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Incidence colorings



Incidences

(1)

Incidences

An incidence in a graph G is a pair (u,uv) with u 1 V(G) and
uv U E(G).

We denote by Inc(G) the set of incidences of a graph G.
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Incidences (2)

Adjacent incidences

Two distinct incidences (u,uv) and (w,wx) are adjacent in G if:

i. u=w(v#x), or ii. w=v,or i, u = x.
V W=V X V
o
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non adjacent...
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Incidences (3)

Adjacent incidences

Two distinct incidences (u,uv) and (w,wx) are adjacent in G if:

i. u=w(v#x), or ii. w=v,or i, u = x.
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Incidence coloring (1)

Incidence coloring [BRUALDI & QUINN MASSEY, 1993]

An incidence k-coloring of a graph G is a mapping
A: Inc(G) - {1,...,k}
that assigns distinct colors to adjacent incidences.

(may be defined
for multigraphs)

Xi=4
Incidence chromatic number

The incidence chromatic number X,(G) of a graph G is the smallest
k for which G admits an incidence k-coloring.
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Incidence coloring (2)

General lower bounds

For every graph G, X.(G) = A(G) + 1.

For every graph G, X.(G) = 2|E| / (| V| —VY(G)), where y(G) denotes
the domination number of G.

General upper bound
For every graph G, X.(G) < 2A(G).  [BRUALDI & QUINN MASSEY, 1993]
For every graph G, X.(G) < A(G) + 20.log, A(G) + 84. [GuipuLl, 1997]
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Incidence (k,p)-coloring

The sets of incidences A*(u) and A-(u)

For every vertex u in V(G), let A*(u) denote the set of incidences of
the form (v,vu) and A(u) the set of incidences of the form (u,uv).

A*(u)
A-(u)

Incidence (k,p)-coloring

An incidence (k,p)-coloring of G is an incidence k-coloring of G such
that, for every vertex u in G, at most p colors are used on A*(u).
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Subdivided graph

The subdivided graph S(G)
Obtained from G by subdividing once each edge of G:

SRR
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Strong edge coloring of S(G)

Strong edge coloring of S(G)

An edge coloring is strong if every two edges at distance one or
two are assigned distinct colors. An incidence coloring of G is
nothing but a strong edge coloring of S(G).

(original motivation of BRUALDI & QUINN MASSEY, 1993)
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Distance-two (vertex) coloring (1)

Distance-two (vertex) coloring (a.k.a. square coloring)

A distance-two k-coloring of a graph G is a mapping
A V(G) - {1,...,k}

that assigns distinct colors to vertices at distance one or two from
each other. 5 4

3 5
Distance-two chromatic number

The distance-two chromatic number X,(G) of a graph G is the
smallest k for which G admits a distance-two k-coloring.
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Distance-two (vertex) coloring (2)

Distance-two (vertex) coloring (a.k.a. square coloring)

Observation. For every graph G, X(G) < X,(G).

2 4
1 2 2 1
1 1 2 A
I,
3 5
1 z 3 1
3 5

In particular...

For every graph G, X,(G) = A(G) + 1 implies X,(G) = A(G) + 1.
(Our example shows that the converse is not true.)

Note that distance-two k-colorings of a graph G are in one-to-one
correspondence with (k,1)-incidence colorings of G...
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Directed star arboricity (1)

Digraphs, directed stars

<P K-

A digraph D A directed (outgoing) star
Directed star arboricity (ALGOR & ALON, 1989)

The directed star arboricity dst(D) of a
digraph D is the least number of forests

of directed (outgoing) stars needed for

partitioning the arc set of D. dst(D) = 4
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Directed star arboricity (2)

Symmetric digraph associated with an undirected graph

The symmetric digraph SD(G) associated with an undirected graph
G is the digraph obtained from G by replacing each edge by a pair
of opposite arcs.

Directed star arboricity and incidence coloring

For every undirected graph G, X,(G) = dst(SD(G)).

S

(first observed by GuipuLi, 1997)

L 4
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Complexity issues

Incidence chromatic number

Theorem [LI & Tu, 2008].

Deciding whether the incidence chromatic number of a graph is
at most k, k =4, is an NP-complete problem.

Incidence graph

Theorem [HARTKE & HELLELOID, 2012].

Deciding whether a graph H is the incidence graph of some
graph G can be done in polynomial time.

(If the answer is yes, their algorithm outputs the corresponding
graph G.)
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Paths and cycles

Paths
For every path P,, n =3, X.(P,) =3 =A(P,) + 1.

Cycles
For every cycle C, withn=>3,n=0(mod 3), X.(C,)=3=A(C,) + 1.
For every cycle C, withn=4,n=1,2 (mod 3), X.(C,)=4=A(C,) + 2.

(By Sylvester’s Theorem, every integer =6
can be expressed as a sum of 3’s and 4’s,
and we have 2n incidences...)
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Other simple classes

Trees

For every tree T, X.(T) = A(T) + 1.
(Simple induction.)

Complete graphs
Foreveryn=2, X.(K,)=n=A(K,) + 1.

Complete bipartite graphs

Foreverym=2n2z22, (K, ,)=m=A(K, )+ 2.
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The (A + 2)-Conjecture

Incidence coloring conjecture (ICC)

Conjecture [BRUALDI & QUINN MASSEY, 1993].
For every graph G, X.(G) < A(G) + 2.

|ICC conjecture is satisfied by all the previous examples, and by
many other graph classes.

However, the conjecture was disproved by GuiDULI:

Theorem [GuiDULI, 1997].

» There exist graphs with incidence chromatic number at least
A+ Q(log A) (follows from ALGOR & ALON, 1989).

» For every graph G, X,(G) < A(G) + 20.log, A(G) + 84.
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Grid graphs

Rectangular grids

Theorem [HUANG, WANG & CHUNG, 2004].
Foreverym,n=2, X.(G 5=A(G,,,) + 1.

m,n) -

Toroidal grids

Theorem [Wu & S., 2013].
Foreverym,n=3, X(T,,)<6=A(T, )+ 2.
Moreover, X(7,,,) =5 ifand only if m, n=0 (mod 5).
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k-degenerated graphs (1)

k-degenerated graphs

Let k be a positive integer. A graph G is k-degenerated if every
subgraph of G contains a vertex of degree at most k.

For instance:

» forests are 1-degenerated,

» K,-minor-free graphs are 2-degenerated,

» planar graphs are 5-degenerated,

» triangle-free planar graphs are 3-degenerated.

Theorem [HOSSEINI-DOLAMA, S. & ZHU, 2004].

Every k-degenerated graph G admits a (A(G) + 2k - 1, k)-incidence
coloring and, therefore, X.(G) < A(G) + 2k - 1.
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k-degenerated graphs (2)

Theorem. Every k-degenerated graph G admits a
PI'OOf: (A(G) + 2k - 1, k)-incidence coloring.

Assume the theorem is false and let G be a minimal counter-
example.

X1 X5 X

Let v be a vertex of degree t, t < k.

4

Since G is minimal, G’ = G —v admits a (A(G) + 2k - 1, k)-incidence
coloring Y.

Claim. Forevery i, 1 <i<t, there
exists a color¢; Ul {c,, ..., ¢; ;} that can
be assigned to the incidence (v,vx;)
and such that |V (A*(x;)) U {c;}| < k.
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k-degenerated graphs (3)

Theorem. Every k-degenerated graph G admits a
PI'OOf (CO nt.). (A(G) + 2k - 1, k)-incidence coloring.

Claim. Forevery i, 1 <i<t, there
exists a color¢; Ul {c,, ..., ¢; ;} that can
be assigned to the incidence (v,vx;)
and such that |V (A*(x;)) U {c;}| < k.

By induction:

» i=1:take any color ¢, in Y(A*(x,)), or any color if deg.(x,) = 1.
> i>1:ify(A*(x)) \ {c,,...,c; ;} is not empty, take any color ¢; in
V(A+(X,-)) \ {Cl,...,CI-_l};
otherwise (which implies |Y(A*(x))| <i—1<k-1), take any
color notin y(A(x;) ) U {c,,...,c.;}, which is possible since
IV (A(x)) U{c,....ci;} SAG)-1+i—-1 <A(G) + k—2.
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k-degenerated graphs (4)

Theorem. Every k-degenerated graph G admits a
PI'OOf (CO nt.). (A(G) + 2k - 1, k)-incidence coloring.

Claim. Forevery i, 1 <i<t, there
exists a color¢; Ul {c,, ..., ¢; ;} that can
be assigned to the incidence (v,vx;)
and such that |V (A*(x;)) U {c;}| < k.

The theorem then easily follows:

» Color the incidences of A-(v) thanks to the claim,

» Color the incidences of A*(v) using any available color, that is,
color each incidence (v,vx;) with a color not in

Y(A*(x;)) U y(A(x)) U {c,,...,c;.;}, which is possible since
Y (A*(x;)) O Y(A(x;)) O {cy,...ci i}l <k +AG)-1+t-1
= A(G) + 2k - 2.
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k-degenerated graphs

(5)

Theorem. Every k-degenerated graph G admits a
(A(G) + 2k - 1, k)-incidence coloring.

Therefore we get the following:

Corollary [HOSSEINI-DOLAMA, S. & ZHU, 2004].

» If G is a K,-minor-free graph, then X.(G) < A(G) + 3.

» If G is a planar graph, then X.(G) < A(G) + 9.

» If G is a triangle-free planar graph, then X,(G) < A(G) + 5.

Eric Sopena — C&C 2015
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Outerplanar graphs

Outerplanar graphs

A graph is outerplanar if it admits a planar drawing such that all
its vertices lie on the outer face.

Outerplanar graphs
form a subclass of

K,-minor-free graphs.

Theorem [HOSSEINI-DOLAMA, S. & ZHU, 2004].

Every outerplanar graph G admits a (A(G) + 2,2)-incidence
coloring and, therefore, X.(G) < A(G) + 2 (tight bound).

(This result holds more generally for K,-minor free graphs.)
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Planar graphs

Planar graphs

Theorem [HOSSEINI-DoOLAMA, S. & ZHu, 2004].

Every planar graph G admits a (A(G) + 7,7)-incidence coloring
and, therefore, X.(G) < A(G) + 7.

This result has been improved by YANG (best known upper bound
up to now):

Theorem [YANG, 2012].

Let G be a planar graph. Then we have:
> Xi(G) < A(G) +5if A(G) #6,

> Xi(G) £ A(G) + 6 if A(G) =6.
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Triangle-free planar graphs

Triangle-free planar graphs

Theorem [HosSEINI-DoLAMA & S., 2005].

Every triangle-free planar graph G admits a (A(G) + 4,3)-inciden-
ce coloring and, therefore, X,(G) < A(G) + 4.

This result has been improved by BONAMY et al. whenever the
maximum degree is large enough:

Theorem [BoNAMY, HOCQUARD, KERDJOUDJ & RASPAUD, 2015+].

For every triangle-free planar graph G with A(G) = 7,
X.(G) < A(G) + 3.
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Planar graphs with high girth (1)

The girth g(G) of a graph G is the length of a shortest cycle in G.
Planar graphs with high girth

From results on the incidence chromatic number of graphs with
bounded maximum average degree, we get:

Theorem [HOsSEINI-DoLAMA & S., 2005].

Let G be a planar graph. Then we have:
> if g(G) 2 6 then X.(G) < A(G) + 3,
» if g(G) =2 11, or g(G) = 6 and A(G) = 5, then X.(G) < A(G) + 2,

> if g(G) 2 16 and A(G) = 4 then X,(G) < A(G) + 1.
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Planar graphs with high girth (2)

The girth g(G) of a graph G is the length of a shortest cycle in G.
Planar graphs with high girth

From results on the distance-two chromatic number of planar
graphs we get the following improvements:

Theorem [BoNAMY, LEVEQUE & PINLOU, 2011].

For every planar graph G with girth g(G) = 14 and A(G) = 4,
(Xi(G) <) X,(G) = A(G) + 1.

Theorem [BONAMY, CRANSTON & POSTLE, 2015+].

There exists a constant A, such that every planar graph G with
girth g(G) =5 and A(G) =2 A, (X(G) =) X,(G) = A(G) + 2.
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Graphs with maximum degree 3

Graphs with maximum degree 3

After some partial results obtained by SHIU, LAM and CHEN (2002)
and by Wu (2004), MAYDANsKY! finally proved that the ICC
conjecture holds for graphs with maximum degree 3:

Theorem [MAYDANSKYI, 2005].
For every graph G with A(G) = 3, X,(G) =5 = A(G) + 2.

Therefore, the incidence chromatic number of any subcubic

graph is either 4 or 5. every vertex has either
However, we have: degree 1 or degree 3

7
Theorem [Li & Tu, 2008]. /

The problem of deciding whether a semi-cubic graph has
incidence chromatic number 4 or 5 is an NP-complete problem.
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Product graphs (1)

Cartesian product
The Cartesian product G o0 H of two undirected graphs G and H is
given by:
» V(GoH)={(ux) | ulVG), x 1 V(H) },
» E(GoH)={((ux),(v,y)) | u=vandxy E(H), or
x =y and uv L1 E(G) }.

Example

o—o 0 O
$—9—9 0
o0 o
oo o o
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Product graphs (2)

Incidence chromatic number of Cartesian products

Theorem [SUN & SHIu, 2014].
For every two graphs G, and G,, X.(G, O G,) < X.(G;) + Xi(G,).

Let A be an incidence coloring of G. We denote by S, (u) the set of
colors used on A*(u) [J A-(u). Let s(A) = max { |S,(u)], u O V(G) }.

Theorem [SHIAU, SHIAU & WANG, 2015].

If A, is an incidence k-coloring of G, i = 1,2, then G, 0 G, admits
a max{ k, +s(A,), k, }-incidence coloring.
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Product graphs (3)

Incidence chromatic number of Cartesian products

Theorem [GREGOR & LUZAR, 2015+].

If X:(G,) =A(G,) + 1, G, is a subgraph of a regular graph H, with
X.(H,) = A(H,) + 1 and A(G;) + 1 = A(H,) — A(G,) then,

X.(G;0G,) <A(G,0G,)+2.

Incidence chromatic number of Hypercubes

Corollary [SHIAU, SHIAU & WANG, 2015 — GREGOR & LUZAR, 2015+].
Foreveryn=1,

> X(Q,)=n+1=A(Q)+1ifn=2"-1forsomem=1,
> Xi(Q,) =n+2=A(Q,) + 2 otherwise.
(conjectured by PAI, CHANG, YANG & Wu, 2014)
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Some variants...



Interval incidence coloring

Interval incidence coloring

An incidence coloring of a graph G is an interval
incidence coloring if the set of colors used on A (u)
forms an interval for every vertex u of G.

YES!

We denote by X.(G) the interval incidence chromatic number of G.

This notion was introduced by JANCZEWSKI, MAtAFIEISKA &
MAtAFIEISKI (2007).
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Interval incidence coloring (2)

Bipartite graphs

Theorem [JANCZEWSKI, MALAFIEJSKA & MALAFIEISKI, 2014].
» For every bipartite graph G, A(G) + 1 < X.(G) < X,.(G) < 2A(G).
> If G is a regular bipartite graph, X..(G) = 2A(G).

In particular, if G is a subcubic bipartite graph, 4 < x.(G) < 6.
JANCZEWSKI, MALAFIEISKA and MALAFIEISKI characterized those
subcubic bipartite graphs G with X..(G) = 4, 5 or 6, respectively.
They also characterized those bipartite graphs G with A(G) =4
and X.(G) = 5. However, they prove the following:

Theorem [JANCZEWSKI, MAtAFIEJSKA & MALAFIEISKI, 2014].

Deciding whether X..(G) < 6 for a bipartite graph G with A(G) = 4
is an NP-complete problem.
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Interval incidence coloring (3)

Some other graph classes

Theorem [JANCZEWSKI, MALAFIEJSKA & MALAFIEISKI, 2015].
» For every graph G, A(G) + 1 < X.(G) < X(G) A(G).

» If Gis a path or a cycle, X.(G) < A(G) + 2, with strict inequality
only for P,, k <4 (where k stands for the number of edges).

» Foreverynz1,x;(K,,) =A(K, ) + 1.
» For everyn =3, X.(W,) =A(W,) + 2 + (n mod 2).
» For everyn =1, X.(K,) = 2A(K,).

» Foreveryn, <..<n, XK,z ) =2(n;+..+n)+n.+n,.

Eric Sopena — C&C 2015

38



Interval incidence coloring (4)

Subcubic graphs

Theorem [JANCZEWSKI, MALAFIEJSKA & MALAFIEISKI, 2015].

» Deciding whether X..(G) < 4 for a subcubic graph G can be
done in linear time.

» Deciding whether X.(G) <5 for a subcubic graph G is an NP-
complete problem.

Non-hereditary property

Theorem [JANCZEWSKI, MAtAFIEISKA & MAtAFIEISKI, 2015].
For every k =2 5, there exists a tree T, with A(T,) = k such that T,

contains a subtree T with X.(T) > X.(T,).
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The incidence coloring game (1)

The incidence coloring game (ANDRES, 2009)
Let G be a graph and k a positive integer. The incidence coloring
game with k colors is played on G as follows:

» The two players, Alice and Bob, play alternately, Alice playing
first.

» On his turn, each player assigns a color from {1, ..., k} to an
uncolored incidence, respecting the adjacency constraints.

» Alice wins the game if and only if the whole graph G is colored.

The incidence game chromatic number

The incidence game chromatic number X;,(G) of a graph G is the
smallest k for which Alice has a winning strategy.
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The incidence coloring game (2)

Upper bound

Consider two adjacent vertices:

Since (u,uv) has at most 3(A(G) — 1) + 1 = 3A(G) — 2 adjacent
incidences, we get X,(G) < 3A(G) — 1.

Lower bound
ANDRES proved that for every graph G, X,(G) > (3A(G) - 1)/2.

These two bounds are tight...
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A sample case: stars

We denote by K, , the star on n + 1 vertices.

The incidence game chromatic number of stars

Theorem [ANDRES, 2009].

For every k=1, we have

> XiglKy 1) = 3k = 3A(K; ,)/2,
> XiglKiake1) = 3k + 2.

To prove that X,,(G) = p for a given graph G, we need to
1. provide a winning strategy for Alice with p colors,

2. provide a winning strategy for Bob with p — 1 colors or fewer.
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A sample case: stars (2)

Theorem. Forevery k 21, X;,(Ky 5) = 3k.
Proof of the even case.

(1) Alice’s strategy with 3k colors is based on
the following rules:

» Alice colors preferably incidences from A-(u).

» If Bob colors an incidence from A*(u) with
color ¢, Alice colors another incidence from
A*(u), if any, with the same color c.

» When Alice is forced to color an incidence from A*(u) — which
happens when all incidences from A-(u) are already colored —
she uses a color already used in A*(u) (except when it is the
first incidence from A*(u) to be colored).

= 2k colors have to be used for A(u),
= at most k colors will be used for A*(u).
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A sample case: stars (3)

Theorem. Forevery k 21, X;,(Ky 5) = 3k.
Proof of the even case.

(2) Bob’s strategy with 3k —1 colors or fewer
is based on the following rule:

> In his k first moves, Bob colors k incidences
from A*(u) with k distinct colors.

= at most 2k — 1 colors are left for coloring A(u),
which is not enough.
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A few other results

Cycles

Theorem [ANDRES, 2009].
For every k=7, Xi,(C,) =5 =3A(C,) - 1.

Wheels

Theorem [Kim, 2010].

For every k27, X (W) < 3k = 3A(W,,)/2.

Paths

Theorem [Kim, 2010].
For every k=13, X,(P,) =5=3A(P,) — 1.
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k-degenerated graphs

(1)

k-degenerated graphs

Theorem [ANDRES, 2009].

For every k-degenerated graph G, k=1, we have
> XiglG) = 2A(G) + 4k -2,

» XiglG) = 2A(G) + 3k —1if A(G) 2 5k -1,

» XiglG) = A(G) + 8k — 2 if A(G) < 5k— 1.

In particular, this gives:

» For every forest F, X,(G) = 2A(F) + 2,

» For every outerplanar graph G, X,,(G) < 2A(G) + 6,
» For every planar graph G, X,,(G) < 2A(G) + 18.
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k-degenerated graphs (2)

Improvement of ANDRES’s result

The arboricity a(G) of a graph G is the minimum number of
forests needed to partition the edge set of G.

Theorem [CHARPENTIER & S., 2013].
For every graph G, X,(G) < L (3A(G) - a(G))/2] + 8a(G) - 1.

In particular, this gives:

» For every k-degenerated graph G, Xig(G) < |_(3A(G)—k)/2j +8k—1,
» For every forest F, XiglG) = |_3A(G)/2_| + 6,

» For every outerplanar graph G, X, (G) < |_3A(G)/2J + 14,

» For every planar graph G, X,(G) < |_3A(G)/2_| + 21.
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Incidence coloring of digraphs (1)

Adjacent incidences

Two incidences are adjacent if and only if they are of one of the
following three types:

.. »'. »‘ . .l . .| . . .l .. \ .

Incidence coloring and incidence chromatic number

Incidence coloring and incidence chromatic number of digraphs are
defined in a natural way (DUFFY, MACGILLIVRAY and RASPAUD, 2015).

3 1
2

1 2 .1/'3 1

o—0

4 3 3 ~Nvl 3
213
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Incidence coloring of digraphs (2)

Let us denote by K*, the complete symmetric digraph of order n,
and by Und(D) the underlying undirected graph of a digraph D.

Then we have:

Theorem [DuUFrY, MACGILLIVRAY & RASPAUD, 2015+].
For every digraph D, X;(D) < X;(K°,), where p = X(Und(D)).

The first values of x,(K*,) are as follows:

n | 1 2 3 4 5
X(k)] o 4 4 5 5 6

Theorem [DuUFFY, MACGILLIVRAY & RASPAUD, 2015+].

For every p 21, log, n < X;(K*,) < (2 + o(1)).log, n.
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Incidence coloring of digraphs (3)

A digraph with no pair of opposite arcs is an oriented graph. Then
we have:

Observation. If D is an oriented graph, then X.(D) < X,(Und(D)).

Theorem [DuUFrY, MACGILLIVRAY & RASPAUD, 2015+].

» For every oriented tree T, X,(T) < 3. Do no longer
> For every oriented cycle C, (C) < 4. depend on A...
» For every oriented bipartite graph G, X.(G) < 4.

As for the undirected case, an incidence
coloring of a digraph D is nothing but a

strong arc coloring (using directed
distance) of S(D).
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Some open questions...



Some open questions... (1)

Open Question A. By the result of Maydanskyi, we know that graphs
with maximum degree 3 satisfy the ICC Conjecture. What about
graphs with maximum degree 4?

Open Question B. Is there any characterization of those graphs G
with x(G) = A(G) + 1?7 (Done for regular graphs — SUun, 2012)

Open Question C. What is the maximum value of x(G) when G is a
planar graph?

Open Question D. What is the smallest k for which every planar
graph G with girth at least k and A(G) = 3 has incidence chromatic
number A(G) + 1? (The best known value is 14, provided A(G) = 4.)
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Some open questions... (2)

Open Question E. What is the smallest k for which every planar
graph G with girth at least k has incidence chromatic number at
most A(G) + 2? (The best known value is 11. This is also true for girth
6, provided A(G) is large enough...)

Open Question F [Gregor & Luzar]. Is it true that X(G,) = A(G,) + 1
and X{(G,) <A(G,) + 2 implies x(G,0 G,) <A(G,0 G,) + 2?

Open Question G [Janczewski, Matafiejska & Matafiejski]. Is it true
that for every graph G, X,(G) <24(G)?

Open Question H. What is the maximum value of (D) when D is an
oriented planar graph?
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