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Abstract. An incidence of a graph G is a pair (v, e) where v is a ver-
tex of G and e an edge incident to v. Two incidences (v, e) and (w, f)
are adjacent whenever v = w, or e = f , or vw = e or f . The incidence
coloring game [S.D. Andres, The incidence game chromatic number, Dis-
crete Appl. Math. 157 (2009), 1980–1987] is a variation of the ordinary
coloring game where the two players, Alice and Bob, alternately color
the incidences of a graph, using a given number of colors, in such a way
that adjacent incidences get distinct colors. If the whole graph is colored
then Alice wins the game otherwise Bob wins the game. The incidence
game chromatic number ig(G) of a graph G is the minimum number of
colors for which Alice has a winning strategy when playing the incidence
coloring game on G.
Andres proved that ig(G) ≤ 2∆(G)+4k−2 for every k-degenerate graph

G. We show in this paper that ig(G) ≤ ⌊ 3∆(G)−a(G)
2

⌋ + 8a(G) − 2 for
every graph G, where a(G) stands for the arboricity of G, thus improving
the bound given by Andres since a(G) ≤ k for every k-degenerate graph

G. Since there exists graphs with ig(G) ≥ ⌈ 3∆(G)
2

⌉, the multiplicative
constant of our bound is best possible.
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1 Introduction

All the graphs we consider are finite and undirected. For a graphG, we denote by
V (G), E(G) and ∆(G) its vertex set, edge set and maximum degree, respectively.
Recall that a graph is k-denegerate if all of its subgraphs have minimum degree
at most k.

The graph coloring game on a graph G is a two-player game introduced by
Brams [7] and rediscovered ten years after by Bodlaender [3]. Given a set of k
colors, Alice and Bob take turns coloring properly an uncolored vertex of G, Alice
having the first move. Alice wins the game if all the vertices of G are eventually
colored, while Bob wins the game whenever, at some step of the game, all the
colors appear in the neighborhood of some uncolored vertex. The game chromatic
number χg(G) of G is then the smallest k for which Alice has a winning strategy
when playing the graph coloring game on G with k colors.



The problem of determining the game chromatic number of planar graphs
has attracted great interest in recent years. Kierstead and Trotter proved in
1994 that every planar graph has game chromatic number at most 33 [11]. This
bound was decreased to 30 by Dinski and Zhu [6], then to 19 by Zhu [16], to 18
by Kierstead [10] and to 17, again by Zhu [17], in 2008. Some other classes of
graphs have also been considered (see [2] for a comprehensive survey).

An incidence of a graph G is a pair (v, e) where v is a vertex of G and e an
edge incident to v. We denote by I(G) the set of incidences of G. Two incidences
(v, e) and (w, f) are adjacent if either (1) v = w, (2) e = f or (3) vw = e or
f . An incidence coloring of G is a coloring of its incidences in such a way that
adjacent incidences get distinct colors. The smallest number of colors required
for an incidence coloring of G is the incidence chromatic number of G, denoted
by χi(G). Let G be a graph and S(G) be the full subdivision of G, obtained from
G by subdividing every edge of G (that is, by replacing each edge uv by a path
uxuvv, where xuv is a new vertex of degree 2). It is then easy to observe that
every incidence coloring of G corresponds to a strong edge coloring of S(G), that
is a proper edge coloring of S(G) such that every two edges with the same color
are at distance at least 3 from each other [4, 14].

Incidence colorings have been introduced by Brualdi and Massey [4] in 1993,
motivated by the study of the strong chromatic index of bipartite graphs. Upper
bounds on the incidence chromatic number have been proven for various classes
of graphs such as k-degenerate graphs and planar graphs [8, 9], graphs with max-
imum degree three [13], and exact values are known for instance for forests [4],
K4-minor-free graphs [9], or Halin graphs with maximum degree at least 5 [15]
(see [14] for an on-line survey).

In [1], Andres introduced the incidence coloring game, as the incidence ver-
sion of the graph coloring game, each player, on his turn, coloring an uncolored
incidence of G in a proper way. The incidence game chromatic number ig(G) of a
graph G is then defined as the smallest k for which Alice has a winning strategy
when playing the incidence coloring game on G with k colors. Upper bounds
on the incidence game chromatic number have been proven for k-degenerate
graphs [1] and exact values are known for cycles, stars [1], paths and wheels [12].

Andres observed that the inequalities ⌈ 3
2∆(G)⌉ ≤ ig(F ) ≤ 3∆(G) − 1 hold

for every graph G [1]. For k-degenerate graphs, he proved the following:

Theorem 1 (Andres, [1]). Let G be a k-degenerated graph. Then we have:

(i) ig(G) ≤ 2∆(G) + 4k − 2,
(ii) ig(G) ≤ 2∆(G) + 3k − 1 if ∆(G) ≥ 5k − 1,
(iii) ig(G) ≤ ∆(G) + 8k − 2 if ∆(G) ≤ 5k − 1.

Since forests, outerplanar graphs and planar graphs are respectively 1-, 2-
and 5-degenerate, we get that ig(G) ≤ 2∆(G) + 2, ig(G) ≤ 2∆(G) + 6 and
ig(G) ≤ 2∆(G) + 18 whenever G is a forest, an outerplanar graph or a planar
graph, respectively.

Recall that the arboricity a(G) of a graph G is the minimum number of
forests into which its set of edges can be partitioned. In this paper, we will prove
the following:



Theorem 2. For every graph G, ig(G) ≤ ⌊ 3∆(G)−a(G)
2 ⌋+ 8a(G)− 1.

Recall that ig(G) ≥ 3∆(G)/2 for every graphG so that the difference between
the upper and the lower bound on ic(G) only depends on the arboricity of G.

It is not difficult to observe that a(G) ≤ k whenever G is a k-degenerate
graph. Hence we get the following corollary, which improves Andres’ Theorem
and answers in the negative a question posed in [1]:

Corollary 3. If G is a k-degenerate graph, then ig(G) ≤ ⌊ 3∆(G)−k

2 ⌋+ 8k − 1.

Since outerplanar graphs and planar graphs have arboricity at most 2 and 3,
respectively, we get as a corollary of Theorem 2 the following:

Corollary 4.

(i) ig(G) ≤ ⌈ 3∆(G)
2 ⌉+ 6 for every forest G,

(ii) ig(G) ≤ ⌊ 3∆(G)
2 ⌋+ 14 for every outerplanar graph G,

(iii) ig(G) ≤ ⌈ 3∆(G)
2 ⌉+ 21 for every planar graph G.

In a companion paper [5], we prove that ig(G) ≤ ⌈ 3∆(G)
2 ⌉+4 for every forest

G, using a refinement of the strategy introduced in this paper.
This paper is organised as follows: we detail Alice’s strategy in Section 2 and

prove Theorem 2 in Section 3.

2 Alice’s Strategy

We will give a strategy for Alice which allows her to win the incidence coloring
game on a graph G with arboricity a(G) whenever the number of available colors
is at least ⌊ 3

2∆(G)⌋+8a(G)− 1. This strategy will use the concept of activation
strategy [2], often used in the context of the ordinary graph coloring game.

Let G be a graph with arboricity a(G) = a. We partition the edges of G into
a forests F1, ..., Fa, each forest containing a certain number of trees. For each
tree T , we choose an arbitrary vertex of T , say rT , to be the root of T .

Notation. Each edge with endvertices u and v in a tree T will be denoted by
uv if distT (u, rT ) < distT (v, rT ), and by vu if distT (v, rT ) < distT (u, rT ), where
distT stands for the distance within the tree T (in other words, we define an
orientation of the graph G in such a way that all the edges of a tree T are
oriented from the root towards the leaves).

We now give some notation and definitions we will use in the sequel (these
definitions are illustrated in Fig. 1).

– For every edge uv belonging to some tree T , we say the incidence (u, uv) is
a top incidence whereas the incidence (v, uv) is a down incidence. We then
let t(uv) = t(v, vu) = (u, uv) and d(uv) = d(u, uv) = (v, uv).
Note that each vertex in a forest Fi is incident to at most one down incidence
belonging to Fi, so that each vertex in G is incident to at most a down
incidences.



– For every incidence i belonging to some edge uv ∈ E(G), let tF (i) =
{t(wu), wu ∈ E(G)} be the set of top-fathers of i, dF (i) = {d(wu), wu ∈
E(G)} be the set of down-fathers of i and F (i) = tF (i) ∪ dF (i) be the set
of fathers of i.
Note that each incidence has at most a top-fathers and at most a down-
fathers.

– For every incidence i belonging to some edge uv ∈ E(G), let tS(i) =
{t(vw), vw ∈ E(G)} be the set of top-sons of i, dS(i) = {d(vw), vw ∈ E(G)}
be the set of down-sons of i and S(i) = tS(i)∪ dS(i) be the set of sons of i.
Note that each incidence has at most∆(G)−1 top-sons and at most∆(G)−1
down-sons.

– For every incidence i belonging to some edge uv ∈ E(G), let tB(i) =
{t(uw), uw ∈ E(G)}−{i} be the set of top-brothers of i, dB(i) = {d(uw), uw ∈
E(G)} − {i} be the set of down-brothers of i and B(i) = tB(i) ∪ dB(i) be
the set of brothers of i.
Note that each top incidence i has at most ∆(G) − |tF (i)| − 1 top-brothers
and ∆(G)− |tF (i)| down-brothers while each down incidence j has at most
∆(G) − |tF (j)| top-brothers and ∆(G) − |tF (j)| − 1 down-brothers.
Note also that any two brother incidences have exactly the same set of fa-
thers.

– Finally, for every incidence i belonging to some edge uv ∈ E(G), let tU(i) =
{t(wv), wv ∈ E(G)} be the set of top-uncles of i, dU(i) = {d(wv), wv ∈
E(G)} be the set of down-uncles of i and U(i) = tU(i)∪ dU(i) be the set of
uncles of i (the term ”uncle” is not metaphorically correct since the uncle
of an incidence i is another father of the sons of i rather than a brother of a
father of i).
Note that each incidence has at most a−1 top-uncles and at most a−1 down-
uncles. Moreover, we have |dU(i)| + |tS(i)| ≤ ∆(G) − 1 for every incidence
i ∈ I(G).

Fig. 1 illustrates the above defined sets of incidences. Each edge is drawn in
such a way that its top incidence is located above its down incidence. Incidence
i is drawn as a white box, top incidences are drawn as grey boxes and down
incidences (except i) are drawn as black boxes.

We now turn to the description of Alice’s strategy. For each set I of incidences,
we will denote by Ic the set of colored incidences of I. We will use an activation
strategy. During the game, each uncolored incidence may be either active (if Alice
activated it) or inactive. When the game starts, every incidence is inactive. When
an active incidence is colored, it is no longer considered as active. For each set
I of incidences, we will denote by Ia the set of active incidences of I (Ia and Ic
are therefore disjoint for every set of incidences I).

We denote by Φ the set of colors used for the game, by φ(i) the color of an
incidence i and, for each set I of incidences, we let φ(I) =

⋃
i∈I φ(i). As shown

by Fig. 1, the set of forbidden colors for an uncolored incidence i is given by:

– φ(F (i) ∪B(i) ∪ tS(i) ∪ dU(i)) if i is a top incidence,
– φ(dF (i) ∪ tB(i) ∪ S(i) ∪ U(i)) if i is a down incidence.
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Fig. 1. Incidences surrounding the incidence i.

Our objective is therefore to bound the cardinality of these sets. We now de-
fine the subset In of neutral incidences of I(G), which contains all the incidences
j such that:

(i) j is not colored, and
(ii) all the incidences of F (j) are colored.

We also describe what we call a neutral move for Alice, that is a move Alice
makes only if there is no neutral incidence and no activated incidence in the game.
Let i0 be any uncolored incidence of I(G). Since there is no neutral incidence,
either there is an uncolored incidence i1 in dF (i0), or all the incidences of dF (i0)
are colored and there is an uncolored incidence i1 in tF (i0). We define in the
same way incidences i2 from i1, i3 from i2, and so on, until we reach an incidence
that has been already encountered. We then have ik = iℓ for some integers k
and ℓ, with k ≤ ℓ. The neutral move of Alice then consists in activating all the
incidences within the loop and coloring any one of them.

Alice’s strategy uses four rules. The first three rules, (R1), (R2) and (R3)
below, determine which incidence Alice colors at each move. The fourth rule
explains which color will be used by Alice when she colors an incidence.

(R1) On her first move,

– If there is a neutral incidence (i.e., in this case, an incidence without
fathers), then Alice colors it.

– Otherwise, Alice makes a neutral move.

(R2) If Bob, in his turn, colors a down incidence i with no uncolored incidence
in dF (i), then

(R2.2.1) If there are uncolored incidences in dB(i), then Alice colors one
of them,

(R2.2.2) Otherwise,



– If there is a neutral incidence or an activated incidence in
I(G), then Alice colors it,

– If not, Otherwise, Alice makes a neutral move.
(R3) If Bob colors another incidence, then Alice climbs it. Climbing an incidence

i is a recursive procedure, described as follows:
(R3.1) If i is active, then Alice colors i.
(R3.2) Otherwise, if i is not colored then Alice activates i, and:

– If there are uncolored incidences in dF (i), then Alice climbs
one of them.

– If all the incidences of dF (i) are colored, and if there are un-
colored incidences in tF (i), then Alice climbs one of them.

– If all the incidences of F (i) are colored, then:
• if there is a neutral incidence or an activated incidence in
I(G), then Alice colors it,

• otherwise, Alice makes a neutral move.
(R4) When Alice has to color an incidence i, she proceeds as follows: if i is a

down incidence with |φ(dB(i))| ≥ 4a − 1, she uses any available color in
φ(dB(i)); in all other cases, she chooses any available color.

Observe that, in a neutral move, all the incidences ik, ik+1, . . . , iℓ form a loop
where each incidence can be reached by climbing the previous one. We consider
that, when Alice does a neutral move, all the incidences are climbed at least one.

Then we have:

Observation 5. When an inactive incidence is climbed, it is activated. When
an active incidence is climbed, it is colored. Therefore, every incidence is climbed
at most twice.

Observation 6. Alice only colors neutral incidences or active incidences (typ-
ically, incidences colored by Rule (R2.2.1) are neutral incidences), except when
she makes a neutral move.

3 Proof of Theorem 2

We now prove a series of lemmas from which the proof of Theorem 2 will follow.

Lemma 7. When Alice or Bob colors a down incidence i, we have

|Sc(i)|+ |Uc(i)| ≤ 4a− 2.

When Alice or Bob colors a top incidence i, we have

|tSc(i)|+ |dUc(i)| ≤ 5a− 1.

Proof. Let first i be a down incidence that has just been colored by Bob or Alice.
If |Sc(i)| = 0, then |Sc(i)|+ |Uc(i)| = |Uc(i)| ≤ |U(i)| ≤ 2a− 2. Otherwise, let j
be an incidence from S(i) which was colored before i.



– If j was colored by Bob, then Alice has climbed i or some other incidence
from dU(i) in her next move by Rule (R2.1).

– If j was colored by Alice, then

• either j was an active incidence and, when j has been activated, Alice
has climbed either d(i), or i, or some other incidence from U(i),

• or Alice has made a neutral move and, in the same move, has activated
either d(i), or i, or some other incidence from U(i).

By Observation 5 every incidence is climbed at most twice, and thus |Sc(i)| ≤
2 × (|dU(i)| + 1). Since |dU(i)| ≤ a − 1, we have |Sc(i)| ≤ 2a. Moreover, since
|Uc(i)| ≤ |U(i)| ≤ 2a− 2, we get |Sc(i)|+ |Uc(i)| ≤ 4a− 2 as required.

Let now i be a top incidence that has just been colored by Bob or Alice. If
|tSc(i)| = 0, then |tSc(i)|+ |dUc(i)| = |dUc(i)| ≤ |dU(i)| ≤ a− 1. Otherwise, let
j be an incidence from tS(i) which was colored before i.

– If j was colored by Bob then, in her next move, Alice either has climbed
d(i) or some other incidence from dU(i) by Rule (R2.1), or i or some other
incidence from tU(i) by Rule (R2.3).

– If j was colored by Alice, then

• either j was an active incidence and, when j has been activated, Alice
has climbed either d(i), or i, or some other incidence from U(i),

• or Alice has made a neutral move and, in the same move, has activated
either d(i), or i, or some other incidence from U(i).

By Observation 5 every incidence is climbed at most twice, and thus |tSc(i)| ≤
2 × (|U(i)| + 2). Since |U(i)| ≤ 2a − 2, we have |tSc(i)| ≤ 4a. Moreover, since
|dUc(i)| ≤ |dU(i)| ≤ a− 1, we get |tSc(i)|+ |dUc(i)| ≤ 5a− 1 as required. ⊓⊔

Lemma 8. Whenever Alice or Bob colors a down incidence i, there is always
an available color for i if |Φ| ≥ ∆(G)+ 5a− 2. Moreover, if |φ(dB(i))| ≥ 4a− 1,
then there is always an available color in φ(dB(i)) for coloring i.

Proof. When Alice or Bob colors a down incidence i, the forbidden colors for i
are the colors of tB(i), dF (i), S(i) and U(i).

Observe that |dF (i)| + |tB(i)| ≤ ∆(G) − 1 for each down incidence i, so
|φ(dF (i))| + |φ(tB(i))| ≤ ∆(G) − 1.

Now, since |φ(S(i))| + |φ(U(i))| ≤ |Sc(i)| + |Uc(i)| ≤ 4a − 2 by Lemma 7,
we get that there are at most ∆(G) + 5a− 3 forbidden colors, and therefore an
available color for i whenever |Φ| ≥ ∆(G) + 5a− 2.

Moreover, since the colors of φ(dF (i)) and φ(tB(i)) are all distinct from those
of φ(dB(i)), there are at most |Sc(i)|+ |Uc(i)| ≤ 4a− 2 colors of φ(dB(i)) that
are forbidden for i, and therefore an available color for i whenever |φ(dB(i))| ≥
4a− 1. ⊓⊔

Lemma 9. For every incidence i, |φ(dB(i))| ≤ ⌊ |dB(i)|
2 ⌋+ 2a.



Proof. For every incidence i, as soon as |φ(dB(i))| = 4a − 1, there are at least
4a − 1 colored incidences in dB(i). If dF (i) is not empty, then every incidence
in dF (i) has thus at least 4a− 1 colored sons so that, by Lemma 7, every such
incidence is already colored. During the rest of the game, each time Bob will
color an incidence of dB(i), if there are still some uncolored incidences in dB(i),
then Alice will answer by coloring one of them by Rule (R2.2.1). Hence, Bob

will color at most ⌈ |dB(i)−(4a−1)|
2 ⌉ of these incidences. Since, by Rule (R3), Alice

uses colors already in φ(dB(i)) for the incidences she colors, we get |φ(dB(i))| ≤

4a− 1 + ⌈ |dB(i)−(4a−1)|
2 ⌉ ≤ ⌊ |dB(i)|

2 ⌋+ 2a as required. ⊓⊔

Lemma 10. When Alice or Bob colors a top incidence i, there is always an

available color for i whenever |Φ| ≥ ⌊ 3∆(G)−a

2 ⌋+ 8a− 1.

Proof. Let i be any uncolored top incidence. The forbidden colors for i are the
colors of tF (i), dF (i), tB(i), dB(i), dU(i) and tS(i). We have:

– |φ(tF (i))| + |φ(tB(i))| ≤ |tF (i)|+ |tB(i)| ≤ ∆(G)− 1,

– |φ(dF (i))| ≤ |dF (i)| ≤ a and, by Lemma 9, |φ(dB(i))| ≤ ⌊ |dB(i)|
2 ⌋+2a; since

|dF (i)|+ |dB(i)| ≤ ∆(G), we get

|φ(dF (i))| + |φ(dB(i))| ≤ |dF (i)|+ ⌊∆(G)−|dF (i)|
2 ⌋+ 2a

= ⌈ 3|dF (i)|
2 ⌉+ ⌊∆(G)

2 ⌋+ 2a

≤ ⌈ 3a
2 ⌉+ ⌊∆(G)

2 ⌋+ 2a

= ⌊∆(G)−a

2 ⌋+ 3a,

– |φ(tS(i))| + |φ(dU(i))| ≤ 5a− 1 by Lemma 7.

So there are at most ⌊ 3∆(G)−a

2 ⌋ + 8a − 2 forbidden colors for i and the result
follows. ⊓⊔

We are now able to prove our main result:

Proof (of Theorem 2). When Alice applies the above described strategy, we
know by Lemma 10 that every top incidence can be colored, provided |Φ| ≥

⌊ 3∆(G)−a(G)
2 ⌋ + 8a(G) − 1, and by Lemma 8 that this is also the case for every

down incidence.
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