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Abstract20

A 2-distance k-coloring of a graph G is a mapping from V (G) to the21

set of colors {1, . . . , k} such that every two vertices at distance at most 222

receive distinct colors. The 2-distance chromatic number χ2(G) of G is then23

the smallest k for which G admits a 2-distance k-coloring. For any finite set24

of positive integers D = {d1, . . . , d`}, the integer distance graph G = G(D)25

is the infinite graph defined by V (G) = Z and uv ∈ E(G) if and only if26

|v − u| ∈ D. We study the 2-distance chromatic number of integer distance27

graphs for several types of sets D. In each case, we provide exact values or28

upper bounds on this parameter and characterize those graphs G(D) with29

χ2(G(D)) = ∆(G(D)) + 1.30
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1. Introduction33

All the graphs we consider in this paper are simple and loopless undirected graphs.34

We denote by V (G) and E(G) the set of vertices and the set of edges of a graph G,35

respectively. For any two vertices u and v of G, we denote by dG(u, v) (or simply36

d(u, v) whenever the graph G is clear from the context) the distance between u37

and v, that is the length of a shortest path joining u and v. We denote by ∆(G)38

the maximum degree of G.39

A (proper) k-coloring of a graph G is a mapping from V (G) to the set of40

colors {1, . . . , k} such that every two adjacent vertices receive distinct colors. The41

smallest k for which G admits a k-coloring is the chromatic number of G, denoted42

χ(G). A 2-distance k-coloring of a graph G is a mapping from V (G) to the set of43

colors {1, . . . , k} such that every two vertices at distance at most 2 receive distinct44

colors. 2-distance colorings are sometimes called L(1,1)-labelings (see [5] for a45

survey on L(h, k)-labelings) or square colorings in the literature. The smallest k46

for which G admits a 2-distance k-coloring is the 2-distance chromatic number47

of G, denoted χ2(G).48

The square G2 of a graph G is the graph defined by V (G2) = V (G) and49

uv ∈ E(G2) if and only if dG(u, v) ≤ 2. Clearly, a 2-distance coloring of a50

graph G is nothing but a proper coloring of G2 and, therefore, χ2(G) = χ(G2)51

for every graph G.52

The study of 2-distance colorings was initiated by Kramer and Kramer [8] (see53

also their survey on general distance colorings in [9]). The case of planar graphs54

has attracted a lot of attention in the literature (see e.g. [1, 2, 3, 4, 6, 10, 14]),55

due to the conjecture of Wegner that suggests an upper bound on the 2-distance56

chromatic number of planar graphs depending on their maximum degree (see [15]57

for more details).58

In this paper, we study 2-distance colorings of distance graphs. Although59

several coloring problems have been considered for distance graphs (see [11] for60

a survey), it seems that 2-distance colorings have not been considered yet. We61

present in Section 2 a few basic results on the chromatic number and the 2-62

distance chromatic number of distance graphs. We then consider specific sets D,63

namely D = {1, a}, a ≥ 3 (in Section 3), D = {1, a, a+ 1}, a ≥ 3 (in Section 4),64

and D = {1, . . . ,m, a}, 2 ≤ m < a (in Section 5). We finally propose some open65

problems in Section 6.66

2. Preliminaries67

Let D = {d1, . . . , d`} be a finite set of positive integers. The integer distance68

graph (simply called distance graph in the following) G = G(D) is the infinite69
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graph defined by V (G) = Z and uv ∈ E(G) if and only if |v − u| ∈ D. The70

following proposition follows immediately.71

Proposition 1. For every positive integers d1, . . . , d` with gcd({d1, . . . , d`}) =72

p > 1, the distance graph G(D) has p connected components, each of them being73

isomorphic to the distance graph G(D′) with D′ = {d1/p, . . . , d`/p}.74

In this situation, we then have χ2(G(D)) = χ2(G(D′)) so that we can always75

assume gcd(D) = 1 in the following.76

It is easy to observe that the square of the distance graph G(D) is also a
distance graph, namely the distance graph G(D2) where

D2 = D ∪ {d+ d′ : d, d′ ∈ D} ∪ {d− d′ : d, d′ ∈ D, d > d′}.

For instance, for D = {1, 2, 5}, we get D2 = {1, 2, 3, 4, 5, 6, 7, 10}. Note that if D77

has cardinality `, then D2 has cardinality at most `(`+ 1).78

As observed in the previous section, χ2(G) = χ(G2) for every graph G.79

Therefore, since (G(D))2 = G(D2), determining the 2-distance chromatic number80

of the distance graph G(D) reduces to determining the chromatic number of the81

distance graph G(D2). The problem of determining the chromatic number of82

distance graphs has been extensively studied in the literature. When |D| ≤ 2,83

this question is easily solved, thanks to the following general upper bounds.84

Proposition 2. For every finite set of positive integers D = {d1, . . . , d`} and85

every positive integer p such that di 6≡ 0 (mod p) for every i, 1 ≤ i ≤ `,86

χ(G(D)) ≤ p.87

Proof. Let λ : V (G(D)) −→ {1, . . . , p} be the mapping defined by

λ(x) = 1 + (x mod p),

for every integer x ∈ Z. Since di 6≡ 0 (mod p) for every i, 1 ≤ i ≤ `, the88

mapping λ is clearly a proper coloring of G(D).89

Theorem 3 Walther [13]. For every finite set of positive integers D,

χ(G(D)) ≤ |D|+ 1.

90

Proof. A (|D|+ 1)-coloring of G(D) can easily be produced using the First-Fit91

greedy algorithm, starting from vertex 0, from left to right and then from right92

to left, since every vertex has exactly |D| neighbors on its left and |D| neighbors93

on its right.94
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Therefore, when |D| ≤ 2, χ(G(D)) = 2 if |D| = 1 or all elements in D are95

odd (since G(D) is then bipartite), and χ(G(D)) = 3 otherwise (since G(D) then96

contains cycles of odd length). The case |D| = 3 has been settled by Zhu [16].97

Whenever |D| ≥ 4, only partial results have been obtained, namely for sets D98

having specific properties.99

Another useful result is the following.100

Theorem 4 (Voigt [12], cited in [7]). For every finite set of positive integers
D = {d1, . . . , d`},

χ(G(D)) ≤ min
n∈N

n(|Dn|+ 1),

where Dn = {di : n|di, 1 ≤ i ≤ `}.101

A coloring λ of a distance graph G(D) is p-periodic, for some integer p ≥ 1,102

if λ(x+ p) = λ(x) for every x ∈ Z. Walther also proved the following:103

Theorem 5 (Walther [13]). For every finite set of positive integers D, if χ(G(D)) ≤104

k then G(D) admits a p-periodic k-coloring for some p.105

The sequence λ(x) . . . λ(x+p−1) of such a p-periodic coloring λ is called the106

pattern of λ. In particular, the coloring defined in the proof of Proposition 2 was107

p-periodic with pattern 12 . . . p. In the following, we will describe such patterns108

using standard notation of Combinatorics on words. For instance, the pattern109

121212345 will be denoted (12)3345.110

Finally, note that in any 2-distance coloring of a graph G, all vertices in the111

closed neighborhood of any vertex must be assigned distinct colors. Therefore,112

we have the following:113

Observation 6. For every graph G, χ2(G) ≥ ∆(G) + 1.114

In particular, this bound is attained by the distance graph G(D) with D =115

{1, . . . , k}, k ≥ 2:116

Proposition 7. For every k ≥ 2,

χ2(G({1, . . . , k})) = 2k + 1 = ∆(G({1, . . . , k})) + 1.

117

Proof. This directly follows from Theorem 3 since |{1, . . . , k}2| = 2k.118
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3. The case D = {1, a}, a ≥ 3119

We study in this section the 2-distance chromatic number of distance graphs120

G(D) with D = {1, a}, a ≥ 3 (note that the case a = 2 is already solved by121

Proposition 7).122

When D = {1, a}, a ≥ 3, we have ∆(G(D)) = 4 and

D2 = {1, 2, a− 1, a, a+ 1, 2a}.

The following theorem gives the 2-distance chromatic number of any such123

graph:124

Theorem 8. For every integer a ≥ 3,

χ2(G({1, a})) =

{
5 if a ≡ 2 (mod 5), or a ≡ 3 (mod 5),
6 otherwise.

125

Proof. Since {1, a}2 = {1, 2, a − 1, a, a + 1, 2a}, we get d 6≡ 0 (mod 5) for ev-126

ery d ∈ {1, a}2 if and only if a ≡ 2 (mod 5) or a ≡ 3 (mod 5) and thus, by127

Proposition 2 and Observation 6, χ2(G({1, a})) = 5.128

Note that for every x ∈ Z, the set of vertices

C(x) = {x− a, x− 1, x, x+ 1, x+ a}

induces a 5-clique in G({1, a}2) (see Figure 1). We now claim that every 2-129

distance 5-coloring λ of G({1, a}) is necessarily 5-periodic, that is λ(x+5) = λ(x)130

for every x ∈ Z. To show that, it suffices to prove that any five consecutive vertices131

x, . . . , x+ 4 must be assigned distinct colors. Assume to the contrary that this is132

not the case and, without loss of generality, let x = 0. Since vertices 0, 1 and 2133

necessarily get distinct colors, we only have two cases to consider:134

1. λ(0) = λ(3) = 1, λ(1) = 2, λ(2) = 3.
Since C(1) induces a 5-clique in G({1, a}2) (depicted in bold in Figure 1),
we have

{λ(1− a), λ(1 + a)} = {4, 5},

which implies

{λ(2− a), λ(2 + a)} = {4, 5}.

(More precisely, λ(2− a) = 9− λ(1− a) and λ(2 + a) = 9− λ(1 + a)). This135

implies λ(3− a) = λ(3 + a) = 2, a contradiction since d(3− a, 3 + a) = 2.136
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0 1 2 3 4

a 1+a 2+a 3+a 4+a

-a 1-a 2-a 3-a 4-a

. . . . . .

Figure 1. Subgraph of the distance graph G({1, a}), a ≥ 3

2. λ(0) = λ(4) = 1, λ(1) = 2, λ(2) = 3, λ(3) = 4.
As in the previous case we have

{λ(1− a), λ(1 + a)} = {4, 5},

which implies
{λ(2− a), λ(2 + a)} = {1, 5}.

We then get λ(3− a) = λ(3 + a) = 2, again a contradiction.137

Therefore, χ2(G({1, a})) = 5 if and only if 5 does not divide any element of138

{1, a}2 = {1, 2, a − 1, a, a + 1, 2a}. This is clearly the case if and only if a ≡ 2139

(mod 5) or a ≡ 3 (mod 5).140

We finally prove that there exists a 2-distance 6-coloring of G({1, a}) for any141

value of a. We consider three cases, according to the value of (a mod 3):142

1. a = 3k, k ≥ 1.
Let λ be the (2a− 1)-periodic mapping defined by the pattern

(123)k(456)k−145.

If λ(x) = λ(y) = c, 1 ≤ c ≤ 5, then

|x− y| ∈ {3q, 0 ≤ q ≤ k− 1} ∪ {(2a− 1)p+ 3q, p ≥ 1, 1− k ≤ q ≤ k− 1}.

If λ(x) = λ(y) = 6 (which occurs if and only if k ≥ 2), then

|x− y| ∈ {3q, 0 ≤ q ≤ k− 2} ∪ {(2a− 1)p+ 3q, p ≥ 1, 2− k ≤ q ≤ k− 2}.

Therefore, in both cases, |x− y| /∈ {1, 2, a− 1, a, a+ 1, 2a}, and thus λ is a143

2-distance 6-coloring of G({1, a}).144
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0 1 2 3 4 5

a 1+a 2+a 3+a 4+a 5+a

-a 1-a 2-a 3-a 4-a 5-a

. . . . . .

Figure 2. Subgraph of the distance graph G({1, a, a+ 1}), a ≥ 3

2. a = 3k + 1, k ≥ 1.145

In that case, the result follows from Theorem 4 (taking n = 3), since the146

only element divisible by 3 in {1, 2, a− 1, a, a+ 1, 2a} is a− 1.147

3. a = 3k + 2, k ≥ 1.148

Again, the result follows from Theorem 4 (taking n = 3), since the only149

element divisible by 3 in {1, 2, a− 1, a, a+ 1, 2a} is a+ 1.150

This concludes the proof.151

4. The case D = {1, a, a+ 1}, a ≥ 3152

We study in this section the 2-distance chromatic number of distance graphs153

G(D) with D = {1, a, a + 1}, a ≥ 3 (note that the case a = 2 is already solved154

by Proposition 7).155

When D = {1, a, a+ 1}, a ≥ 3, we have ∆(G(D)) = 6 and

D2 = {1, 2, a− 1, a, a+ 1, a+ 2, 2a, 2a+ 1, 2a+ 2}.

We first prove the following:156

Theorem 9. For every integer a, a ≥ 3,

χ2(G({1, a, a+ 1})) = 7 = ∆(G({1, a, a+ 1})) + 1

if and only if a ≡ 2 (mod 7) or a ≡ 4 (mod 7).157
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Proof. Since {1, a, a+ 1}2 = {1, 2, a− 1, a, a+ 1, a+ 2, 2a, 2a+ 1, 2a+ 2}, we get158

d 6≡ 0 (mod 7) for every d ∈ {1, a, a+ 1}2 if and only if a ≡ 2 (mod 7) or a ≡ 4159

(mod 7) and thus, by Proposition 2 and Observation 6, χ2(G({1, a, a+ 1})) = 7.160

Note that for every x ∈ Z, the set of vertices

C(x) = {x− a− 1, x− a, x− 1, x, x+ 1, x+ a, x+ a+ 1}

induces a 7-clique in G({1, a, a + 1}2). We now claim that every 2-distance 7-161

coloring λ of G({1, a, a+ 1}) is necessarily 7-periodic, that is λ(x+ 7) = λ(x) for162

every x ∈ Z. To show that, it suffices to prove that any 7 consecutive vertices163

x, . . . , x+ 6 must be assigned distinct colors. Assume to the contrary that this is164

not the case and, without loss of generality, let x = 0. Since vertices 0, 1 and 2165

necessarily get distinct colors, we only have four cases to consider (see Figure 2):166

1. Vertices 0, 1, 2, 3 are colored with the colors 1, 2, 3 and 1, respectively.167

We consider two subcases:168

(a) λ(4) = 2.
Since C(1) induces a 7-clique in G({1, a, a+ 1}2) (depicted in bold in
Figure 2), we have

{λ(−a), λ(1− a), λ(1 + a), λ(2 + a)} = {4, 5, 6, 7}.

Since C(3) is also a 7-clique, we also have

{λ(2− a), λ(3− a), λ(3 + a), λ(4 + a)} = {4, 5, 6, 7}.

This implies λ(−a) = λ(4 − a) or λ(1 + a) = λ(5 + a). Each of these169

cases thus corresponds to case 2 below.170

(b) λ(4) 6= 2.171

Note that we necessarily have λ(4) 6= 3 and λ(4) 6= 1 since vertex 4172

is at distance 2 and 1 from vertices 2 and 3, respectively. We can173

thus assume λ(4) = 4, without loss of generality. Since d(5, 4) = 1174

and d(5, 3) = 2, we have λ(5) /∈ {1, 4}. Moreover, if λ(5) = 2, we get175

λ(2) = λ(5), which corresponds to case 2 below. We can thus suppose176

either λ(5) = 3 or λ(5) > 4, say λ(5) = 5 without loss of generality.177

We consider these two cases separately.178

i. λ(5) = 3.
In that case, we necessarily have

{λ(−a), λ(1 + a)} ⊆ {4, 5, 6, 7}, {λ(1− a), λ(2 + a)} ⊆ {4, 5, 6, 7},

{λ(2− a), λ(3 + a)} ⊆ {5, 6, 7}, {λ(3− a), λ(4 + a)} ⊆ {2, 5, 6, 7},
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{λ(4− a), λ(5 + a)} ⊆ {5, 6, 7}.

By setting {x, y, z} = {5, 6, 7}, we get

{λ(−a), λ(1 + a)} = {x, y}, {λ(1− a), λ(2 + a)} = {4, z},

{λ(2− a), λ(3 + a)} = {x, y}, {λ(3− a), λ(4 + a)} = {2, z},

{λ(4− a), λ(5 + a)} = {x, y}.

Since λ(−a), λ(2 − a), λ(4 − a) ∈ {x, y} and λ(−a) 6= λ(2 − a),179

λ(2− a) 6= λ(4− a), it follows that λ(−a) = λ(4− a). That case180

corresponds to case 2 below.181

ii. λ(5) = 5.
In that case, we necessarily have

{λ(−a), λ(1 + a)} ⊆ {4, 5, 6, 7}, {λ(1− a), λ(2 + a)} ⊆ {4, 5, 6, 7},

{λ(2− a), λ(3 + a)} ⊆ {5, 6, 7}, {λ(3− a), λ(4 + a)} ⊆ {2, 6, 7},

{λ(4− a), λ(5 + a)} ⊆ {3, 6, 7}.

By setting {x, y} = {6, 7}, we get

{λ(−a), λ(1 + a)} = {5, x}, {λ(1− a), λ(2 + a)} = {4, y},

{λ(2− a), λ(3 + a)} = {5, x}, {λ(3− a), λ(4 + a)} = {2, y},

{λ(4− a), λ(5 + a)} = {3, x}.

We then necessarily have either λ(1 + a) = λ(5 + a) or λ(−a) =182

λ(4−a) and, in both cases, we are in the situation of case 2 below.183

2. Vertices 0, 1, 2, 3, 4 are colored with the colors 1, 2, 3, 4 and 1, respectively.
Again considering the 7-cliques C(1), C(2) and C(3) in G({1, a, a + 1}2),
we get

{λ(1− a), λ(2 + a)} ⊆ {5, 6, 7},

and
{λ(2− a), λ(3 + a)} ⊆ {5, 6, 7},

a contradiction since vertices 1− a, 2− a, a+ 2 and a+ 3 induce a 4-clique184

in G({1, a, a+ 1}2).185

3. Vertices 0, 1, 2, 3, 4, 5 are colored with the colors 1, 2, 3, 4, 5 and 1, respec-
tively.
Considering the 7-cliques C(1), C(2) and C(3) in G({1, a, a+ 1}2), we get

{λ(−a), λ(1− a), λ(1 + a), λ(2 + a)} = {4, 5, 6, 7},
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{λ(2− a), λ(3 + a)} ⊆ {1, λ(−a), λ(1 + a)} \ {4, 5},
{λ(3− a), λ(4 + a)} ⊆ {2, λ(1− a), λ(2 + a)} \ {4, 5},

and thus

{λ(2− a), λ(3 + a)} ⊆ {1, 6, 7} and {λ(3− a), λ(4 + a)} ⊆ {2, 6, 7}.

Assuming that none of cases 1 or 2 occurs, we have two subcases to consider:186

(a) λ(6) = 2.
Considering the 7-clique C(4) in G({1, a, a+ 1}2), we get

{λ(4− a), λ(5 + a)} ⊆ {3, λ(2− a), λ(3 + a)} \ {1, 2} = {3, 6, 7}.

If {λ(4− a), λ(5 + a)} = {3, 6}, then

{λ(3− a), λ(4 + a)} = {2, 7},

{λ(2− a), λ(3 + a)} = {1, 6},
{λ(1− a), λ(2 + a)} = {5, 7}

and
{λ(−a), λ(1 + a)} = {4, 6}.

If λ(−a) = 6 then λ(2− a) = 1 and thus λ(4− a) = λ(−a) = 6 which187

corresponds to case 2. If λ(1 + a) = 6 then λ(3 + a) = 1 and thus188

λ(5 + a) = λ(1 + a) = 6 which again corresponds to case 2.189

The case {λ(4− a), λ(5 + a)} = {3, 7} is similar and leads to the same190

conclusion.191

Finally, if {λ(4− a), λ(5 + a)} = {6, 7} then λ(3− a) = λ(4 + a) = 2,192

a contradiction since d(3− a, 4 + a) = 2.193

(b) λ(6) = 6.
Considering the 7-clique C(4) in G({1, a, a+ 1}2), we get

{λ(4− a), λ(5 + a)} ⊆ {3, λ(2− a), λ(3 + a)} \ {1, 6} = {3, 7}.

This implies
{λ(3− a), λ(4 + a)} = {2, 6},
{λ(2− a), λ(3 + a)} = {1, 7},
{λ(1− a), λ(2 + a)} = {5, 6}

and
{λ(−a), λ(1 + a)} = {4, 7}.

If λ(−a) = 7 then λ(2− a) = 1 and thus λ(4− a) = λ(−a) = 7 which194

corresponds to case 2. If λ(1 + a) = 7 then λ(3 + a) = 1 and thus195

λ(5 + a) = λ(1 + a) = 7 which again corresponds to case 2.196
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4. Vertices 0, 1, 2, 3, 4, 5, 6 are colored with the colors 1, 2, 3, 4, 5, 6 and 1, re-
spectively.
Again considering the 7-cliques C(1), C(2) and C(3) in G({1, a, a + 1}2),
we get

{λ(−a), λ(1− a), λ(1 + a), λ(2 + a)} = {4, 5, 6, 7},

{λ(2− a), λ(3 + a)} ⊆ {1, λ(−a), λ(1 + a)} \ {4, 5},

and thus

{λ(3− a), λ(4 + a)} ⊆ {2, λ(1− a), λ(2 + a)} \ {4, 5, 6} = {2, 7}.

This implies

{λ(2− a), λ(3 + a)} = {1, 6},

{λ(1− a), λ(2 + a)} = {5, 7}

and

{λ(−a), λ(1 + a)} = {4, 6}.

Therefore,

{λ(4− a), λ(5 + a)} ⊆ {3, λ(2− a), λ(3 + a)} \ {1, 6} = {3},

a contradiction since d(4− a, 5 + a) = 2.197

Therefore, every 2-distance 7-coloring λ of G({1, a, a + 1}) is necessarily 7-198

periodic, and thus χ2(G({1, a, a + 1})) = 7 if and only if 7 does not divide any199

element of {1, 2, a− 1, a, a+ 1, a+ 2, 2a, 2a+ 1, 2a+ 2}. This is clearly the case200

if and only if a ≡ 2 (mod 7) or a ≡ 4 (mod 7).201

The following result provides an upper bound on χ2(G({1, a, a+ 1})) for any202

value of a.203

Theorem 10. For every integer a, a ≥ 3,

χ2(G({1, a, a+ 1})) ≤ 9 = ∆(G({1, a, a+ 1})) + 3.

204

Proof. Recall first that {1, a, a+1}2 = {1, 2, a−1, a, a+1, a+2, 2a, 2a+1, 2a+2}.205

We consider three cases, according to the value of (a mod 3):206

1. a = 3k, k ≥ 1.207

Since the only elements divisible by 3 in {1, a, a + 1}2 are a and 2a, the208

result follows by Theorem 4 (taking n = 3).209
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2. a = 3k + 1, k ≥ 1.
Let λ be the (3a+ 2)-periodic mapping defined by the pattern

(123)k(456)k7123(789)k−14568.

If λ(x) = λ(y) = c, 1 ≤ c ≤ 6, then

|x− y| ∈ {3q, 0 ≤ q ≤ k − 1}
∪ {3q + 2a− 1, 1− k ≤ q ≤ 0}
∪ {(3a+ 2)p+ 2a− 1, p > 0}
∪ {(3a+ 2)p− 2a+ 1, p > 0}
∪ {(3a+ 2)p+ 3q, p > 0, 1− k ≤ q < 0}
∪ {(3a+ 2)p+ 3q + 2a− 1, p > 0, 1− k ≤ q < 0}
∪ {(3a+ 2)p+ 3q, p > 0, 0 < q ≤ k − 1}
∪ {(3a+ 2)p+ 3q − 2a+ 1, p > 0, 0 < q ≤ k − 1}.

If λ(x) = λ(y) = 7 (which occurs if and only if k ≥ 2), then

|x− y| ∈ {3q, 0 ≤ q ≤ k − 2}
∪ {3q + 4, 0 ≤ q ≤ k − 2}
∪ {(3a+ 2)p+ 3q − 4, p > 0, 2− k ≤ q ≤ 0}
∪ {(3a+ 2)p+ 3q + 4, p > 0, 0 ≤ q ≤ k − 2}
∪ {(3a+ 2)p+ 3q, p > 0, 2− k ≤ q ≤ k − 2}.

If λ(x) = λ(y) = 8 (which occurs if and only if k ≥ 2), then

|x− y| ∈ {3q, 0 ≤ q ≤ k − 2}
∪ {3q + a− 2, 2− k ≤ q ≤ 0}
∪ {(3a+ 2)p+ a− 2, p > 0}
∪ {(3a+ 2)p− a+ 2, p > 0}
∪ {(3a+ 2)p+ 3q, p > 0, 2− k ≤ q < 0}
∪ {(3a+ 2)p+ 3q + a− 2, p > 0, 2− k ≤ q < 0}
∪ {(3a+ 2)p+ 3q, p > 0, 0 < q ≤ k − 2}
∪ {(3a+ 2)p+ 3q − a+ 2, p > 0, 0 < q ≤ k − 2}.

If λ(x) = λ(y) = 9 (which occurs if and only if k ≥ 2), then

|x− y| ∈ {3q, 0 ≤ q ≤ k− 2} ∪ {(3a+ 2)p+ 3q, p ≥ 1, 2− k ≤ q ≤ k− 2}.

Therefore, in all these cases, |x − y| 6∈ {1, 2, a − 1, a, a + 1, a + 2, 2a, 2a +210

1, 2a+ 2}, and thus λ is a 2-distance 9-coloring of G({1, a, a+ 1}).211

3. a = 3k + 2, k ≥ 1.212

Since the only elements divisible by 3 in {1, a, a+ 1}2 are a+ 1 and 2a+ 2,213

the result follows by Theorem 4 (taking n = 3).214
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This concludes the proof.215

From Theorems 9 and 10, we thus get:216

Corollary 11. For every integer a, a ≥ 3, a 6≡ 2, 4 (mod 7),

8 ≤ χ2(G({1, a, a+ 1})) ≤ 9.

217

5. The case D = {1, . . . ,m, a}, 2 ≤ m < a218

We study in this section the 2-distance chromatic number of distance graphs219

G(D) with D = {1, . . . ,m, a}, 2 ≤ m < a (note that the case a = m + 1 is220

already solved by Proposition 7).221

When D = {1, . . . ,m, a}, we have ∆(G(D)) = 2m+ 2 and

D2 = {1, 2, . . . , 2m} ∪ {a−m, a−m+ 1, . . . , a+m} ∪ {2a}.

We first prove the following:222

Theorem 12. For all integers m and a, 2 ≤ m < a,

χ2(G({1, . . . ,m, a})) = 2m+ 3 = ∆(G({1, . . . ,m, a})) + 1

if and only if a ≡ m+ 1 (mod 2m+ 3) or a ≡ m+ 2 (mod 2m+ 3).223

Proof. Since {1, . . . ,m, a}2 = {1, . . . , 2m}∪{a−m, a−m+1, . . . , a+m}∪{2a},224

d 6≡ 0 (mod 2m + 3) for every d ∈ {1, . . . ,m, a}2 if and only if a ≡ m + 1225

(mod 2m + 3) or a ≡ m + 2 (mod 2m + 3), and thus, by Proposition 2 and226

Observation 6, χ2(G({1, . . . ,m, a})) = 2m+ 3.227

We now claim that every 2-distance (2m+ 3)-coloring λ of G({1, . . . ,m, a})228

is necessarily (2m+ 3)-periodic, that is λ(x+ 2m+ 3) = λ(x) for every x ∈ Z. To229

show that, it suffices to prove that any 2m+3 consecutive vertices x, . . . , x+2m+2230

must be assigned distinct colors. Assume to the contrary that this is not the case231

and, without loss of generality, let x = 0. Since vertices 0, 1, . . . , 2m necessarily232

get distinct colors, we only have two cases to consider:233

1. Vertices 0, 1, . . . , 2m+ 1 are colored with the colors 1, 2, . . . , 2m+ 1 and 1,
respectively.
Note that vertices m − a and m + a are both adjacent to all vertices
0, 1, . . . , 2m. Hence,

{λ(m− a), λ(m+ a)} = {2m+ 2, 2m+ 3},
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which implies

{λ(m+ 1− a), λ(m+ 1 + a)} = {2m+ 2, 2m+ 3}

(more precisely, λ(m + 1 − a) = 4m + 5 − λ(m − a) and λ(m + 1 + a) =234

4m + 5 − λ(m + a)). This implies λ(m + 2 − a) = λ(m + 2 + a) = 2, a235

contradiction since d(m+ 2− a,m+ 2 + a) = 2.236

2. Vertices 0, 1, . . . , 2m+ 2 are colored with the colors 1, 2, . . . , 2m+ 2 and 1,
respectively.
As in the previous case we have

{λ(m− a), λ(m+ a)} = {2m+ 2, 2m+ 3},

which implies

{λ(m+ 1− a), λ(m+ 1 + a)} = {1, 2m+ 3}.

We thus get λ(m+ 2− a) = λ(m+ 2 + a) = 2, again a contradiction.237

Therefore, every 2-distance (2m+ 3)-coloring λ of G({1, . . . ,m, a}) is neces-238

sarily (2m + 3)-periodic, and thus χ2(G({1, . . . ,m, a})) = 2m + 3 if and only if239

2m+3 does not divide any element of {1, 2, . . . , 2m} ∪ {a−m, a−m+1, . . . , a+240

m} ∪ {2a}. This is clearly the case if and only if a ≡ m + 1 (mod 2m + 3) or241

a ≡ m+ 2 (mod 2m+ 3).242

For other values of a, we propose the following general upper bound.243

Theorem 13. For all integers m and a, 2 ≤ m < a,

χ2(G({1, . . . ,m, a})) ≤ 4m+ 2 = 2∆(G({1, . . . ,m, a}))− 2.

244

Proof. Note first that {1, . . . ,m, a}2 = {1, . . . , 2m}∪{a−m, . . . , a+m}∪{2a}.245

Therefore, if 2m + 1 does not divide a, the set {1, . . . ,m, a}2 contains only one246

element e divisible by 2m + 1 (with e ∈ {a −m, . . . , a + m}). In that case, the247

result then follows by Theorem 4 (taking n = 2m+ 1).248

Suppose now that a = k(2m+1), with k ≥ 1. Let λ be the (2a−m)-periodic
mapping defined by the pattern

[12 . . . (2m+ 1)]k[(2m+ 2)(2m+ 3) . . . (4m+ 2)]k−1(2m+ 2)(2m+ 3) . . . (3m+ 2).

If λ(x) = λ(y) = c, 1 ≤ c ≤ 3m+ 2, then

|x− y| ∈ {q(2m+ 1), 0 ≤ q ≤ k − 1}
∪ {p(2a−m) + q(2m+ 1), p ≥ 1, 1− k ≤ q ≤ k − 1}.



2-Distance Colorings of Integer Distance Graphs 15

If λ(x) = λ(y) = c, 3m+ 3 ≤ c ≤ 4m+ 2 (which occurs if and only if k ≥ 2), then

|x− y| ∈ {q(2m+ 1), 0 ≤ q ≤ k − 2}
∪ {p(2a−m) + q(2m+ 1), p ≥ 1, 2− k ≤ q ≤ k − 2}.

Therefore, in both cases, |x − y| 6∈ {1, . . . ,m, a}2, and thus λ is a 2-distance249

(4m+ 2)-coloring of G({1, . . . ,m, a}).250

This concludes the proof.251

From Theorems 12 and 13, we thus get:252

Corollary 14. For all integers m and a, 2 ≤ m < a, a 6≡ m+1,m+2 (mod 2m+
3),

2m+ 4 ≤ χ2(G({1, . . . ,m, a})) ≤ 4m+ 2.

253

6. Discussion254

In this paper, we studied 2-distance colorings of several types of distance graphs.255

In each case, we characterized those distance graphs that admit an optimal 2-256

distance coloring, that is distance graphs G(D) with χ2(G(D)) = ∆(G(D)) + 1.257

We also provided general upper bounds for the 2-distance chromatic number of258

the considered graphs. Note here that all our results can be extended to a larger259

class of integer distance graphs, thanks to Proposition 1, by multiplying all the260

elements of the set D by a same constant k > 1.261

We leave as open problems the question of completely determining the 2-262

distance chromatic number of distance graphs G(D) when D = {1, a, a + 1},263

a ≥ 3, or D = {1, . . . ,m, a}, 2 ≤ m < a.264

Considering other types of sets D would certainly be also an interesting265

direction for future research.266
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