Complete Colorings of Signed Graphs

Supervisors:	Florent Foucaud, florent.foucaud@u-bordeaux.fr
	${ m \acute{E}ric}\ { m Sopena},\ {\tt eric.sopena}$ u-borde ${\tt aux.fr}$
Research team:	Combinatorics and Algorithms (Graphs and Optimization)
Funding:	ANR Project HOSIGRA (Homomorphisms of signed graphs)

Abstract. The aim of this proposal is to study complete colorings of signed graphs, based on the notion of coloring recently introduced by Máčajová, Raspaud and Škoviera [3], as an extension of earlier definitions by Zaslavsky [5]. To our knowledge, this notion has not been considered yet, so that one can reasonably expect to obtain interesting results on this topic.

General context. A proper k-coloring of a graph G is a mapping λ from the set of vertices V(G) of G to the set of colors $\{1, \ldots, k\}$ such that $\lambda(u) \neq \lambda(v)$ for every edge uv of G. The chromatic number $\chi(G)$ of G is then the smallest integer k for which G admits a proper k-coloring. A proper k-coloring λ of G is complete if, for every two distinct colors i and j, $1 \leq i < j \leq k$, there is an edge uv in G with $\lambda(u) = i$ and $\lambda(v) = j$. The achromatic number $\psi(G)$ of G is then the largest integer k for which G admits a complete proper k-coloring. Complete colorings of graphs have been extensively studied in the literature (see [1] for a comprehensive survey on graph colorings).

A signed graph is a pair (G, σ) where G is a graph and σ a mapping (the signature of (G, σ)) that assigns to each edge of G a sign from the set $\{+, -\}$. A proper n-coloring [3, 5] of a signed graph (G, σ) is a mapping λ from the set of vertices V(G) of G to the set of colors $M_n =$ $\{-k, \ldots, k\}$ if n = 2k + 1, of $M_n = \{-k, \ldots, -1, 1, \ldots, k\}$ if n = 2k, such that $\lambda(u) \neq \sigma(uv)\lambda(v)$ for every edge uv of G. Therefore, the colors assigned to vertices connected by a positive edge must be distinct and can be opposite, while the colors assigned to vertices connected by a negative edge can be identical but cannot be opposite.

Research proposal. The goal of this master thesis project is to initiate the study of complete colorings of signed graphs. The definition of such a complete coloring is as follows: A proper *n*-coloring λ of a signed graph (G, σ) is *complete* if, for every two distinct integers *i* and *j*, $0 \le i < j \le k$ if n = 2k + 1, or $1 \le i < j \le k$ if n = 2k, the exists an edge uv in (G, σ) with $\lambda(u) = a, \lambda(v) = b, |a| = i$ and |b| = j. The achromatic number of a signed graph is then defined in the same way as for ordinary graphs.

It is worth to notice that complete colorings of signed graphs have been studied in [2], but using a rather different notion of signed graph coloring, based of homomorphisms of signed graphs (several types of colorings have been defined for signed graphs, see [4] for a recent survey on this topic).

The work on this project might be organized as follows.

- 1. Bibliographic review: complete colorings, signed graphs, signed graph colorings...
- 2. Structural issues: complete colorings and achromatic numbers of special classes of signed graphs.

3. Algorithmic issues: complexity of decision problems related to complete colorings or achromatic numbers.

Depending on the work progress, it may happen that item 2 or item 3 is developed in a deeper way.

References

- [1] G. Chartrand and P. Zhang. *Chromatic Graph Theory*. CRC Press, Chapman & Hall (2009), Chapter 12: Complete colorings.
- [2] D. Lajou. On the achromatic number of signed graphs. Theoretical Computer Science 759 (2019), 50–60.
- [3] E. Máčajová, A. Raspaud and M. Škoviera. The chromatic number of a signed graph. arXiv:1412.6349 [math.CO] (2016).
- [4] E. Steffen and A. Vogel. Concepts of signed graph coloring. arXiv:1909.09381 [math.CO] (2019).
- [5] T. Zaslavsky. Signed graph coloring. Discrete Mathematics 39 (1982), 215–228.