to find a homomorphism of weight at most a given integer k. The Boolean CSP
version where there are only two target values, 0 and 1, and we wish to minimize the
number of variables set to 1, is called the MIN ONES problem [128].

Algorithmic problems relative to the operation of Seidel switching, similar to our
switching, have been considered. Given an undirected graph G, the Seidel switching
operation performed at a vertex exchanges all adjacencies and non-adjacencies of v. This
can be seen as performing a switching operation in a 2-edge-colored complete graph, where
blue edges are the actual edges of GG, and red edges are its non-edges. In [63, 119], the
complexity of graph modification problems with respect to the Seidel switching operation
and the property of being a member of certain graph classes has been studied. Our work
on LIMITED SWITCHINGS H-COLORING problems can be seen as a variation of these
problems, generalized to arbitrary 2-edge-colored graphs.
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Our results. We study the classical and parameterized complexities of the five problems
VERTEX DELETION H-COLORING, EDGE DELETION H-COLORING, LIMITED SWITCH-
INGS (H, 7)-COLORING, VERTEX DELETION SIGNED-(H, 7)-COLORING and EDGE DELE-
TION SIGNED-(H,7)-COLORING. For the first three problems, our focus is on t-edge-
colored graphs H of order at most 2 where ¢ is an integer (t = 2 and we see H as a signed
graph for LIMITED SWITCHINGS (H,7)-COLORING). Despite having only two vertices,
H-COLORING for such an H is interesting and non-trivial; it is proved to be in P by two
different non-trivial methods, see [16, 27]. Thus, the three considered problems are in XP
for such an H. (Note that for suitable 1-edge-colored graphs H of order 1 or 2, VERTEX
DELETION H-COLORING and EDGE DELETION H-COLORING include VERTEX COVER
and ODD CYCLE TRANSVERSAL.)

We completely classify the classical complexity of VERTEX DELETION H-COLORING
when H is a t-edge-colored graph of arbitrary order: it is either trivially in P or NP-
complete. It turns out that all VERTEX DELETION H-COLORING problems are FPT
when H has order at most 2. To prove this, we extend a method from [27] and reduce
the problem to an FPT variant of 2-SAT.

For EDGE DELETION H-COLORING, a classical complexity dichotomy seems more
difficult to obtain, as there are non-trivial polynomial cases. We perform such a clas-
sification when H is a t-edge-colored graph of order at most 2. Similar 2-SAT-based
arguments as for VERTEX DELETION H-COLORING give a FPT algorithm for EDGE
DELETION H-COLORING when H has order at most 2.

For LIMITED SWITCHINGS (H, 7)-COLORING when (H,7) is a signed graph, the clas-
sical dichotomy is again more difficult to obtain. We perform such a classification by using
some characteristics of the switch operation and by giving some reductions to well-known
NP-complete problems. In contrast to the two previous cases for the parameterized com-
plexity, we show that for three signed graphs (H,m) of order 2, LIMITED SWITCHINGS
(H,7)-COLORING is already W[1]-hard (and cannot be solved in time f(k)|V (G)[°® for
any computable function f, assuming the ETH). For all other signed graphs of order 2,
we prove that LIMITED SWITCHINGS H-COLORING is FPT.

For VERTEX DELETION SIGNED-(H,7)-COLORING and EDGE DELETION SIGNED-
(H,m)-COLORING, we completely classify the classical complexity of these problems,; in-
deed the number of open cases is more limited than in the previous problems. Similar
arguments as for VERTEX DELETION H-COLORING can be used for VERTEX DELETION
SIGNED-(H, )-COLORING while we treat the problem case by case for EDGE DELE-
TION SIGNED-(H, w)-COLORING. For the parameterized complexity of these problems,
we prove that for all signed graphs whose s-core contains at most two edges (i.e. signed
graphs for which the problem with & = 0 is in P), the problems VERTEX DELETION
SIGNED-(H, 7)-COLORING and EDGE DELETION SIGNED-(H, 7)-COLORING are FPT.

Table 3.1 presents a brief overview of our results, and Table 3.2 lists the classical and
parameterized complexities of the five considered problems for all 2-edge-colored graphs
(resp. signed graphs) of order at most 2.

Sections 3.1 through 3.3 are joint work with Florent Foucaud, Hervé Hocquard, Valia
Mitsou and Théo Pierron. An extended abstract of Sections 3.1 to 3.3 was published [76]
in the proceedings of the international conference IPEC 2019. A full version of the corre-
sponding paper can be found on arXiv [77].

This work is partially supported by the ANR project HOSIGRA (ANR-17-CE40-0022)
and the IFCAM project “Applications of graph homomorphisms” (MA/IFCAM/18/39).
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Problem

P vs NP-hard

FPT vs. W[1]-hard
when |V(H)| <2

Dichotomy for

VERTEX DELETION H-COLORING all graphs ALLFPT
Dichotomy when

EDGE DELETION H-COLORING V(H)| <2 All FPT
(Thm. 3.13) (Thm. 3.20)
Dichotomy when Dichotom

LIMITED SWITCHINGS (H, 7)-COLORING [V(H)| <2 (Thums 3Y23 3.24)
(Thm. 3.22) n e O
Dichotomy for .

VERTEX DELETION SIGNED-(H,7)-COLORING | all graphs (F;)}—lr Hif ;n;g;a
(Thm. 3.26) e
Dichotomy for .

EDGE DELETION SIGNED-(H, 7)-COLORING | all graphs (Fggnif 13n3>é)P
(Thm. 3.38) C

Table 3.1: Overview of our main results, sorted by problem and by type of classification.

H/ (H ) VERTEX DELETION | EDGE DELETION | LIMITED SWITCHINGS | VERTEX DELETION EDGE DELETION
7) | H-CoLoriNG H-COLORING (H,m)-COLORING SIGNED-(H, 7)-COLORING | SIGNED-(H, m)-COLORING
& P P P P P
H},
Q NP-h but FPT P P NP-h but FPT NP-h but FPT
1,
° NP-h but FPT P P NP-h but FPT P
H!
PR NP-L but FPT P P NP-h but FPT NP-L but FPT
Hy
—o NP-h but FPT NP-h but FPT P NP-h but FPT NP-h but FPT
H?_
'i‘—Q NP-h but FPT NP-h but FPT NP-h but FPT NP-h even for k =0 NP-h even for k =0
Hy
'6‘—0 NP-h but FPT NP-h but FPT NP-h but FPT Not an s-core Not an s-core
H?
Q—Q NP-h but FPT NP-h but FPT P Not an s-core Not an s-core
H?
LS ) NP-h but FPT NP-h but FPT P NP-h but FPT NP-h but FPT
H*®
4 NP-h but FPT NP-h but FPT NP-h and W[1]-h NP-h even for k =0 NP-h even for k =0
HEY
e NP-h but FPT NP-h but FPT NP-h and W[1]-h NP-h even for k =0 NP-h even for k =0
Hrt
<= NP-h but FPT NP-h but FPT NP-h and W[1]-h NP-h even for k=0 NP-h even for k = 0
!

Table 3.2: Our results for target 2-edge-colored graphs H (resp. signed graphs (H, 7)) of order
at most 2 (up to inversion of edge-colors (resp. signs), there are twelve such 2-edge-colored
graphs (resp. signed graphs) to consider).
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This chapter is structured as follows. In Section 3.1, we state some definitions and
make some preliminary observations in relation with the literature. We also reformulate
some particular instances of our problems to highlight well known complexity problems.
Section 3.2 presents our study of VERTEX DELETION H-COLORING and EDGE DELE-
TION H-COLORING. The problem LIMITED SWITCHINGS (H,7)-COLORING is treated
in Section 3.3. In Section 3.4, we analyse the problem VERTEX DELETION SIGNED-
(H,7)-COLORING while Section 3.5 is for the problem EDGE DELETION SIGNED-(H, 7)-
COLORING. Finally, we conclude in Section 3.6.
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3.1 Preliminaries

3.1.1 Some known complexity dichotomies

For a t-edge-colored graph H, recall that whenever H-COLORING is NP-complete, VER-
TEX DELETION H-COLORING and EDGE DELETION H-COLORING are NP-complete
even for k£ = 0, and thus are not in XP, unless P = NP. For example, this is the case when
H is a monochromatic triangle.

On the other hand, when H-COLORING is in P, both problems are in XP for parameter
k by a brute-force algorithm iterating over all k-subsets of vertices (resp. edges) of G, per-
forming the operation on these k vertices (resp. edges), and then solving H-COLORING.

Similarly, for a signed graph (H, ), LIMITED SWITCHINGS (H, 7)-COLORING is NP-
complete even for k = 0, if (H,7)-COLORING is NP-complete. If (H,n)-COLORING is
in P, then LIMITED SWITCHINGS (H,7)-COLORING is in XP, by the same brute-force
argument.

When SIGNED-(H, 7)-COLORING is NP-complete, then LIMITED SWITCHINGS (H, 7)-
COLORING is NP-complete (but could still be in XP or FPT), and VERTEX DELE-
TION SIGNED-(H, 7)-COLORING and EDGE DELETION SIGNED-(H,7)-COLORING are
NP-complete, even for k& = 0. Moreover if SIGNED-(H,7)-COLORING is in P, then
VERTEX DELETION SIGNED-(H,7)-COLORING and EDGE DELETION SIGNED-(H,)-
COLORING are in XP.

The previous arguments highlight that to determine the complexity of our five prob-
lems, we must first know the complexity of H-COLORING for any edge-colored graphs H,
and the complexity of (H,n)-COLORING and SIGNED-(H, 7)-COLORING for any signed
graph (H, ).

When k = 0 and H is 1-edge-colored (i.e. H is an undirected graph), we have the
following classic theorem.

Theorem 3.1 (Hell and Nesettil [98]). Let H be a 1-edge-colored graph. The problem
H-COLORING is in P if the core of H has at most one edge (H is bipartite or has a loop),
and NP-complete otherwise.

There is no analogue of Theorem 3.1 for edge-colored graphs. In fact, it is proved
in [28] that a dichotomy classification for H-COLORING restricted to 2-edge-colored H
would imply a dichotomy for all fixed-target CSP problems. Thus, no simple combinatorial
classification is expected to exist. In fact, even for trees, cycles or complete graphs, such
classifications are far from trivial, see the PhD thesis [26] for an overview of some partial
results highlighting the difficulty of the problem. Some classifications exist for certain
classes of graphs H, such as those of order at most 2 (see [16] and [27]) or paths [25].
By isomorphism between signed graphs and 2-edge-colored graphs, the problem (H,7)-
COLORING is also unlikely to have such a dichotomy.

Hence for the three problems VERTEX DELETION H-COLORING, EDGE DELETION
H-COLORING and LIMITED SWITCHINGS (H,7)-COLORING we focus most of our at-
tention on targets of order at most 2 since H-COLORING and (H,7)-COLORING are
polynomial for them (see [16, 27] or Theorem 3.18).
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Figure 3.1: The twelve 2-edge-colored cores of order at most 2 considered in this chapter.

The twelve 2-edge-colored graphs of order at most 2 that are cores (up to symmetries of
the colors) are depicted in Figure 3.1. The two depicted colors are red (dashed edges) and
blue (solid edges). We use the terminology of [16]: for a € {—,r,b,rb}, the 2-edge-colored
graph H! is the graph of order 1 with no loop, a red loop, a blue loop, and both kinds
of loops, respectively. Similarly, for « € {—,r,b,7b} and 8,y € {—,r, b}, the graph Hg‘fy
denotes the graph of order 2 with vertex set {0,1}. The string « indicates the presence
of an edge between 0 and 1: no edge, a red edge, a blue edge and both edges for —, r, b
and rb, respectively. Similarly, 5 and v denote the presence of a loop at vertices 0 and 1,
respectively (— for no loop, r for a red loop, b for a blue loop).

When working on the context of signed graphs (i.e. for LIMITED SWITCHINGS (H, )-
COLORING, VERTEX DELETION SIGNED-(H, 7)-COLORING and EDGE DELETION SIGNED-
(H,7)-COLORING), we use the notation Hj 2“ to refer to the signed graph obtained from
the 2-edge-colored graph H >, by making the red edges negative and the blue edges posi-
tive.

For SIGNED-(H, 7)-COLORING, we recall Theorem 2.22.

Theorem 2.22 (Brewster, Foucaud, Hell and Naserasr [28] and Brewster and Siggers [29]).
Let (H, ) be a signed graph. The problem SIGNED-(H,w)-COLORING is in P if the s-core
of (H,7) has at most two edges, and is NP-complete otherwise.

Note that signed graphs where the s-core has at most two edges either have one vertex
(with zero loop, one loop or two loops of different signs), or two vertices (with either one
edge or two parallel edges of different signs joining them) [28]. If there are two vertices
joined by one edge and a loop at one of the vertices, we can switch at the non-loop vertex
if necessary to obtain a signed graph with only positive or only negative edges, and then
retract the whole graph to the loop-vertex, so this is not an s-core.

By Theorem 2.22, the Signed graphs (H,m) for which SIGNED-(H, 7)-COLORING is

polynomial are 1 (o), H}, (), HE (Ce). 1Y (8), H2 (e—e). " (a""8)
and H?, (6D ‘e).

3.1.2 Homomorphism dualities and FPT time

For a t-edge-colored graph H, we say that H has the duality property if there is a set
F(H) of t-edge-colored graphs such that, for any t-edge-colored graph G, G — H if
and only if no graph F' of F(H) satisfies ' — G. If F(H) is finite, we say that H has
the finite duality property. If checking whether any graph F' in F(H) satisfies FF — G
(for an input edge-colored graph G) is in P, we say that H has the polynomial duality
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property. This is in particular the case when F(H) is finite. For such H, H-COLORING is
in P. This topic is explored in detail for edge-colored graphs in [16]. By a simple bounded
search tree argument, we get the following:

Proposition 3.2. Let H be a t-edge-colored graph with the finite duality property. Let
c=max{|V(F)|,F € F(H)}.

The problem VERTEX DELETION H-COLORING can be solved in time O(f(F(H))n®)
for some computable function f.

The problem EDGE DELETION H-COLORING can be solved in time O(f(F(H))n®)
for some computable function f.

Ift =2 and (H, ) is the signed graph isomorphic to H, then LIMITED SWITCHINGS
(H,m)-COLORING can be solved in time O(f(F(H))n®) for some computable function f.

Proof. First, we search for all occurrences of homomorphic images of graphs in F(H)
(there are at most f(F(H)) such images for some exponential function f), which we
call obstructions. This takes time at most O(f(F(H))n¢), where ¢ = max{|V(F)|, F €
F(H)}. Then, we need to get rid of each obstruction. For VERTEX DELETION H-
COLORING (resp. EDGE DELETION H-COLORING), we need to delete at least one vertex
(resp. edge) in each obstruction, thus we can branch on all ¢ (resp. ¢?) possibilities. For
LIMITED SWITCHINGS (H, 7)-COLORING, we need to switch at least one of the vertices
of the obstruction (but then update the list of obstructions, as we may have created a new
one). In all cases, this gives a search tree of height k& and degree bounded by a function
of F(H), which is FPT. O

Some dualities have been obtained for small edge-colored graphs. The following theo-
rem from [16] is crucial for our techniques.

Theorem 3.3 (Bawar, Brewster and Marcotte [16]). Let H be an edge-colored graph of
order at most 2. Then, H has the polynomial duality property. If H has order 1, then H
has the finite duality property.

We next describe the duality sets for some special cases that will be used in our proofs.

Lemma 3.4 (Bawar, Brewster and Marcotte [16]). A 2-edge-colored graph has a homo-
morphism to Hfl;, (- @—e.; ) if and only if it contains no homomorphic image of cycles
with an odd number of blue edges.

We present a brief proof of their result. Note that homomorphic images of paths are
walks and that homomorphic images of cycles are closed walks.

Proof. Let G be a 2-edge-colored graph which admits a homomorphism ¢ to H2%. Suppose
that G contains a homomorphic image of some cycle with an odd number of blue edges,
that is to say GG contains a closed walk W with an odd number of blue edges. Note that
if uv is a blue edge, then ¢(u) # ¢(v) and if uv is a red edge, then ¢(u) = ¢(v). By going
around the closed walk, we obtain ¢(u) # ¢(u) for any vertex u of W, a contradiction.
Let GG be a 2-edge-colored graph which contains no homomorphic image of cycles with
an odd number of blue edges. We identify every connected red components of G. The
graph that we obtain has red loops but no other red edges, moreover the graph induced by
the blue components is bipartite (otherwise there would be a cycle with an odd number
of blue edges in (). Hence by identifying the vertices of each bipartition, we obtain Hf’,{
Hence G — H?2. O
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Lemma 3.5 (Bawar, Brewster and Marcotte [16]). A 2-edge-colored graph has a homo-
morphism to HE% (- o——&D ) if and only if it contains no homomorphic image of a
red-blue-red 4-vertex path.

Proof. Let u be the vertex of HE% with a red loop, and v the vertex with a blue loop.
Given a 2-edge-colored graph G, map all the vertices incident with a red edge to u, and
map all others to v. This is a homomorphism unless two vertices mapped to u are joined
by a blue edge. But in this case, we can find a homomorphic image of a red-blue-red walk
in GG. Conversely, note that a red-blue-red path has no homomorphism to Hf% O

Lemma 3.6 (Bawar, Brewster and Marcotte [16]). A 2-edge-colored graph has a homo-
morphism to Hff’_ (- @——e@) if and only if it contains no homomorphic image of a path
of the form RB*'R (where R is a red edge, B a blue edge and p > 1 is an integer) or
of cycles with an odd number of blue edges.

Proof (sketch). First note that none of the two obstructions admit a homomorphism to
Hfb_ If a 2-edge-colored graph GG has none of these homomorphic images then by identi-
fying every vertex incident with a red edge of G, we obtain a bipartite graph on the blue
edges for which one of the two partitions contains every vertex incident with a red loop.
By mapping this partition to the vertex of Hffl with the red loop and the other partition
to the other vertex, we obtain our homomorphism. O

Lemma 3.7 (Bawar, Brewster and Marcotte [16]). A 2-edge-colored graph has a homo-

morphism to Hf”;b <o &7 ) if and only if it contains no homomorphic image of an
all blue odd cycle.

Proof (sketch). The idea is to note that the graph induced by the blue edges is bipartite
and that the red edges does not create any constraints. O

The proof of the following results are more complicated, hence we refer the reader
to [16] for the details. In a 2-edge-colored graph, a closed walk vgvy ... v; is alternating
if for every i < t, v;v;11 and v;11v;12 do not have the same color (where the indices are
taken modulo t). An alternating closed walk in a 2-edge-colored graph correspond exactly
to the notion of alternating closed walk in the isomorphic signed graph. An odd figure
eight is a closed walk of the form vy, vi, ..., v9j, Vo, Vajt2, ..., Vop_1, Vo, t.€. two odd
cycles which share a vertex vy.

Lemma 3.8 (Bawar, Brewster and Marcotte [16]). A 2-edge-colored graph has a homo-
morphism to Hff'_b (e ") if and only if it contains no homomorphic image of an odd
figure eight vo, v1, ..., Vaj, Vo, V2j+2, -- ., Vap—1, Vo for which all edges vo;vai41 are blue.

Lemma 3.9 (Bawar, Brewster and Marcotte [16]). A 2-edge-colored graph has a ho-
momorphism to H%b (e @8O ) if and only if it contains no homomorphic image of
alternating odd figure eight, that is, an alternating closed walk vy, v1, ..., vaj, Vo, Vajt2,
ce., U2p—1, Vp-

3.1.3 Reformulating some modification problems

As mentioned in the introduction, behind the generality of our modification problems lies
some interesting particular cases. This section is dedicated to highlighting well known
problems which are captured by our five general problems.
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The first problem is VERTEX COVER which consists in finding the smallest set S of ver-
tices so that every edge of the input graph is incident with a vertex of S. This problem is
equivalent to the two problems VERTEX DELETION H!-COLORING and VERTEX DELE-
TION SIGNED-H!-COLORING. In a similar fashion, VERTEX DELETION H}-COLORING
is equivalent to solving VERTEX COVER on the input graph where the blue edges are
removed.

An undirected graph G admits a homomorphism to K if and only if it is bipartite.
Consequently, the problem ODD CYCLE TRANSVERSAL (resp. EDGE BIPARTIZATION)
which consists in finding the minimum number of vertices (resp. edges) to remove to
make the graph bipartite, is equivalent to VERTEX DELETION K5-COLORING (resp.
EDGE DELETION K5-COLORING). Note that this problem is also equivalent to VER-
TEX DELETION H-COLORING (resp. EDGE DELETION H-COLORING) where H is the
t-edge-colored graph on two vertices u and v such that for every edge-color i, there is an
edge uv colored ¢. It is also equivalent to VERTEX DELETION SIGNED-H%’:IL-COLORING
(resp. EDGE DELETION SIGNED-HEfE-COLORING) for signed graphs.

It is also possible to encompass a combination of problems. Solving VERTEX DELE-
TION H?’_-COLORING is equivalent to solving ODD CYCLE TRANSVERSAL and VERTEX
COVER on the input graph where the blue edges are removed at the same time.

Our problems can also easily encode stronger versions of well known problems. For
example consider the following problem.

ANNOTATED ODD CYCLE TRANSVERSAL Parameter: k
Input: A graph G, two sets Ag and By of vertices of G and an integer k.

Question: Is there a subset S of vertices of G such that G — S is bipartite with
bipartition (A, B) such that Ay C A and By C B?

This problem can be seen as a subproblem of VERTEX DELETION H-COLORING where
H is the 3-edge-colored graph ‘:@——e > . Indeed, one can “mark” the two bipartitions

with pendant red or green edges (depending on which set among Ay or By the vertex
belongs to) and perform ODD CYCLE TRANSVERSAL on the blue graph. This problem
is not the only one, for example we can perform the same operation for the edge deletion
version. In general, we can even encode list coloring with homomorphisms of edge-colored
graphs: each subset of colors is associated with its own edge-color. The target graph is
a blue K, (for some integer p) where each vertex is incident to loops of every edge-color
associated with a list containing this vertex. It suffices to add a loop for each vertex u of
the input graph with edge-color corresponding with the list of u.

For signed graphs, many interesting problems can be formulated as homomorphism
problems. For example SIGNED-H}-COLORING is equivalent to determining if the in-
put signed graph is balanced or not. Equivalently SIGNED-H!-COLORING tests whether
the input signed graph is antibalanced or not. Hence the problem VERTEX DELETION
SIGNED-H}}-COLORING consists in finding the minimum number of vertices to remove
to make the graph balanced. The problem EDGE DELETION SIGNED-H}-COLORING is
equivalent to computing the frustration index of the input signed graph, a problem which
has been extensively studied (see Section 2.1.4). The problem LIMITED SWITCHINGS H}-
COLORING consists in not only determining whether the input signed graph is balanced
but also the number of switchings necessary to make the input all-positive.

The problems VERTEX/EDGE DELETION SIGNED-H?_-COLORING consist in remov-
ing vertices/edges in order for the input signed graph to be both balanced and bipartite,
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that is, we want to have chromatic number at most 2. This can be reformulated as wanting
to remove both odd cycles and unbalanced cycles.

Unfortunately, in general, determining the chromatic number of a signed graph cannot
be expressed as some SIGNED-(H, 7)-COLORING problem due to the fact that there exist
multiple targets of the same order which are not equivalent.

3.2 Edge-colored modification problems

In this section, we focus on the complexity of the two problems: VERTEX DELETION
H-COLORING and EDGE DELETION H-COLORING.

We first adapt a general method from [141] to show that VERTEX DELETION H-
COLORING is either trivial, or NP-complete in Section 3.2.1.

For EDGE DELETION H-COLORING, we cannot use this technique (in fact there exist
non-trivial polynomial cases). Thus, we turn our attention to edge-colored graphs of
order 2 (note that for every edge-colored graph H of order at most 2, H-COLORING is in
P [16, 27]). In Section 3.2.2, we prove a dichotomy result for graphs of order at most 2
for the EDGE DELETION H-COLORING problem.

Finally, in Section 3.2.3, we provide FPT algorithms from VERTEX DELETION H-
COLORING and EDGE DELETION H-COLORING when H has order 2.

3.2.1 Vertex Deletion H-Coloring: P/NP-complete dichotomy

Graph modification problems for operations vertex-deletion and edge-deletion have been
studied extensively. For a graph property P, we denote by VERTEX DELETION-P the
graph modification problem for property P and operation vertex-deletion. A property
is hereditary if P(G) implies P(H) for all induced subgraphs H of G. Lewis and Yan-
nakakis [141] defined a non-trivial property P on graphs as a property true for infinitely
many graphs and false for infinitely many graphs. These definitions can be extended
to (m,n)-mixed multi-graphs (which contains edge-colored graphs). They showed the
following general result.

Theorem 3.10 (Lewis and Yannakakis [141]). The VERTEX DELETION-P problem for
non-trivial graph-properties P that are hereditary is NP-hard.

By modifying the proof of Theorem 3.10, we can prove the two following results.

Theorem 3.11. Let P be a non-trivial property of (m,n)-mized multi-graphs that is
hereditary and true for all empty graphs. For such a property, the problem VERTEX
DELETION-P is NP-hard.

The proof of this theorem follows the proof of Theorem 3.10 from [141]. The only
difference is that we work with (m,n)-mixed multi-graphs instead of undirected graphs.

Proof. Let G be an (m, n)-mixed multi-graph. We denote by CC(G) the set of connected
components of G. These components are also (m,n)-mixed multi-graphs. For x and v
two vertices of G, let R,(x) be the set of vertices connected to  in G —v. For any vertex
v € V(GQ), let CC,(G) be the set of connected subgraphs of G induced by the sets of
vertices of the form R,(z) U {z} for x € V(G — v). In other words, CC,(G) is the set of
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(a) An (m,n)-mixed multi- (b) The (m,n)-mixed multi- (¢) The (m,n)-mixed multi-
graph J. graph J7T. graph J'.

Figure 3.2: An example of a (2,2)-mixed multi-graph J and its induced subgraphs Jy, Jo, J 7,
Ji and J'.

connected components of G — v where we added the vertex v. In particular, if v is not a
cut-vertex, then CC,(G) = {G}.

For a connected (m,n)-mixed multi-graph G and v € G, let a,(G) = (n1,na, ... 1)
such that ny > ny > - -+ > ny, and the multi-sets {n,...,n;} and {|V(C)|: C € CC,(G)}
are equal. In other words, a,(G) is the ordered sequence of the orders of the (m,n)-mixed
multi-graphs in CC,(G). Let a(G) be the smallest sequence (for the lexicographic order)
a, (@) over all possible vertices v € V(G).

For an (m,n)-mixed multi-graph G, let 5(G) = (a(G1),a(G1),...a(G;)) such that
a(Gy) > a(Gy) >p -+ > a(Gy) (where >, is the lexicographical order) and CC(G) =
{G1,...,G;}. In other words, (@) is the ordered sequence of a-sequences of the con-
nected components of G.

Recall that P is non-trivial. In particular, P has counter-examples. For an integer
p and an (m,n)-mixed multi-graph G, we denote by pG, the (m,n)-mixed multi-graph
composed of p disjoint copies of G. Let J be an (m, n)-mixed multi-graph such there exists
some k > 1 for which P(kJ) is false, and which has the minimum S-sequence among the
(m, n)-mixed multi-graphs verifying this property. Let & > 1 such that P(k.J) is false and
P((k—1)J) is true. Suppose that f(J) = (a(J1),...,a(J;)) where CC(J) = {Jy,..., Ji}.
Let  be a vertex of J; for which a(J;) = a,(J1) and let J* be the connected (m, n)-mixed
multi-graph of C'C,(J;) with the greatest number of vertices. Since all empty graphs verify
P, J contains at least one edge. This implies that J; and J* contain at least one edge.
In particular, J* contains at least two vertices. Let y be a vertex of J* which is different
from z. Let Jj (resp. J') be the (m,n)-mixed multi-graph obtained from J; (resp. J) by
removing the vertices of V(JT) \ {z,y}. See Figure 3.2 for an example.

Each induced subgraph of J that we defined will be useful to show that VERTEX
DELETION-P is NP-hard. We reduce VERTEX COVER to VERTEX DELETION-P. Note
that it may be complicated to find the (m, n)-mixed multi-graph J. If we cannot find J in
polynomial time then it makes the reduction non-constructive. Let (G, ) be an instance
of VERTEX COVER where G is an undirected graph of order p and ¢ is an integer.

We construct the (m,n)-mixed multi-graph H from G as follows. For each vertex
v € V(G), we add a copy J! of J' to H. For each edge uwv € E(G), we add a copy J;,
of J* to H. We identify the copy z, (resp. z,) of = in J] (resp. J/) with the copy x.,
(resp. Yup) of x (resp. y) in J . This ends the construction of H. See Figure 3.3 for an
example. We construct the (m,n)-mixed multi-graph H' by taking pk disjoint copies of
H.

We claim that (G, ¢) is a positive instance of VERTEX COVER if and only if (H', pk()
is a positive instance of VERTEX DELETION-P.

Suppose that there is a subset S of vertices of G of size at most ¢ that is a vertex
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7 ng J{) I )J{ [J2 y

Ly Ty

Figure 3.3: An example of the graph H when J is the (2,2)-mixed multi-graph of Figure 3.2
and G is just an edge uv. Here, we chose to identify x, with z,, and x, with 3,,. Note that if
no vertex is removed from H, then H contains J as an induced subgraph.

cover of G. We construct S” C V(H') as follows. For every copy of H in H' and every
vertex u € S, we add the copy of the vertex z, of J, to S’. Note that |S"| < pkl. We
claim that H' — S’ verifies P. Let J be the set of (m,n)-mixed multi-graphs that can
be constructed as follows. Take a copy of J; and at most A(G) copies of J*. For each
copy of J*, delete one of z or y and identify the other vertex with the copy 2’ of x in the
copy of JI. The set J contains at most 32(%) (m,n)-mixed multi-graphs, J contains all
possible maximal connected induced subgraph of H connected to a vertex x, when every
x, for v € N(u) has been removed in H.
A connected component C' of H' — S’ can be one of the following four types:

1. The connected component C' belongs to {Ja, ..., J; }.
2. The connected component C' belongs to J.

3. The connected component C' is isomorphic to a connected induced subgraph of Jj
where the vertex x has been removed.

4. The connected component C' is isomorphic to a connected induced subgraph of J*
where the vertices x and y have been removed.

Let J* be the (m,n)-mixed multi-graph composed of disjoint copies of the vertices of
J and disjoint copies of J,, ..., J;_1; and J;. Note that every connected component of
H' — 5" is an induced subgraph of J*. Let C' € J, note that o(C) < a,/(C) where 2’ is
the copy of x in J|. Note that CC,/(C) = CC,(J) U X where X is the set corresponding
to the copies of J* in C' with one of x or y removed. The connected multi-graphs of X
have order |V (J*)| — 1, hence s (C) < a,(J1) = a(Jy). Note that 5(J*) < 5(J) since
for every C' € J, a(C) <1, a(Jy).

By minimality of J, any number of disjoint copies of J* must verify P, hence H' — 5’
verifies P and (H’, pk{) is a positive instance of VERTEX DELETION-P.

Suppose that there is a subset S’ of vertices of H’ of size at most pkf such that
P(H'—S5’) holds. Note that H' —S” can contain at most k — 1 copies of the (m, n)-mixed
multi-graph J by definition of J. In particular H' has at least pk — (k — 1) copies of H for
which after removing the vertices of S’ the (m, n)-mixed multi-graph does not contain a
copy of J.

Suppose that for one of the copies Hy of H, |V (Hp) N.S’| < £. In this case, we construct
S CV(G) as follows. If SNV (J)) # @, then add u to S. It "N (V(J})\{z,y}) # &,
then add arbitrarily one of u or v to S. Note that |S| < ¢. Suppose that there is an edge
uwv € E(G), such that u,v ¢ S. Our copy of H contains J/, J, and J, and these (m,n)-
mixed multi-graphs do not contain vertices from S. The vertex z,, has been identified
with one of z, or z,, say x,. The (m,n)-mixed multi-graph composed of J/, and J with
x, and z,, identified is exactly the (m,n)-mixed multi-graph J. Hence if H —.S” does not
contain J, then the set S is a vertex cover of G of size at most /.
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Suppose, by contradiction, that for every copy of H either H — S’ contains J or verifies
|V(Ho) N S’| > £+ 1. In this case, S” has at least (pk — (k—1))(¢+ 1) vertices. Moreover,
as { < p (otherwise the instance of VERTEX COVER is trivial), (pk — (k —1))({ + 1) >
pkl+ 0+ 1+ k(p— (£ —1)) > pkl, a contradiction.

Hence G has a vertex cover of size at most ¢. m

For a t-edge-colored graph, the only case where the property of mapping to H is trivial
(in this case, always true) is when H has a vertex with a loop of each edge-color (in which
case the core of H is this vertex). Thus we obtain the following dichotomy.

Corollary 3.12. Let H be a t-edge-colored graph. VERTEX DELETION H-COLORING is
in P if H contains a vertex having a loop of each edge-color, and NP-complete otherwise.

Proof. For every t-edge-colored graph H, VERTEX DELETION H-COLORING is in NP.
For a t-edge-colored graph G, the property P(G) : “G — H” is an hereditary property
and is verified by all independent sets, thus if it has infinitely many negative instances
(on loopless t-edge-colored graphs), then it is non-trivial, and thus NP-hard. Let us see
when this is the case.

We can observe that the problem is actually trivial if H contains a vertex with all
t-colored loops, indeed every t-edge-colored graph can be mapped to this vertex (in this
case, we accept). Moreover, if not, then the complete graph K|y ()41 with all ¢-colored
edges between each pair of vertices does not map to H. Indeed by the pigeonhole principle,
two vertices u and v of our input ¢-edge-colored graph must have the same image vertex
w in H. As there is an edge colored ¢ between u and v, there must be a loop colored i
on w. Thus w should have all ¢ kinds of loops, a contradiction. Thus, in all such cases,
the property is non-trivial on loopless t-edge-colored graphs and hence the problem is
NP-complete. O

3.2.2 Edge Deletion H-Coloring: P/NP-complete dichotomy when
H has order 2

No analogue of Theorem 3.10 for the operation edge-deletion exists nor is expected to
exist [205]. We thus restrict our attention to the case of edge-colored graphs H of order
at most 2. For this case we classify the complexity of EDGE DELETION H-COLORING.
Since multiple edges of the same color are irrelevant, if H has order 2, for each edge-color
there are three possible edges.

Theorem 3.13. Let H be an edge-colored core of order at most 2. If each color class of
the edges of H contains either only loops or all three possible edges, then EDGE DELETION
H-COLORING s in P; otherwise it is NP-complete.

We separate the proof of this theorem into several lemmas.

Lemma 3.14. Let H be an edge-colored core of order at most 2. If each color class of the
edges of H contains either only loops or all three possible edges, then EDGE DELETION
H-COLORING s in P.

Proof. First note that if color ¢ has all three possible edges in H, we can simply ignore
this color by removing it from H and G without decreasing the parameter, as it does not
provide any constraint on the homomorphism.
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We can therefore suppose that H contains only loops. If two colors induce the same
subgraph of H, then we can identify these two colors in both G and H as they give the
same constraints.

If G has colors that H does not have, then remove each edge with this color and
decrease the parameter for each removed edge. If it goes below zero then we reject.

We can now assume that H has only loops and G has the same colors as H. We are
left with only three cases, as H is a core (there is no vertex whose set of loops is included
in the set of loops of the other).

1. H has a single loop. Then, G — H as G has the same colors as H.

2. H has one loop colored a and one loop colored ¢ on the first vertex and has one loop
colored b and one loop colored ¢ on the second vertex. Up to symmetry, suppose
that H has one blue loop and one green loop on the first vertex and has one red
loop and one green loop on the second vertex. We will reduce to the problem where
we have removed the green loops. Let p be the number of green edges of G. We
construct G’ from G by replacing each green edge by a blue edge and a red edge
(we can end up with multiple blue or red edges that way). We claim that EDGE
DELETION H-COLORING with parameter k and input G is true if and only if EDGE
DELETION Hf’g—COLORING with parameter k + p on input G’ is true.

If the first problem has a solution S, then remove the corresponding edges from G’
(if the original edge of G is green remove the two new edges in G’). Each vertex of
G — S is set to one component, in particular each green edge is set to a vertex with
a blue edge or a red edge. If a green edge uv of G is sent to the first vertex (resp.
second vertex), we remove the edge of G’ corresponding to uv which is red (resp.
blue). We can check that after removing those edges, G’ admits a homomorphism
to Hf;. We removed at most k£ edges in the first step plus the number of green
edges in S and removed one edge for each green edge left in the second step. Thus,
we removed at most k + p edges in G'.

If the second problem has a solution S, then remove from G all blue and red edges
of S. Remove the green edges of G only if both were removed in G’. Note that
S contains at least one edge in G’ for each green edge of G. Thus we removed at
most k edges in G. Moreover, G — H by taking the same homomorphism as in
G'. Indeed, the blue and red edges are sent to one of the two loops while each green
connected component is sent to one vertex.

Using this method we can reduce the problem to EDGE DELETION Hig—COLORING,
which is our last case.

3. H contains two non-incident loops with different colors. In this case, H = Hﬁg
(@D @). Indeed if there were any other kind of loop, then we would be in the
previous case or we could identify two colors. Note that a 2-edge-colored graph
maps to Hﬁg if and only if it has no red edge incident to a blue edge. Thus, solving
EDGE DELETION HZ;—COLORING amounts to disconnecting red and blue connected
components. This can be done by constructing the following bipartite graph: put
a vertex for each edge of GG; two vertices are adjacent if the corresponding edges in
G are adjacent and of different colors. Solving EDGE DELETION H?,-COLORING
is the same as solving VERTEX COVER on this bipartite graph, which is in P.
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Figure 3.4: Reduction from VERTEX COVER to EDGE DELETION Hfl;)-COLORING.

There is no other case as otherwise the set of loops at one vertex would be included in
the set of loops at the other. O

The NP-completeness proofs are by reductions from VERTEX COVER, based on vertex-
and edge-gadgets constructed using obstructions to the corresponding homomorphisms
from [16].

We start with proving the NP-hardness of two special cases, and then we will show
that we can always reduce the problem from these two cases.

Lemma 3.15. The problem EDGE DELETION ny%—COLORING (i.e. - o—aD )is NP-
hard.

Proof. We reduce from VERTEX COVER. Given an input graph G of VERTEX COVER,
we construct a 2-edge-colored graph G’ from G as follows. Take GG and color all edges blue,
then add a pending red edge vv’ to each vertex v of G (see Figure 3.4). By Lemma 3.5, a
2-edge-colored graph maps to Hfl,’) if and only if it does not contain a homomorphic image
of a red-blue-red path [16] i.e. a path vovivevs where vyvy and vevg are red and vyvy is
blue.

Assume that G has a vertex cover C' of size at most k. When removing the edges of
the form vv’ for v € C' in G, the resulting graph does not contain red-blue-red paths and
thus maps to H2.

Conversely, assume that we have a set S of k edges of G’ such that (G' —S) — H2}.
In particular, for every blue edge uv of G, we must have one of uu/, uv or vv’ in S. Thus
we can obtain a vertex cover of G of size k from S: for a vertex v, if vov’ belongs to S, we
add v to that vertex cover. If uv € S, we add either u or v to the vertex cover.

We thus have a polynomial-time reduction from VERTEX COVER to EDGE DELETION
H?2%-COLORING. Therefore this problem is NP-hard. [

Lemma 3.16. The problem EDGE DELETION H?}’-COLORING (i.c. e @O ) is NP-
hard.

Proof. We again reduce from VERTEX COVER. For an input graph G of VERTEX COVER,
we construct a 2-edge-colored graph G’ from G as follows. We start with a red copy
of G, then we add a pending blue edge vv’ for each v € G. Finally, for each edge
uv € GG, we create three new vertices ., Yuw, Zup sSuch that 'z, V' Tw, Yuwzus are red and
T Yuvs TuvZuy are blue (see Figure 3.5).

We then recall Lemma 3.9 proved in [16], stating that a 2-edge-colored graph maps to
Hfzb if and only if it does not contain an alternating odd figure eight, that is, an alternating
closed walk vg, vi, ..., V9, Vo, V2jt2, --., V2p—1, Uo. Note that our construction creates
such a pattern for each edge of G.

Assume that GG has a vertex cover C' of size at most k. Then for each v € C', we delete
vv’ from G’. We prove that the resulting graph G” contains no alternating odd figure
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Figure 3.5: Reduction from VERTEX COVER to EDGE DELETION Hfgb-COLORING

eight. First observe that in the graph obtained from G’ by removing all edges from G, all
the alternating walks have length at most 7, hence it contains no alternating odd figure
eight. Thus, if G” contains an alternating odd figure eight, then it uses an edge uv from
G. Since C'is a vertex cover, either uu’ or vv’ is not present in G”. Then, either u or v
has no incident blue edge. This implies that G” has no alternating odd figure eight, and
hence maps to HZp.

Conversely, assume that we can remove a set S of k edges from G’ so that G’ \ § —
HZP. We construct a set ¢ C V(G) as follows: if v’ € S, then we add v € C. If
UV, U Ty, V' Ty T Yuws Luw Zuw OF YuwZuw lie in S, then we add either u or v to C. Note
that, in each case, |C| < k. Moreover, we claim that C' is a vertex cover of G. Assume
not, and consider an edge uv in G such that u,v ¢ C. By construction, this means that
none of the edges uv, ut/, vv', u'xyy, VT w0, TuowYuvs TuvZuw, YuvZue lies in S. These vertices

form an alternating odd figure eight, contradicting that G' \ S — Hff,b.

Therefore, EDGE DELETION H?}’-COLORING is NP-hard. O

Lemma 3.17. For H an edge-colored core of order at most 2, if there exists a color of H
which contains an edge which is not a loop and does not contain all three possible edges,
then EDGE DELETION H-COLORING is NP-complete.

Proof. Take such a graph H. If one color, say blue, contains only one edge from the first
vertex to the second, then for graphs GG which are all blue, the problem is equivalent to
EDGE BIPARTIZATION, which is NP-complete.

Now, if H contains no such edge, then by assumption it must contain a color, say
blue, with a loop and an edge from the first vertex to the second (and no other edge
of this color). Let u be the vertex with the loop and v be the other vertex. Since H
is a core, H does not map to its subgraph induced by wu. If for every edge-color of H
there was a loop of this color on u, then H would not be a core. Hence there exists a
color, say red, such that there is a red edge in H and u has no loop colored red. Hence,
the graph obtained by removing all edges which are neither blue nor red, is either Hfﬁ’)

(< o—eD ) or Hff{)b (e @O ) up to symmetry. Thus, by the previous two lemmas,
Lemma 3.15 and Lemma 3.16, the problem is NP-complete using the same reductions on
input edge-colored graphs which only have blue and red edges (the edges of H that are
neither blue nor red can be ignored). O
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E;(H) Clause E,(H) Clause

%) () (T0) {00,01} (Ty + 7o)

{00} (7) (70) {01,11} (@ + x0)

{o1} (2 +2,)(Tu +T) | {00,11} (o + ) (T + 20)
( (2

{11}

Table 3.3: Clauses appearing in the 2-SAT formula F(G) of Theorem 3.18 proved in [27], for
each edge uv of G colored i. The clauses depend on the edge set of H in color 4, described in

the rows (where V(H) = {0,1}).

z,)(xy) {00,01, 11} + 7))

3.2.3 Vertex/Edge Deletion H-Coloring: FPT algorithms when
H has order 2

For many edge-colored graphs H of order at most 2, we can show that VERTEX DELETION
H-CoOLORING and EDGE DELETION H-COLORING are FPT by giving ad-hoc reductions
to VERTEX COVER, ODD CYCLE TRANSVERSAL or a combination of both. However,
a more powerful method is to generalize a technique from [27] used to prove that H-
COLORING is in P by reduction to 2-SAT (see also [26]):

Theorem 3.18 (Brewster, Dedi¢, Huard and Queen [27]). Let H be an edge-colored
graph of order at most 2. Then, for each instance G' of H-COLORING, there ezists a
polynomially computable 2-SAT formula F(G) that is satisfiable if and only if G — H.
Thus, H-COLORING is in P.

Proof (sketch). The formula F(G) from Theorem 3.18 contains a variable z, for each
vertex v of GG, and for each edge uv, a set of clauses that depends on H, as described
in Table 3.3 (reproduced from [27]). The idea is to see the two vertices of H as “true”
(1) and “false” (0), and for each edge uv of a certain color, to express the possible valid
assignments of z, and x, based on the edges of that color that are present in H. For
example, if H has, for color i, a loop at vertex 0 and an edge 01, but no other edge of
color i, for each edge uv of G of color i, we add the clause (T, + T,) to F(G), indeed the
constraint for edge uv is satisfied if at least one of u, v is mapped to 0. n

We will show how to generalize this idea to VERTEX DELETION H-COLORING and
EDGE DELETION H-COLORING. We will need the following parameterized variant of
2-SAT:

VARIABLE DELETION ALMOST 2-SAT Parameter: k.
Input: A 2-CNF Boolean formula F', an integer k.

Question: Is there a set of k variables that can be deleted from F' (together with the
clauses containing them) so that the resulting formula is satisfiable?

VARIABLE DELETION ALMOST 2-SAT and another similar variant, CLAUSE DELE-
TION ALMOST 2-SAT (where instead of k variables, k clauses may be deleted), are known
to be FPT: a solution can be found in O(2°%) (n + m)°M) time (see [53, Chapter 3.4]
and [165]) where n is the number of variables and m is the number of clauses of the
formula. We need to introduce a more general variant, that we call GROUP DELETION
ALMOST 2-SAT, defined as follows.

On various graph coloring problems page 85



3.2. Edge-colored modification problems

GROUP DELETION ALMOST 2-SAT Parameter: k.
Input: A 2-CNF Boolean formula F', an integer k, and a partition of the clauses of F'
into groups such that each group has a variable which is present in all of its clauses.
Question: Is there a set of k groups of clauses that can be deleted from F' so that the
resulting formula is satisfiable?

By a generalization of [53, Exercise 3.21] for CLAUSE DELETION ALMOST 2-SAT, we
obtain the following complexity result for GROUP DELETION ALMOST 2-SAT.

Proposition 3.19. GRoOUP DELETION ALMOST 2-SAT is FPT and can be solved in
O2°® (n + m)°W) time where n is the number of variable and m is the number of
clauses of the formula.

Proof. We will reduce the problem GROUP DELETION ALMOST 2-SAT to the problem
VARIABLE DELETION ALMOST 2-SAT.

Take an instance G of GROUP DELETION ALMOST 2-SAT with groups g1, ..., g,. We
construct an instance V of VARIABLE DELETION ALMOST 2-SAT as follows. Fori € [1, p],
we replace each occurrence of variable x in the clauses of group g; with a new variable x;.
Moreover, for each variable x and for each i, j, such that 1 <i < j < p, we add the two
clauses (7; + z;) and (z; + ;) to V (i.e. x; = z;). The parameter for V remains k.

Suppose that V is a positive instance, i7.e. that after removing up to k variables, the
resulting set of clauses V' is satisfied by a truth assignment v. For each removed variable
x;, we remove the group of clauses g; in G. Note that at most k£ groups are removed since
we removed at most k variables in V. We have to show that the new set of clauses G’ is
satisfiable.

Note that if z; and x; are not removed, then v satisfies (z; + z;) and (z; + 7;), which
ensures that v(x;) = v(z;). Thus, defining the truth value of x by the value of v(z;) (for
some non-removed z;) is well-defined. Take a clause (z + y) of G', then (z; + y;) is a
satisfied clause of V' for some i € [1, p|]. By definition of our truth assignment, (z + y) is
satisfied, so G’ is satisfiable. Therefore, G is a positive instance.

Conversely, suppose that we can remove k groups from G such that the resulting set
of clauses G’ is satisfied by v. If we removed the group g; in the solution, then we remove
x; in V where z; is a variable of g; that appears in each of its clauses. Such a variable
exists by definition of G. This removes all the clauses corresponding to the clauses of the
group g; in V. Thus, taking the truth assignment that assigns to each x; the value v(x)
satisfies the instance V. O

We are now able to prove the following theorem.

Theorem 3.20. For every edge-colored graph H of order at most 2, VERTEX DELE-
TION H-COLORING and EDGE DELETION H-COLORING are FPT and can be solved in
O(2°0nOW)Y where n is the order of the input edge-colored graph.

Proof. For an instance G,k of VERTEX DELETION H-COLORING or EDGE DELETION
H-COLORING, we consider the formula F(G) from Theorem 3.18 (see Table 3.3). In F/(G),
to each vertex of GG corresponds a variable x,. Deleting v from G when mapping G to H
has the same effect as deleting x, when satisfying F'(G). Thus, this is an FPT reduction
from VERTEX DELETION H-COLORING to VARIABLE DELETION ALMOST 2-SAT.
Moreover, each edge uv of G corresponds to one or two clauses of F/(G). This natu-
rally defines the groups of GROUP DELETION ALMOST 2-SAT by grouping the clauses
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A(H) Clause A;(H) Clause

@ () (Tw) {01,10} (Tu + 20) (T + To)
{00} (T + )(Ty +¢)(©) | {01, 11} (20)

{01} (Tu + ¢)(xy +¢)(e) | {10,11} (zu)

{10} (Ty + ¢)(zy + ¢)(€) | {00,01,10} (To + Ty)

{11} (x4 + ¢)(xy + ¢)(2) | {00,01,11} (Ty + )

{00,01} (Tw) {00,10,11} (T4 +T)

{00, 10} (7)) {01,10,11} (4 + Ty)

{00, 11} (xy + T0)(Ty + x,) | {00,01,10,11} (2, + Ty)

Table 3.4: Clauses appearing in the 2-SAT formula F'(G) of Theorem 3.21, for each arc uv of
the (n, m)-mixed graph G colored i. The clauses depend on the arc set of H in color 4, described
in the rows (where V(H) = {0,1}). The variable ¢ present in this table is unique to each edge
uv, i.e. we create a new variable for each edge.

corresponding to the same edge. Removing an edge is equivalent to removing its corre-
sponding group. To finish, we have to make sure that we can have one variable common
to all the clauses of each group. This is the case in the reduction in [27] for every case
except when E;(H) (the set of edges of color ¢ in H) is just a loop. Assume without loss
of generality that the loop is on vertex 1 (the other loop can be treated the same way).
Suppose uv has color ¢ in G; then wv must be mapped to the loop on vertex 1. The
original reduction added the clauses (x,)(x,); we modify this part and add instead the
clauses (¢ + z,)(c + z,)(¢) where ¢ is a new variable. This is now a valid and equivalent
instance of GROUP DELETION ALMOST 2-SAT, which is FPT by Proposition 3.19. O]

It is also possible to generalize our two problems to (m,n)-mixed graphs. Note that
the same kind of argument can be generalized to mixed graphs to obtain the following
result.

Theorem 3.21. For every (n,m)-mized graph H of order 2, VERTEX DELETION H-
COLORING and EDGE DELETION H-COLORING are FPT.

Proof. The proof is sensibly the same as for the previous theorem. Let H be the target
(n, m)-mixed graph and G be the input (n, m)-mixed graph. Each edge of G is associated
with a group of clauses as in Theorem 3.20. The group of clauses for the arcs of G are
described in Table 3.4. This creates a 2-SAT formula F(G).

If we want to solve VERTEX DELETION H-COLORING, then we solve VARIABLE
DELETION ALMOST 2-SAT on F(G) and k. If we want to solve EDGE DELETION H-
COLORING, then we solve GROUP DELETION ALMOST 2-SAT on F'(G) and k. Note that
in the last case, each group of clauses has a common variable. O
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3.3 Limited Switchings (H,n)-Coloring when H has
order 2

In this section, we study the complexity of the problem LIMITED SWITCHINGS (H,7)-
COLORING for signed graphs (H, ) of order at most 2.

3.3.1 Limited Switchings (H, 7)-Coloring: P/NP-complete dichotomy

We start by presenting a P/NP-complete dichotomy theorem for each of the sp-cores of
order 2. Recall that there is an isomorphism between the set of 2-edge-colored graphs
and the set of signed graphs. We use the notations for 2-edge-colored cores when talking
about sp-cores (see Figure 3.1).

Theorem 3.22. Let (H,7) be an sp-core of order at most 2 (i.e. one of the signed
graphs in Figure 3.1). If (H,m) is one of HY (. e—eO ), H? (e—e) HZ}

(e 80 ), H (e "®), or H" (& & ), then LIMITED SWITCHINGS (H,T)-
COLORING is NP-complete. Otherwise, it is in P.

Proof. We begin with the polynomial cases.

« Every signed graph maps to H}, ( Ce:%; ), thus LIMITED SWITCHINGS H,-COLORING
is trivially in P.

« No graph with an edge can be mapped to H' (@) (regardless of switchings).

o For H} ( Ce), we need to test whether the signed graph can be switched to an all-
positive graph in less than k switchings or not. There are only two sets of switched
vertices that achieve this signature (one is the complement of the other). It is in P
to test if the graph can be switched to an all-positive signed graph by Theorem 2.8.
Doing that also gives us one of the two sets of switched vertices. We then need to
check if its size is at most k or at least |V (G)| — k. Hence, LIMITED SWITCHINGS
H}-COLORING is in P.

« For H?, (eD ), we just apply the algorithm for H; ( Ce) and H} (::®) to each
connected component, one of the two must accept for each of them.

o For HE“’_ (o<~ @), a signed graph (G, o) is a positive instance if and only if G
(without considering edge-colors) is bipartite, which can be tested in polynomial
time.

« For H_ (e——e) a signed graph (G,0) is a positive instance if and only if it is
bipartite and maps to H} ( Ce®). We just need to check the two properties, which
are both polynomially testable.

o For Hfl; (- e——e.; ), a signed graph (G, o) maps to Hfl; if and only if it has no
cycle with an odd number of positive edges (see Lemma 3.4, proved in [16]). This
property is preserved under the switching operation. Thus, switching the graph
does not impact the nature of the instance. It is thus in P (we can test with k& = 0)
since H22-COLORING is in P [16, 27].
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Figure 3.6: Reduction from VERTEX COVER to LIMITED SWITCHINGS Hff’_ -COLORING.

We now consider the NP-complete cases. For every signed graph (H,7), LIMITED
SWITCHINGS (H,7)-COLORING clearly lies in NP. The NP-hardness follows from The-
orem 2.22 in all but one case: indeed, HY (- e—e0 ), HYY (e 0 ), H

(e @), and Hz’;b (e e ) are their own switching cores and have at least three

edges, and thus when (H,7) is one of these, LIMITED SWITCHINGS (H, 7)-COLORING is
NP-complete, even with k£ = [V (G)].

The last case is for Hff’_ (- e—e@). We give a reduction from VERTEX COVER to

LIMITED SWITCHINGS H?* -COLORING. Given an instance G, k of VERTEX COVER, we
construct the signed graph (G’,¢’) from an all-negative copy (G, E(G)) of G where we
attach to each vertex v of G a positive edge vv’, with a negative loop on the new vertex
v’ (see Figure 3.6).

Denote by = the vertex of Hffl with a loop, and by y the other one. Assume that G
has a vertex cover C' of size at most k. Let (G’,0”) be the signed graph obtained from
(G',0’) by switching the vertices of C. We map every vertex of the form v' to z, every
vertex of C' to x and the remaining ones to y. Since C' is a vertex cover, every negative
edge of (G',0") is either a loop on some vertex v'; an edge vv’ with v € C or an edge
uv with u,v € C. In each case, both endpoints are mapped to x. The positive edges of
(G',0") are then of the form vv’ with v ¢ C or uwv with u € C' and v ¢ C. In both cases,
the two endpoints are mapped to different vertices of H2” . Hence, (G',¢0”) —% H?* and
G — HY.

Conversely, assume that we can switch the vertices of a set S in (G’, ¢’) such that the
resulting signed graph (G’, 0”) verifies (G’, 0"") —% H?" . Let C be the set of vertices v of
G such that the vertices v or v' of G’ lies in S. Note that C' has size at most |S|. We claim
that C' is a vertex cover of G. Assume that there is an edge wv in G with u,v ¢ C. By
construction, u, v, v,v" € S, so uw’,vv" are positive in (G’,0”), and uv is negative. Thus,
u and v have to be mapped to z, and ¢’ and v’ have to be mapped to y, a contradiction
since ' has an incident negative loop in (G’,0”). Therefore C' is a vertex cover of G. [

3.3.2 Limited Switchings (H,7)-Coloring: FPT cases

We now consider the parameterized complexity of LIMITED SWITCHINGS (H, 7)-COLORING.
By Theorem 3.22; there are five signed graphs (H, m) of order at most 2 for which Lim-
ITED SWITCHINGS (H,7)-COLORING is NP-complete. We first show that two of them
are FPT:

Theorem 3.23. The problem LIMITED SWITCHINGS (H,7)-COLORING is FPT when
(H,m) is one of HY} (1@—eD ) or HY (::e—e@).

Proof. The signed graph HZ} (::@——eO ) has the finite duality property by [16], see

Lemma 3.5: G —* HZ} if and only if G does not contain a walk abed where ab and cd are
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negative edges and bc is a positive edge. This implies FPT time for LIMITED SWITCHINGS
Hf,’,’]—COLORING by a simple bounded search tree algorithm (Proposition 3.2).

For the graph H?* (::@——e), as mentioned in Lemma 3.6, the duality set F(H?" )

discovered in [16] is composed of walks of the form RB?’~!R (where R denotes a negative
edge, B denotes a positive edge and p > 1 is an integer) and of closed walks with an odd
number of positive edges (i.e. cycles in BCyyq 0r UCeyen). As seen before, if the graph G
has such a closed walk then switching will not remove it, thus we can reject.

If the graph has a RB?~'R walk and is a positive instance, then we claim that we
need to switch one of the four vertices incident with the negative edges. Indeed, if we
switch only at the vertices inside the positive walk (i.e. the vertices not incident with one
of the negative edges) then the parity of the number of positive edges will not change
and we will still have some maximal odd positive sub-walk, the two edges next to the
extremities being negative. Thus we would still have a RB?~! R walk for some ¢ > 1.

Hence, since we need to switch at one of these four vertices, we branch on this config-
uration using the classic bounded search tree technique. This is an FPT algorithm. [

3.3.3 Limited Switchings (H, r)-Coloring: W[1]-hard cases

The remaining cases, H2}' (e 00 ), H™ (e "®), and H" (e e ), yield
WI[1]-hard LIMITED SWITCHINGS (H,7)-COLORING problems, even for input graphs of
large girth.

LiMITED SWITCHINGS (H,w)-COLORING is W[1]-hard, even for signed graphs (G',c")
with girth at least g and which verify (G',0") —s (H, ). Under the same conditions,
LIMITED SWITCHINGS (H,7)-COLORING cannot be solved in time f(k)|G|°®) for any
computable function f, assuming the ETH.

Theorem 3.24. Let (H,w) € {H%@b,HQ”’ Hf;,b}. For any integer g > 3, the problem

We will prove Theorem 3.24 by three reductions from MULTICOLORED INDEPENDENT
SET, which is W[1]-complete [162]:

MULTICOLORED INDEPENDENT SET Parameter: k.
Input: A graph G, an integer k and a partition of V(G) into k sets V1,...,V;.
Question: Is there a set S of exactly k vertices of G, such that each V; contains exactly
one element of S, that forms an independent set of G7

Our three reductions (one for each possible choice of x) follow the same pattern. In
Section 3.3.3.1, we describe this idea, together with the required properties of the gadgets.
In Sections 3.3.3.2, 3.3.3.3 and 3.3.3.4, we show how to construct the gadgets. Since the
reduction preserves the parameter and is actually polynomial, the ETH-based lower bound
follows from [43].

3.3.3.1 Generic reduction

Let (G, k) be an instance of MULTICOLORED INDEPENDENT SET, and denote by Vi, ..., Vi
the partition of GG. Let us construct a signed graph (G’, o). We begin by creating for each
Vi a partition gadget (G;,0;) in (G',0). This gadget has |V;| special vertices, denoted z;
for z; € V;, in order to associate a vertex of G; with each vertex of V;. Moreover, (G;, ;)
must satisfy the following.
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(P1) We do not have (G;,0;) —® (H, ).

(P2) If we switch exactly one vertex v of (G, 0;), then the obtained signed graph admits
a sign-preserving homomorphism (H, 7) if and only if v is one of the special vertices
of Gl

(P3) G; has girth at least g.

(P4) G; has two reset vertices x and y that are different from the x;’s and such that
the signed graph (G;, o)) obtained from (G;,0;) by switching  and y admits a
sign-preserving homomorphism to (H, 7).

Let uv be an edge of G. Recall that v and v can be seen as vertices of the signed graph
(G',0). We add an edge gadget (Gyp, 0uy) (containing two vertices u and v) in (G', o) by
identifying the vertex u (resp. v) of (G', o) with the vertex u (resp. v) of (Gyy, 0uy). This
gadget must satisfy the following.

(E1) Let (Gyw,0,,) be the graph obtained from (Gyy,0u) by switching a subset S
of {u,v}. If S # {u,v}, then (Gyy,0.,) —* (H, ).

(£2) Assume that u € V; and v € V; and let (P, p) be the signed graph obtained from
(Guw, Ouw)U(Gi, 0,)U(G;, 0;) by switching u and v. Then, we do not have (P, p) —?
(H,m).

(E3) Gy has girth at least g.
(E4) In Gy, u and v are at distance at least g.

This ends the construction of (G’,0). Note in particular that every vertex of G is
present in G'.

We say that a set S of vertices of G is walid if, when seen as a subset of V(G'), it
contains at most one special vertex in each edge gadget. We need one last condition about

(G 0).

(SP) If, after switching a valid set in (G’, o), the obtained graph does not map to (H, ),
then this is because a partition gadget or an edge gadget does not map to (H, )
(that is, each minimal obstruction is entirely contained in an edge gadget or a
partition gadget).

We can now prove that our reduction is valid.

Proposition 3.25. ((G',0),k) is a positive instance of LIMITED SWITCHINGS (H,)-
COLORING if and only if (G, k) is a positive instance of MULTICOLORED INDEPENDENT
SET.

Proof. Assume we can switch at most k vertices of (G', o) such that the obtained signed
graph admits a sign-preserving homomorphism to (H, 7). Let S be the set of those
vertices. We claim that S is a valid set of (G’, o). First note that, due to (P1), S must
contain at least one vertex in each V;. This enforces |S| = k, thus S contains exactly one
vertex v; in each V;. By (P2), each of these v;’s has to be one of the special vertices of
G;. This means that S contains only vertices that are present in G.

We claim that S induces an independent set in G. Assume by contradiction that there
is an edge wv in G with u,v € S. Then, by construction, there is an edge gadget whose
special vertices are u and v, such that the edge gadget and the two partition gadgets
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(a) Partition gadget for V; = {xg, z1, 22,3} (b) Edge gadget for uv.

with the two reset vertices r1, 72.

Figure 3.7: Partition and edge gadgets in the Hf}%-reduetion when g = 3.

associated with v and v map to (H,7) when we switch only w and v, contradicting (F2).
(Note that S does not contain any other vertex of the edge gadget nor any other vertex of
the partition gadgets.) Therefore, G has an independent set of size k containing exactly
one vertex in each set V.

Conversely, assume that G' has an independent set S intersecting each V; at one vertex.
Then, we denote by (G’, ") the signed graph obtained by switching every vertex of S in
(G',0). By construction, this is a valid set, hence by (SP) every obstruction for mapping
to (H,7) in (G’, ¢’) is actually contained in some gadget. However, it cannot be contained
in a partition gadget due to (P2), nor in an edge gadget due to (E1). Therefore, we have
(G' o) —P (H, ). O

Observe moreover that, due to (P3), (£3) and (F4), G’ has girth at least g. Moreover,
let S be the set containing all reset vertices of (G', o). Let (G',0’) be the signed graph
obtained by switching every vertex of S. By (P4), no partition gadget in H contains an
obstruction. Furthermore, no edge gadget contains an obstruction by (E1). Therefore,
using (SP), we obtain that H does not contain any obstruction, hence (G', 0’') —2 (H, ).
Thus to prove Theorem 3.24 it suffices to construct the gadgets.

3.3.3.2 Gadgets for 42"

We now describe the gadgets for LIMITED SWITCHINGS H?’-COLORING (6”& ).
As mentioned in Lemma 3.7, for every signed graph (G,0), we have (G,0) —% HZ? if
and only if (G, o) does not contain an all-positive odd cycle.

The partition gadget (G;,0;) is an all-positive cycle of length 2¢g if g and |V;| have
the same parity (resp. 2g + 2 is they do not have the same parity) with a positive chord
of order |V;| between two antipodal vertices. The special vertices are those on the chord
(see Figure 3.7(a)). The reset vertices are defined as any two vertices on the initial cycle
(excluding the two vertices connected to the chord), one on each side of the chord.

Property (P3) directly follows from the construction. Moreover, since GG; contains an
all-positive odd cycle, we have (P1). If we switch exactly one vertex in G, then either
this vertex is a special vertex and the obtained graph does not have any all-positive odd
cycle (and thus maps to Hf;b), or it is not a special vertex and there is still an all-positive
odd cycle. Therefore, property (P2) also holds.

Finally, if we switch the two reset vertices, then there is no longer any all-positive odd
cycle, thus (P4) also holds.

We now consider the edge gadget. It is formed by an all-positive odd cycle of length
29+ 1 where two vertices u, v at distance g have been switched (see Figure 3.7(b)). These
vertices are the special vertices of the gadget. By construction, properties (E3) and (E4)
hold. Moreover, consider a set S C {u,v}. The only way to create a graph containing
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Figure 3.8: The edge gadget for uv in the Hf’[b—reduction when g = 6.

an all-positive odd cycle by switching the vertices of S is to switch both u and v. This
proves (E1). If we switch both special vertices then we do not have (Guy, 0uw) —% HZP,
which implies (E£2).

It remains to prove Property (SP). Let S be a valid set, and let (P, p) be the graph
obtained from (G’, o) when switching all vertices of S. Assume that (P, p) contains an
all-positive odd cycle. Since S is valid set, at most one vertex has been switched in each
edge gadget. Therefore, no all-positive odd cycle of (P, p) can contain an edge from an
edge gadget. It is thus contained in some partition gadget, ensuring that (SP) holds.

3.3.3.3 Gadgets for Hﬁ’f’

We now describe the gadgets for LIMITED SWITCHINGS H"’-COLORING ( 2 "®). As
mentioned in Lemma 3.8, for every signed graph (G, o), we have (G,0) —% H?"" if and
only if (G, o) does not contain a bad walk, i.e. an odd figure eight vy, vy, ..., vy, Vo,
Vgjt2, - -, Vap_1, Vo such that all edges vy;v9;11 are positive [16].

The partition gadget (G, 0;) is the same as in the previous case (see Figure 3.7(a)).

The edge gadget is an odd path of length at least g, whose edges are all-positive except
for the first two and last two ones (see Figure 3.8).

Since the partition gadget (G, 0;) is the same as for Hff_b, Property (P3) still holds.
Moreover, since all-positive odd cycles still are obstructions, we have (P1).

Observe that if a signed graph (P, p) contains an obstruction, then so does its subgraph
obtained by removing recursively its leaves. Note that switching exactly one vertex v in
(G, 0;) makes its incident edges all-negative. Therefore, v cannot be contained in a bad
walk anymore. In this case, the obstruction is contained in a possibly empty signed cycle
(Cy,my) (obtained by removing from (G, 0;) the vertex v and the leaves of G; recursively).

If we switch exactly one vertex in (G, 0;), then either this vertex is a special vertex
and (C,, m,) is empty or an all-positive even cycle (and thus maps to HZ”_I’), or it is not a
special vertex and (C,, m,) is still an all-positive odd cycle. Therefore, property (P2) also
holds.

Finally, if we switch the two reset vertices u and v, then G; \ {u, v} is a tree, thus G;
does not contain any obstruction, hence (P4) also holds.

By construction, properties (E3) and (£4) hold. Moreover, observe that the edge
gadget does not contain a bad walk since it is a path. Thus (F1) holds. If (P, p) is the
graph defined in property (E£2) then there is a bad walk starting from u, then turning
around one odd cycle in the partition gadget containing u, crossing the edge gadget to v,
taking a similar turn around an odd cycle of the partition gadget containing v and then
going back to u by the edge gadget. So (E£2) holds.

It remains to prove (SP). Let S be a valid set, and (G’, ¢”) be the graph obtained from
(G', 0’) by switching S. Observe that no bad walk contains two consecutive negative edges.
Moreover, in (G’,0’), every edge gadget contains two such edges (since its two endpoints
cannot be both in ). Therefore, no bad walk crosses an edge gadget (G, 0yp), Which
implies that no bad walk contains edges in (G, 0u). Hence, every bad walk is contained
in some partition gadget, thus ensuring that (SP) holds.
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(a) Partition gadget for V; = {xg, x1, x2, x3}, (b) Edge gadget for uv. The vertex x is
with the two reset vertices r1, 7s. where the two alternating cycles were identi-
fied.

Figure 3.9: Partition and edge gadgets in the Hfzb—reduction when g = 3.

3.3.3.4 Gadgets for A}’

We now describe the gadgets for LIMITED SWITCHINGS H%b—COLORING (e " e0D).
As mentioned in Lemma 3.9, for every signed graph (G, o), we have (G,0) —% HZ} if
and only if (G, o) does not contain an alternating odd figure eight, that is, an alternating
closed walk vp, vq, ..., Vaj, Vo, Vajt2, - - ., Vap_1, Vo for some integers j and p [16].

The partition gadget (G;,o0;) is defined by gluing two obstructions with large girth
along a path of length |V;| (see Figure 3.9(a)). More precisely, consider an alternating
odd cycle (C,7¢) of size |V;| + g (or |V;] + g + 1). Note that (C,7¢) contains a vertex
u adjacent to two negative edges. We attach an alternating odd cycle (C’, 1) of length
g (or g + 1) to u, such that the edges of (C', 7)) adjacent to u are positive. To obtain
(G;,0;), we take two copies of this obstruction, and glue their respective largest cycle
along a path of length |V;|. The vertices of this path are the special vertices of (G}, o),
and the two copies of u are the reset vertices of (G;, 0;).

The edge gadget is formed by identifying the vertices having their two incident edges
of the same sign in two alternating odd cycles of length 2¢g 4+ 1, in such a way that the
common vertex has two positive edges in one cycle and two negative edges in the other
one. To obtain the edge gadget, we switch two vertices u and v, at distance g from each
other, in the same cycle of this signed graph (see Figure 3.9(b)).

Observe that (G;,0;) has girth at least g, hence Property (P3) holds. Moreover, by
construction, (G;,0;) contains an obstruction, hence (P1) holds. Note that there are
exactly two (minimal) obstructions in (G, 0;), the ones used to construct it. Therefore, if
we switch a non-special vertex in (G;, 0;), one of the these obstructions is unchanged, and
the obtained graph does not map to Hfjf’. Conversely, assume that we switch a special
vertex u of (G;,0;) and there remains an obstruction. Note that all the paths of length
two starting from u are now all-positive or all-negative, hence no alternating odd figure
eight can go through w. This implies that every alternating odd figure eight in this graph
does not use the internal vertices of the glued path. When removing these vertices from
(G, 0;), the former endpoints of the glued path have their incident edges of the same sign,
hence they cannot be contained in an alternating odd figure eight. Removing the whole
glued path and (recursively) the leaves of G; gives two disjoint alternating odd cycles,
which do not contain any alternating odd figure eight. Thus we have (P2).

Finally, if we switch the two reset vertices of (G;, 0;), all the paths of length 2 starting
at these vertices are all-positive or all-negative, hence no alternating odd figure eight goes
through them. Removing the reset vertices, and recursively the obtained leaves gives
the empty graph. Therefore, there is no alternating odd figure eight in the signed graph
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obtained from (G, 0;) by removing the reset vertices, it thus maps to HZ’, and (P4)
holds.

The construction of the edge gadget ensures that (£3) and (F4) are satisfied. More-
over, if we s