Incidence Coloring of Graphs

ÉRIC SOPENA

LaBRI, Bordeaux University, France

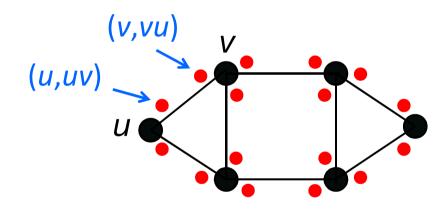
24th WORKSHOP ON CYCLES AND COLOURINGS September 7-11, 2015 Nový Smokovec, High Tatras, Slovakia

Incidence colorings

(1)

Incidences

An incidence in a graph G is a pair (u,uv) with $u \in V(G)$ and $uv \in E(G)$.



We denote by *lnc(G)* the set of incidences of a graph *G*.

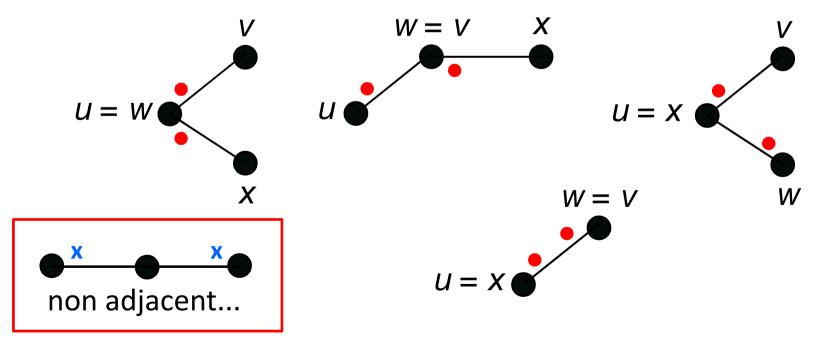
Incidences

(2)

Adjacent incidences

Two distinct incidences (*u*,*uv*) and (*w*,*wx*) are adjacent in *G* if:

i. $u = w (v \neq x)$, or ii. w = v, or iii. u = x.



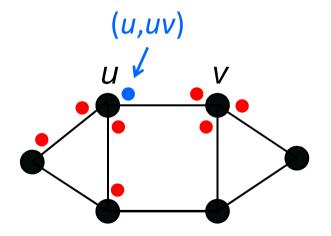
Incidences

(3)

Adjacent incidences

Two distinct incidences (*u*,*uv*) and (*w*,*wx*) are adjacent in *G* if:

i. $u = w (v \neq x)$, or ii. w = v, or iii. u = x.

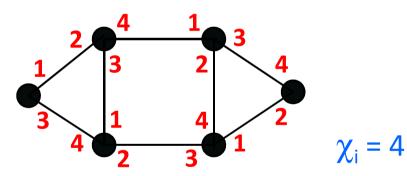


Incidence coloring [BRUALDI & QUINN MASSEY, 1993]

An incidence *k*-coloring of a graph *G* is a mapping

 λ : *Inc*(*G*) \rightarrow {1,...,*k*}

that assigns distinct colors to adjacent incidences.



(may be defined for multigraphs)

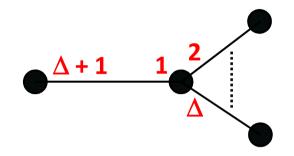
Incidence chromatic number

The incidence chromatic number $\chi_i(G)$ of a graph G is the smallest k for which G admits an incidence k-coloring.

Incidence coloring

General lower bounds

For every graph G, $\chi_i(G) \ge \Delta(G) + 1$.



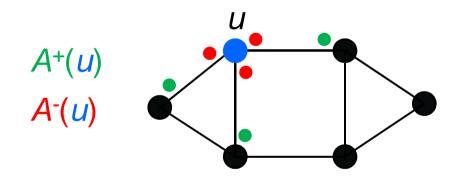
For every graph G, $\chi_i(G) \ge 2|E| / (|V| - \gamma(G))$, where $\gamma(G)$ denotes the domination number of G.

General upper bound

For every graph G, $\chi_i(G) \leq 2\Delta(G)$. [BRUALDI & QUINN MASSEY, 1993] For every graph G, $\chi_i(G) \leq \Delta(G) + 20.\log_2 \Delta(G) + 84$. [GUIDULI, 1997]

The sets of incidences $A^+(u)$ and $A^-(u)$

For every vertex u in V(G), let $A^+(u)$ denote the set of incidences of the form (v,vu) and $A^-(u)$ the set of incidences of the form (u,uv).



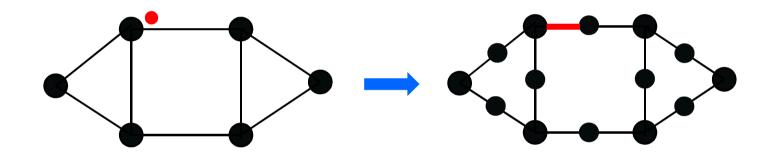
Incidence (*k*,*p*)-coloring

An incidence (k,p)-coloring of G is an incidence k-coloring of G such that, for every vertex u in G, at most p colors are used on $A^+(u)$.

Subdivided graph

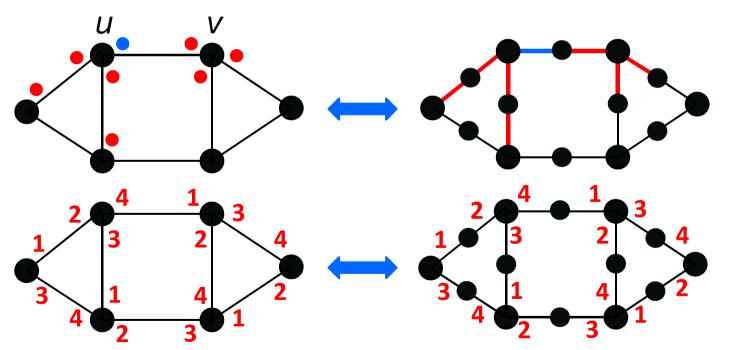
The subdivided graph S(G)

Obtained from G by subdividing once each edge of G:



Strong edge coloring of S(G)

An edge coloring is strong if every two edges at distance one or two are assigned distinct colors. An incidence coloring of G is nothing but a strong edge coloring of S(G).



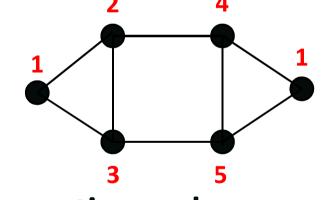
(original motivation of BRUALDI & QUINN MASSEY, 1993)

Distance-two (vertex) coloring (a.k.a. square coloring)

A distance-two k-coloring of a graph G is a mapping

 $\lambda: V(G) \rightarrow \{1,...,k\}$

that assigns distinct colors to vertices at distance one or two from each other.



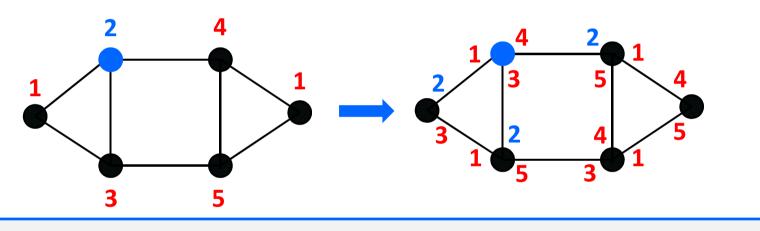
Distance-two chromatic number

The distance-two chromatic number $\chi_2(G)$ of a graph G is the smallest k for which G admits a distance-two k-coloring.

Distance-two (vertex) coloring

Distance-two (vertex) coloring (a.k.a. square coloring)

Observation. For every graph G, $\chi_i(G) \leq \chi_2(G)$.



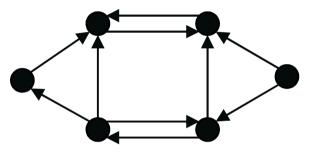
In particular...

For every graph G, $\chi_2(G) = \Delta(G) + 1$ implies $\chi_i(G) = \Delta(G) + 1$. (Our example shows that the converse is not true.)

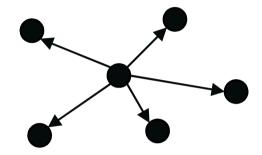
Note that distance-two k-colorings of a graph G are in one-to-one correspondence with (k,1)-incidence colorings of G...

(1)

Digraphs, directed stars



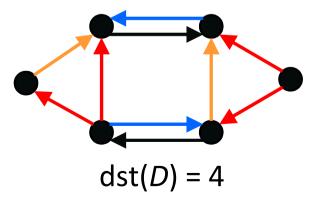
A digraph D



A directed (outgoing) star

Directed star arboricity (ALGOR & ALON, 1989)

The directed star arboricity dst(*D*) of a digraph *D* is the least number of forests of directed (outgoing) stars needed for partitioning the arc set of *D*.

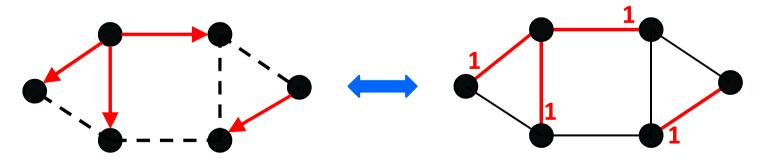


Symmetric digraph associated with an undirected graph

The symmetric digraph *SD(G)* associated with an undirected graph *G* is the digraph obtained from *G* by replacing each edge by a pair of opposite arcs.

Directed star arboricity and incidence coloring

For every undirected graph G, $\chi_i(G) = dst(SD(G))$.



(first observed by GUIDULI, 1997)

Selected results

Complexity issues

Incidence chromatic number

```
Theorem [Li & Tu, 2008].
```

Deciding whether the incidence chromatic number of a graph is at most $k, k \ge 4$, is an NP-complete problem.

Incidence graph

Theorem [HARTKE & HELLELOID, 2012].

Deciding whether a graph *H* is the incidence graph of some graph *G* can be done in polynomial time.

(If the answer is yes, their algorithm outputs the corresponding graph G.)

Paths and cycles

Paths

For every path P_n , $n \ge 3$, $\chi_i(P_n) = 3 = \Delta(P_n) + 1$.

Cycles

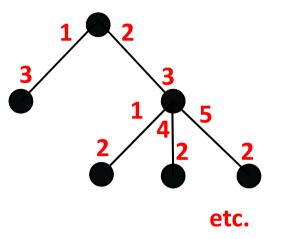
For every cycle C_n with $n \ge 3$, $n \equiv 0 \pmod{3}$, $\chi_i(C_n) = 3 = \Delta(C_n) + 1$. For every cycle C_n with $n \ge 4$, $n \equiv 1,2 \pmod{3}$, $\chi_i(C_n) = 4 = \Delta(C_n) + 2$. (By Sylvester's Theorem, every integer ≥ 6

can be expressed as a sum of 3's and 4's, and we have 2n incidences...)

Other simple classes

Trees

For every tree T, $\chi_i(T) = \Delta(T) + 1$. (*Simple induction*.)



Complete graphs

For every $n \ge 2$, $\chi_i(K_n) = n = \Delta(K_n) + 1$.

Complete bipartite graphs

For every $m \ge n \ge 2$, $\chi_i(K_{m,n}) = m = \Delta(K_{m,n}) + 2$.

The (Δ + 2)-Conjecture

Incidence coloring conjecture (ICC)

Conjecture [BRUALDI & QUINN MASSEY, 1993].

For every graph G, $\chi_i(G) \leq \Delta(G) + 2$.

ICC conjecture is satisfied by all the previous examples, and by many other graph classes.

However, the conjecture was disproved by GUIDULI:

```
Theorem [GUIDULI, 1997].
```

- There exist graphs with incidence chromatic number at least $\Delta + \Omega(\log \Delta)$ (follows from ALGOR & ALON, 1989).
- For every graph *G*, $\chi_i(G) ≤ \Delta(G) + 20.log_2 \Delta(G) + 84$.

Rectangular grids

Theorem [HUANG, WANG & CHUNG, 2004].

For every $m, n \ge 2, \chi_i(G_{m,n}) = 5 = \Delta(G_{m,n}) + 1$.

Toroidal grids

Theorem [Wu & S., 2013].

For every *m*, $n \ge 3$, $\chi(T_{m,n}) \le 6 = \Delta(T_{m,n}) + 2$.

Moreover, $\chi(T_{m,n}) = 5$ if and only if $m, n \equiv 0 \pmod{5}$.

Let k be a positive integer. A graph G is k-degenerated if every subgraph of G contains a vertex of degree at most k.

For instance:

- forests are 1-degenerated,
- \succ K₄-minor-free graphs are 2-degenerated,
- planar graphs are 5-degenerated,
- triangle-free planar graphs are 3-degenerated.

Theorem [HOSSEINI-DOLAMA, S. & ZHU, 2004].

Every k-degenerated graph G admits a $(\Delta(G) + 2k - 1, k)$ -incidence coloring and, therefore, $\chi_i(G) \leq \Delta(G) + 2k - 1$.

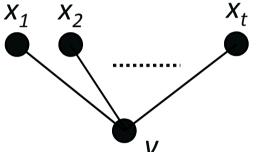
(2)

Theorem. Every k-degenerated graph G admits a $(\Delta(G) + 2k - 1, k)$ -incidence coloring.

Proof.

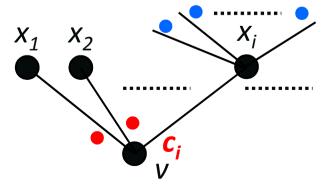
Assume the theorem is false and let *G* be a minimal counterexample.

Let v be a vertex of degree t, $t \le k$.



Since G is minimal, G' = G - v admits a $(\Delta(G) + 2k - 1, k)$ -incidence coloring γ' .

Claim. For every $i, 1 \le i \le t$, there exists a color $c_i \notin \{c_1, ..., c_{i-1}\}$ that can be assigned to the incidence (v, vx_i) and such that $|\gamma'(A^+(x_i)) \cup \{c_i\}| \le k$.



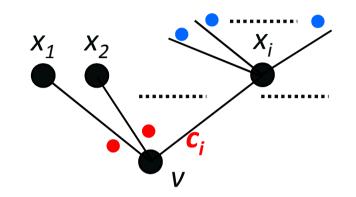
(3)

Theorem. Every k-degenerated graph G admits a $(\Delta(G) + 2k - 1, k)$ -incidence coloring.

Proof (cont.).

Claim. For every $i, 1 \le i \le t$, there exists a color $c_i \notin \{c_1, ..., c_{i-1}\}$ that can be assigned to the incidence (v, vx_i) and such that $|\gamma'(A^+(x_i)) \cup \{c_i\}| \le k$.

By induction:



- \succ i = 1: take any color c_1 in $\gamma'(A^+(x_1))$, or any color if deg_G(x_1) = 1.
- > i > 1: if $\gamma'(A^+(x_i)) \setminus \{c_1, ..., c_{i-1}\}$ is not empty, take any color c_i in $\gamma'(A^+(x_i)) \setminus \{c_1, ..., c_{i-1}\}$; otherwise (which implies $|\gamma'(A^+(x_i))| \leq i 1 \leq k 1$), take any color not in $\gamma'(A^-(x_i)) \cup \{c_1, ..., c_{i-1}\}$, which is possible since $|\gamma'(A^-(x_i)) \cup \{c_1, ..., c_{i-1}\}| \leq \Delta(G) 1 + i 1 \leq \Delta(G) + k 2$.

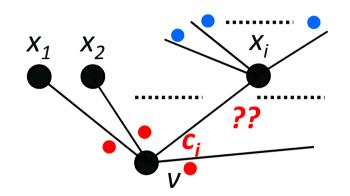
(4)

Theorem. Every k-degenerated graph G admits a $(\Delta(G) + 2k - 1, k)$ -incidence coloring.

Proof (cont.).

Claim. For every $i, 1 \le i \le t$, there exists a color $c_i \notin \{c_1, ..., c_{i-1}\}$ that can be assigned to the incidence (v, vx_i) and such that $|\gamma'(A^+(x_i)) \cup \{c_i\}| \le k$.

The theorem then easily follows:



- \succ Color the incidences of $A^{-}(v)$ thanks to the claim,
- Color the incidences of $A^+(v)$ using any available color, that is, color each incidence (v,vx_i) with a color not in $\gamma'(A^+(x_i)) \cup \gamma'(A^-(x_i)) \cup \{c_1,...,c_{i-1}\}$, which is possible since $|\gamma'(A^+(x_i)) \cup \gamma'(A^-(x_i)) \cup \{c_1,...,c_{i-1}\}| \le k + \Delta(G) - 1 + t - 1$ $= \Delta(G) + 2k - 2.$

(5)

Theorem. Every k-degenerated graph G admits a $(\Delta(G) + 2k - 1, k)$ -incidence coloring.

Therefore we get the following:

Corollary [HOSSEINI-DOLAMA, S. & ZHU, 2004].

 \succ If G is a K_4 -minor-free graph, then $\chi_i(G) \leq \Delta(G) + 3$.

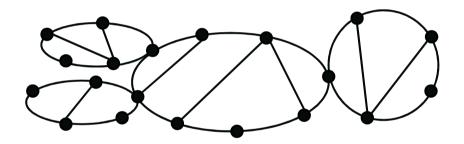
> If G is a planar graph, then $\chi_i(G) \leq \Delta(G) + 9$.

▶ If G is a triangle-free planar graph, then $\chi_i(G) \leq \Delta(G) + 5$.

Outerplanar graphs

Outerplanar graphs

A graph is outerplanar if it admits a planar drawing such that all its vertices lie on the outer face.



Outerplanar graphs form a subclass of K₄-minor-free graphs.

Theorem [HOSSEINI-DOLAMA, S. & ZHU, 2004].

Every outerplanar graph G admits a $(\Delta(G) + 2,2)$ -incidence coloring and, therefore, $\chi_i(G) \leq \Delta(G) + 2$ (tight bound).

(This result holds more generally for K_4 -minor free graphs.)

Planar graphs

Theorem [HOSSEINI-DOLAMA, S. & ZHU, 2004].

Every planar graph G admits a $(\Delta(G) + 7,7)$ -incidence coloring and, therefore, $\chi_i(G) \leq \Delta(G) + 7$.

This result has been improved by YANG (best known upper bound up to now):

```
Theorem [YANG, 2012].
```

Let G be a planar graph. Then we have:

 $\chi_i(G) \le \Delta(G) + 5$ if $\Delta(G) ≠ 6$, $\chi_i(G) \le \Delta(G) + 6$ if $\Delta(G) = 6$.

Triangle-free planar graphs

Triangle-free planar graphs

Theorem [HOSSEINI-DOLAMA & S., 2005].

Every triangle-free planar graph G admits a $(\Delta(G) + 4,3)$ -incidence coloring and, therefore, $\chi_i(G) \leq \Delta(G) + 4$.

This result has been improved by BONAMY *et al.* whenever the maximum degree is large enough:

Theorem [BONAMY, HOCQUARD, KERDJOUDJ & RASPAUD, 2015+].

For every triangle-free planar graph G with $\Delta(G) \ge 7$, $\chi_i(G) \le \Delta(G) + 3$.

Planar graphs with high girth

The girth g(G) of a graph G is the length of a shortest cycle in G. Planar graphs with high girth

From results on the incidence chromatic number of graphs with bounded maximum average degree, we get:

```
Theorem [HOSSEINI-DOLAMA & S., 2005].
Let G be a planar graph. Then we have:
```

 \succ if g(G) ≥ 6 then $\chi_i(G) \le \Delta(G) + 3$,

 \succ if g(G) ≥ 11, or g(G) ≥ 6 and $\Delta(G) \ge 5$, then $\chi_i(G) \le \Delta(G) + 2$,

 \succ if g(G) ≥ 16 and $\Delta(G) ≥$ 4 then $\chi_i(G) ≤ \Delta(G) + 1$.

Planar graphs with high girth

The girth g(G) of a graph G is the length of a shortest cycle in G. Planar graphs with high girth

From results on the distance-two chromatic number of planar graphs we get the following improvements:

Theorem [BONAMY, LÉVÊQUE & PINLOU, 2011].

For every planar graph G with girth $g(G) \ge 14$ and $\Delta(G) \ge 4$, $(\chi_i(G) \le) \chi_2(G) \le \Delta(G) + 1$.

Theorem [BONAMY, CRANSTON & POSTLE, 2015+].

There exists a constant Δ_0 such that every planar graph G with girth g(G) \geq 5 and $\Delta(G) \geq \Delta_0$, ($\chi_i(G) \leq i$) $\chi_2(G) \leq \Delta(G) + 2$.

Graphs with maximum degree 3

Graphs with maximum degree 3

After some partial results obtained by SHIU, LAM and CHEN (2002) and by WU (2004), MAYDANSKYI finally proved that the ICC conjecture holds for graphs with maximum degree 3:

Theorem [MAYDANSKYI, 2005].

For every graph G with $\Delta(G) = 3$, $\chi_i(G) \le 5 = \Delta(G) + 2$.

Therefore, the incidence chromatic number of any subcubicgraph is either 4 or 5.However, we have:degree 1 or degree 3

Theorem [Li & Tu, 2008].

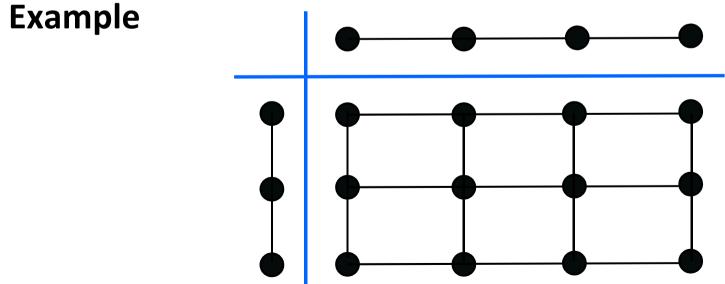
The problem of deciding whether a *semi-cubic* graph has incidence chromatic number 4 or 5 is an NP-complete problem.

(1)

Cartesian product

The Cartesian product $G \square H$ of two undirected graphs G and H is given by:

- \succ V(G □ H) = { (u,x) | u ∈ V(G), x ∈ V(H) },
- $► E(G \Box H) = \{ ((u,x),(v,y)) | u = v \text{ and } xy \in E(H), \text{ or } x = y \text{ and } uv \in E(G) \}.$



(2)

Incidence chromatic number of Cartesian products

<u>Theorem</u> [SUN & SHIU, 2014].

For every two graphs G_1 and G_2 , $\chi_i(G_1 \Box G_2) \leq \chi_i(G_1) + \chi_i(G_2)$.

Let λ be an incidence coloring of G. We denote by $S_{\lambda}(u)$ the set of colors used on $A^+(u) \cup A^-(u)$. Let $s(\lambda) = \max \{ |S_{\lambda}(u)|, u \in V(G) \}$.

Theorem [SHIAU, SHIAU & WANG, 2015].

If λ_i is an incidence k_i -coloring of G_i , i = 1, 2, then $G_1 \square G_2$ admits a max{ $k_1 + s(\lambda_2), k_2$ }-incidence coloring.

Incidence chromatic number of Cartesian products

Theorem [GREGOR & LUŽAR, 2015+].

If $\chi_i(G_1) = \Delta(G_1) + 1$, G_2 is a subgraph of a regular graph H_2 with $\chi_i(H_2) = \Delta(H_2) + 1$ and $\Delta(G_1) + 1 \ge \Delta(H_2) - \Delta(G_2)$ then, $\chi_i(G_1 \square G_2) \le \Delta(G_1 \square G_2) + 2$.

Incidence chromatic number of Hypercubes

Corollary [SHIAU, SHIAU & WANG, 2015 – GREGOR & LUŽAR, 2015+]. For every $n \ge 1$,

 \succ $\chi_i(Q_n) = n + 1 = \Delta(Q_n) + 1$ if $n = 2^m - 1$ for some $m \ge 1$,

$$\succ \chi_i(Q_n) = n + 2 = \Delta(Q_n) + 2$$
 otherwise.

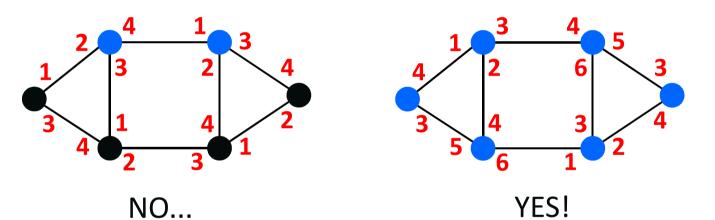
(conjectured by PAI, CHANG, YANG & WU, 2014)

Some variants...

Interval incidence coloring

Interval incidence coloring

An incidence coloring of a graph G is an interval incidence coloring if the set of colors used on $A^{-}(u)$ forms an interval for every vertex u of G.



We denote by $\chi_{ii}(G)$ the interval incidence chromatic number of G.

This notion was introduced by JANCZEWSKI, MAŁAFIEJSKA & MAŁAFIEJSKI (2007).

Bipartite graphs

Theorem [JANCZEWSKI, MAŁAFIEJSKA & MAŁAFIEJSKI, 2014].

 \succ For every bipartite graph *G*, Δ(*G*) + 1 ≤ $\chi_i(G) ≤ \chi_{ii}(G) ≤ 2\Delta(G)$.

> If G is a regular bipartite graph, $\chi_{ii}(G) = 2\Delta(G)$.

In particular, if G is a subcubic bipartite graph, $4 \leq \chi_{ii}(G) \leq 6$. JANCZEWSKI, MAŁAFIEJSKA and MAŁAFIEJSKI characterized those subcubic bipartite graphs G with $\chi_{ii}(G) = 4$, 5 or 6, respectively. They also characterized those bipartite graphs G with $\Delta(G) = 4$ and $\chi_{ii}(G) = 5$. However, they prove the following:

Theorem [JANCZEWSKI, MAŁAFIEJSKA & MAŁAFIEJSKI, 2014].

Deciding whether $\chi_{ii}(G) \leq 6$ for a bipartite graph G with $\Delta(G) = 4$ is an NP-complete problem.

Some other graph classes

Theorem [JANCZEWSKI, MAŁAFIEJSKA & MAŁAFIEJSKI, 2015].

For every graph G, $\Delta(G) + 1 \le \chi_{ii}(G) \le \chi(G) \Delta(G)$.

If G is a path or a cycle, $\chi_{ii}(G) ≤ \Delta(G) + 2$, with strict inequality only for P_k, k ≤ 4 (where k stands for the number of edges).

► For every
$$n \ge 1$$
, $\chi_{ii}(K_{1,n}) = \Delta(K_{1,n}) + 1$.

- For every $n \ge 3$, $\chi_{ii}(W_n) = \Delta(W_n) + 2 + (n \mod 2)$.
- For every n ≥ 1, $\chi_{ii}(K_n) = 2\Delta(K_n)$.
- ➤ For every $n_1 ≤ ... ≤ n_k$, $\chi_{ii}(K_{n1,...,nk}) = 2(n_1 + ... + n_{k-2}) + n_{k-1} + n_k$.

Interval incidence coloring

Subcubic graphs

Theorem [JANCZEWSKI, MAŁAFIEJSKA & MAŁAFIEJSKI, 2015].

- ➤ Deciding whether $\chi_{ii}(G) \le 4$ for a subcubic graph G can be done in linear time.
- ➢ Deciding whether $\chi_{ii}(G) ≤ 5$ for a subcubic graph G is an NPcomplete problem.

Non-hereditary property

Theorem [JANCZEWSKI, MAŁAFIEJSKA & MAŁAFIEJSKI, 2015].

For every $k \ge 5$, there exists a tree T_k with $\Delta(T_k) = k$ such that T_k contains a subtree T with $\chi_{ii}(T) > \chi_{ii}(T_k)$.

The incidence coloring game (ANDRES, 2009)

Let G be a graph and k a positive integer. The incidence coloring game with k colors is played on G as follows:

- The two players, Alice and Bob, play alternately, Alice playing first.
- On his turn, each player assigns a color from {1, ..., k} to an uncolored incidence, respecting the adjacency constraints.
- \succ Alice wins the game if and only if the whole graph G is colored.

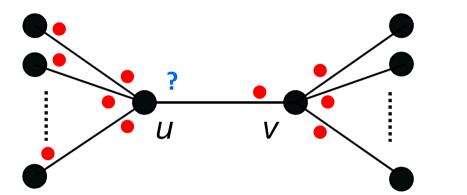
The incidence game chromatic number

The incidence game chromatic number $\chi_{ig}(G)$ of a graph G is the smallest k for which Alice has a winning strategy.

The incidence coloring game

Upper bound

Consider two adjacent vertices:



Since (u,uv) has at most $3(\Delta(G) - 1) + 1 = 3\Delta(G) - 2$ adjacent incidences, we get $\chi_{ig}(G) \leq 3\Delta(G) - 1$.

Lower bound

ANDRES proved that for every graph G, $\chi_{ig}(G) > (3\Delta(G) - 1)/2$.

These two bounds are tight...

A sample case: stars

We denote by $K_{1,n}$ the star on n + 1 vertices.

The incidence game chromatic number of stars

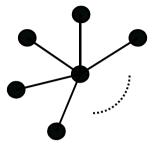
Theorem [ANDRES, 2009].

For every $k \ge 1$, we have

$$\sim \chi_{ig}(K_{1,2k+1}) = 3k + 2.$$

To prove that $\chi_{ig}(G) = p$ for a given graph G, we need to

- 1. provide a winning strategy for Alice with *p* colors,
- 2. provide a winning strategy for Bob with p 1 colors or fewer.



A sample case: stars

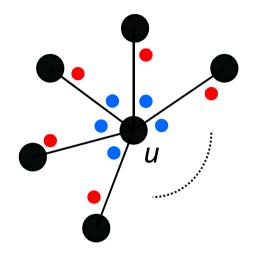
Theorem. For every $k \ge 1$, $\chi_{ig}(K_{1,2k}) = 3k$.

Proof of the even case.

(1) Alice's strategy with 3k colors is based on the following rules:

- > Alice colors preferably incidences from $A^{-}(u)$.
- If Bob colors an incidence from A⁺(u) with color c, Alice colors another incidence from A⁺(u), if any, with the same color c.
- When Alice is forced to color an incidence from $A^+(u)$ which happens when all incidences from $A^-(u)$ are already colored – she uses a color already used in $A^+(u)$ (except when it is the first incidence from $A^+(u)$ to be colored).

 $\Rightarrow 2k \text{ colors have to be used for } A^{-}(u),$ $\Rightarrow at most k \text{ colors will be used for } A^{+}(u).$



43

(2)

A sample case: stars

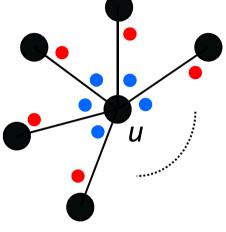
(3)

Theorem. For every $k \ge 1$, $\chi_{ig}(K_{1,2k}) = 3k$.

Proof of the even case.

(2) Bob's strategy with 3k - 1 colors or fewer is based on the following rule:

In his k first moves, Bob colors k incidences from A⁺(u) with k distinct colors.



 \Rightarrow at most 2k – 1 colors are left for coloring A⁻(u), which is not enough.

A few other results

Cycles

Theorem [ANDRES, 2009]. For every $k \ge 7$, $\chi_{ig}(C_k) = 5 = 3\Delta(C_k) - 1$.

Wheels

<u>Theorem</u> [KIM, 2010].

For every $k \ge 7$, $\chi_{ig}(W_{2k}) \le 3k = 3\Delta(W_{2k})/2$.

Paths

<u>Theorem</u> [KIM, 2010].

For every $k \ge 13$, $\chi_{ig}(P_k) = 5 = 3\Delta(P_k) - 1$.

k-degenerated graphs

```
Theorem [ANDRES, 2009].
```

For every *k*-degenerated graph *G*, $k \ge 1$, we have

- $\succ \chi_{ig}(G) \leq 2\Delta(G) + 4k 2,$
- $\succ \chi_{ig}(G) \leq 2\Delta(G) + 3k 1$ if $\Delta(G) \geq 5k 1$,
- $\succ \chi_{ig}(G) \leq \Delta(G) + 8k 2$ if $\Delta(G) \leq 5k 1$.

In particular, this gives:

- For every forest *F*, $\chi_{ig}(G) \leq 2\Delta(F) + 2$,
- For every outerplanar graph G, $\chi_{ig}(G) \leq 2\Delta(G) + 6$,
- For every planar graph G, $\chi_{ig}(G) \leq 2\Delta(G) + 18$.

Improvement of ANDRES's result

The arboricity a(G) of a graph G is the minimum number of forests needed to partition the edge set of G.

Theorem [CHARPENTIER & S., 2013].

For every graph G, $\chi_{ig}(G) \leq \lfloor (3\Delta(G) - a(G))/2 \rfloor + 8a(G) - 1$.

In particular, this gives:

- For every k-degenerated graph G, $\chi_{ig}(G) \leq \lfloor (3\Delta(G)-k)/2 \rfloor + 8k 1$,
- For every forest *F*, $\chi_{ig}(G) \leq \lceil 3\Delta(G)/2 \rceil + 6$,
- ≻ For every outerplanar graph G, $\chi_{ig}(G) \leq \lfloor 3\Delta(G)/2 \rfloor + 14$,
- For every planar graph G, $\chi_{ig}(G) \leq \lceil 3\Delta(G)/2 \rceil + 21$.

Incidence coloring of digraphs

Adjacent incidences

Two incidences are adjacent if and only if they are of one of the following three types:

Incidence coloring and incidence chromatic number

Incidence coloring and incidence chromatic number of digraphs are defined in a natural way (DUFFY, MACGILLIVRAY and RASPAUD, 2015).

(2)

Let us denote by K^s_n the complete symmetric digraph of order n, and by Und(D) the underlying undirected graph of a digraph D. Then we have:

Theorem [DUFFY, MACGILLIVRAY & RASPAUD, 2015+].

For every digraph D, $\chi_i(D) \leq \chi_i(K^s_p)$, where $p = \chi(\text{Und}(D))$.

The first values of $\chi_i(K^s_n)$ are as follows:

n	1	2	3	4	5	6	7
$\chi_i(K^s_n)$	0	4	4	5	5	6	6

Theorem [DUFFY, MACGILLIVRAY & RASPAUD, 2015+].

For every $p \ge 1$, $\log_2 n \le \chi_i(K^s_p) \le (2 + o(1)) \cdot \log_2 n$.

Incidence coloring of digraphs

A digraph with no pair of opposite arcs is an oriented graph. Then we have:

Observation. If *D* is an oriented graph, then $\chi_i(D) \leq \chi_i(Und(D))$.

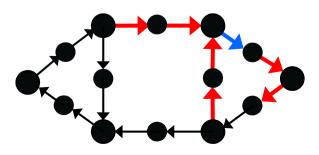
Theorem [DUFFY, MACGILLIVRAY & RASPAUD, 2015+].

> For every oriented tree T, $\chi_i(T) \leq 3$.

For every oriented cycle C, $\chi_i(C) \leq 4$.

 \succ For every oriented bipartite graph *G*, χ_i (*G*) ≤ 4.

As for the undirected case, an incidence coloring of a digraph D is nothing but a strong arc coloring (using directed distance) of S(D).



Do no longer

depend on Δ ...

Some open questions...

Open Question A. By the result of Maydanskyi, we know that graphs with maximum degree 3 satisfy the ICC Conjecture. What about graphs with maximum degree 4?

Open Question B. Is there any characterization of those graphs G with $\chi_i(G) = \Delta(G) + 1$? (Done for regular graphs – SUN, 2012)

Open Question C. What is the maximum value of $\chi_i(G)$ when G is a planar graph?

Open Question D. What is the smallest k for which every planar graph G with girth at least k and $\Delta(G) \ge 3$ has incidence chromatic number $\Delta(G) + 1$? (The best known value is 14, provided $\Delta(G) \ge 4$.)

Open Question E. What is the smallest k for which every planar graph G with girth at least k has incidence chromatic number at most $\Delta(G) + 2$? (The best known value is 11. This is also true for girth 6, provided $\Delta(G)$ is large enough...)

Open Question F [Gregor & Lužar]. Is it true that $\chi_i(G_1) = \Delta(G_1) + 1$ and $\chi_i(G_2) \leq \Delta(G_2) + 2$ implies $\chi_i(G_1 \square G_2) \leq \Delta(G_1 \square G_2) + 2$?

Open Question G [Janczewski, Małafiejska & Małafiejski]. Is it true that for every graph G, $\chi_{ii}(G) \leq 2\Delta(G)$?

Open Question H. What is the maximum value of $\chi_i(D)$ when D is an oriented planar graph?