
The neighbour-sum-distinguishing edge-colouring game
Olivier Baudon 1, Jakub Przybyło 2, Elżbieta Sidorowicz 3, Éric Sopena 1, Mariusz Woźniak

2, and Mohammed Senhaji 1

1 Univ. Bordeaux, LaBRI, UMR5800, F-33400 Talence, France
2 AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland

3 Faculty of Mathematics, Computer Science and Econometrics,
University of Zielona Góra, Zielona Góra, Poland

Extended Abstract

Let γ : E(G) −→ N∗ be an edge colouring of a graph G and σγ : V (G) −→ N∗
the vertex colouring given by σγ(v) =

∑
e3v γ(e) for every v ∈ V (G). A neighbour-sum-

distinguishing edge-colouring of G is an edge colouring γ such that for every edge uv in G,
σγ(u) 6= σγ(v). The study of neighbour-sum-distinguishing edge-colouring of graphs was ini-
tiated by Karoński, Łuczak and Thomason [8]. They conjectured that every graph with no
isolated edge admits a neighbour-sum-distinguishing edge-colouring with three colours.

We consider a game version of neighbour-sum-distinguishing edge-colouring. The neighbour-
sum-distinguishing edge-colouring game on a graphG is a 2-player game where the two players,
called Alice and Bob, alternately colour an uncoloured edge of G. Alice wins the game if,
when all edges are coloured, the so-obtained edge colouring is a neighbour-sum-distinguishing
edge-colouring of G. Therefore, Bob’s goal is to produce an edge colouring such that two
neighbouring vertices get the same sum, while Alice’s goal is to prevent him from doing so.
The neighbour-sum-distinguishing edge-colouring game on G with Alice having the first move
will be referred to as the A-game on G. The neighbour-sum-distinguishing edge-colouring
game on G with Bob having the first move will be referred to as the B-game on G.

We study the neighbour-sum-distinguishing edge-colouring game on various classes of
graphs. In particular, we prove that Bob wins the game on the complete graph Kn, n ≥ 3,
whoever starts the game, except when n = 4. In that case, Bob wins the game on K4 if and
only if he starts the game.

General results
A balanced edge in a graph G is an edge uv ∈ E(G) with degG(u) = degG(v).

Lemma 1 Let G be a graph containing a balanced edge.

1. If |E(G)| is even then Bob wins the A-game on G.

2. If |E(G)| is odd then Bob wins the B-game on G.

For a graph G, for every vertex v ∈ V (G), we denote by degpG(v) the number of pendant
neighbours of v. An internal vertex in G is a vertex with degG(v) > 1.

Theorem 2 Let G be a graph such that degpG(v) ≥
1
2degG(v) + 1 for every internal vertex

v ∈ V (G).

(1) If |E(G)| is odd then Alice wins the A-game on G.

(2) If |E(G)| is even then Alice wins the B-game on G.

Theorem 2 allows us to prove that Alice wins the A-game or the B-game on some special
trees. A caterpillar is a tree T whose set of internal vertices induces a path, called the central
path of T . We then have:



Corollary 3 (Special caterpillars) Let T be a caterpillar, with central path v1v2 . . . vk,
such that degT (v1) ≥ 4, degT (vk) ≥ 4 and degT (vi) ≥ 6 for every i, 2 ≤ i ≤ k − 1. We then
have:

(1) If |E(G)| is odd then Alice wins the A-game on G.

(2) If |E(G)| is even then Alice wins the B-game on G.

Graphs families
The double-star DSm,n, m ≥ n ≥ 1, is obtained from the two stars K1,m and K1,n by adding
an edge joining their two centers. We prove the following:

Theorem 4 (Double-stars)

1. For every integer n ≥ 1, Bob wins the B-game on DSn,n.

2. For every integer n ≥ 1, Alice wins the A-game on DSn,n.

3. For every integer m > n ≥ 1, Alice wins the A-game on DSm,n.

4. For every integer m > n ≥ 1, Alice wins the B-game on DSm,n.

Theorem 5 (Complete graphs)

1. For every integer n ≥ 3, Bob wins the A-game on Kn.

2. For every integer n ≥ 3, Bob wins the B-game on Kn if and only if n 6= 4.

Theorem 6 (Complete bipartite graphs)

1. For every integer n ≥ 2, Bob wins the A-game on K2,n.

2. For every integer n ≥ 2, Alice wins the B-game on K2,n.

We leave as an open problem the question of determining who wins the A-game or the
B-game on general complete bipartite graphs Km,n, 3 ≤ m ≤ n.
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