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Eric Sopena – C&C 2015 3

Incidences

An incidence in a graph G is a pair (u,uv) with u ∈ V(G) and

uv ∈ E(G).

u

v
(u,uv)

(v,vu)

We denote by Inc(G) the set of incidences of a graph G.



Incidences (2)
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Adjacent incidences

Two distinct incidences (u,uv) and (w,wx) are adjacent in G if:

u = w

v

x

u

w = v x

u = x

v

w

u = x

w = v

i.  u = w (v ≠ x), or ii.  w = v, or iii. u = x.

x x

non adjacent...



Incidences (3)
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u v

(u,uv)

Adjacent incidences

Two distinct incidences (u,uv) and (w,wx) are adjacent in G if:

i.  u = w (v ≠ x), or ii.  w = v, or iii. u = x.



Incidence coloring (1)
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Incidence coloring [BRUALDI & QUINN MASSEY, 1993]

An incidence k-coloring of a graph G is a mapping 

λ: Inc(G) → {1,...,k}

that assigns distinct colors to adjacent incidences.

Incidence chromatic number

The incidence chromatic number χi(G) of a graph G is the smallest 

k for which G admits an incidence k-coloring.
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χi = 4

(may be defined

for multigraphs)



Incidence coloring (2)
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General lower bounds

For every graph G, χi(G) ≥ ∆(G) + 1. 21∆ + 1

∆

General upper bound

For every graph G, χi(G) ≤ 2∆(G). [BRUALDI & QUINN MASSEY, 1993]

For every graph G, χi(G) ≤ ∆(G) + 20.log2 ∆(G) + 84. [GUIDULI, 1997]

For every graph G, χi(G) ≥ 2|E| / (|V| – γ(G)), where γ(G) denotes 

the domination number of G. 



Incidence (k,p)-coloring
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The sets of incidences A+(u) and A-(u)

For every vertex u in V(G), let A+(u) denote the set of incidences of 

the form (v,vu) and A-(u) the set of incidences of the form (u,uv).

u

A-(u)

A+(u)

Incidence (k,p)-coloring

An incidence (k,p)-coloring of G is an incidence k-coloring of G such 

that, for every vertex u in G, at most p colors are used on A+(u).



Subdivided graph

Eric Sopena – C&C 2015 9

The subdivided graph S(G)

Obtained from G by subdividing once each edge of G:



Strong edge coloring of S(G)
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Strong edge coloring of S(G)

An edge coloring is strong if every two edges at distance one or 

two are assigned distinct colors. An incidence coloring of G is 

nothing but a strong edge coloring of S(G).
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(original motivation of BRUALDI & QUINN MASSEY, 1993)



Distance-two (vertex) coloring (1)
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Distance-two (vertex) coloring (a.k.a. square coloring)

A distance-two k-coloring of a graph G is a mapping 

λ: V(G) → {1,...,k}

that assigns distinct colors to vertices at distance one or two from 

each other.
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Distance-two chromatic number

The distance-two chromatic number χ2(G) of a graph G is the 

smallest k for which G admits a distance-two k-coloring.
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Distance-two (vertex) coloring (2)
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Distance-two (vertex) coloring (a.k.a. square coloring)

Observation. For every graph G, χi(G) ≤ χ2(G).

1
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In particular...

For every graph G, χ2(G) = ∆(G) + 1 implies χi(G) = ∆(G) + 1. 

(Our example shows that the converse is not true.)

Note that distance-two k-colorings of a graph G are in one-to-one 

correspondence with (k,1)-incidence colorings of G...



Directed star arboricity (1)
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Digraphs, directed stars

A digraph D A directed (outgoing) star

Directed star arboricity (ALGOR & ALON, 1989)

The directed star arboricity dst(D) of a 

digraph D is the least number of forests 

of directed (outgoing) stars needed for 

partitioning the arc set of D.
dst(D) = 4



Directed star arboricity (2)
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Symmetric digraph associated with an undirected graph

The symmetric digraph SD(G) associated with an undirected graph 

G is the digraph obtained from G by replacing each edge by a pair 

of opposite arcs.

Directed star arboricity and incidence coloring

For every undirected graph G, χi(G) = dst(SD(G)).
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1
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(first observed by GUIDULI, 1997)



Selected results



Complexity issues
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Incidence chromatic number

Theorem [LI & TU, 2008].

Deciding whether the incidence chromatic number of a graph is 

at most k, k ≥ 4, is an NP-complete problem.

Incidence graph

Theorem [HARTKE & HELLELOID, 2012].

Deciding whether a graph H is the incidence graph of some 

graph G can be done in polynomial time.

(If the answer is yes, their algorithm outputs the corresponding 

graph G.)



Paths and cycles
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Paths

For every path Pn, n ≥ 3, χi(Pn) = 3 = ∆(Pn) + 1.

1 1 12 23 3 etc.

Cycles

For every cycle Cn with n ≥ 3, n ≡ 0 (mod 3),  χi(Cn) = 3 = ∆(Cn) + 1.

For every cycle Cn with n ≥ 4, n ≡ 1,2 (mod 3),  χi(Cn) = 4 = ∆(Cn) + 2.

(By Sylvester’s Theorem, every integer ≥ 6 

can be expressed as a sum of 3’s and 4’s, 

and we have 2n incidences...)



Other simple classes

Eric Sopena – C&C 2015 18

Trees

For every tree T, χi(T) = ∆(T) + 1.

(Simple induction.)

Complete graphs

For every n ≥ 2, χi(Kn) = n = ∆(Kn) + 1.

1
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etc.
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Complete bipartite graphs

For every m ≥ n ≥ 2, χi(Km,n) = m = ∆(Km,n) + 2.



The (∆ + 2)-Conjecture
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Incidence coloring conjecture (ICC)

Conjecture [BRUALDI & QUINN MASSEY, 1993].

For every graph G, χi(G) ≤ ∆(G) + 2.

ICC conjecture is satisfied by all the previous examples, and by 

many other graph classes.

However, the conjecture was disproved by GUIDULI:

Theorem [GUIDULI, 1997].

� There exist graphs with incidence chromatic number at least 

∆ + Ω(log ∆) (follows from ALGOR & ALON, 1989).

� For every graph G, χi(G) ≤ ∆(G) + 20.log2 ∆(G) + 84.



Grid graphs
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Rectangular grids

Theorem [HUANG, WANG & CHUNG, 2004].

For every m, n ≥ 2, χi(Gm,n) = 5 = ∆(Gm,n) + 1.

Toroidal grids

Theorem [WU & S., 2013].

For every m, n ≥ 3, χ(Tm,n) ≤ 6 = ∆(Tm,n) + 2.

Moreover, χ(Tm,n) = 5 if and only if m, n ≡ 0 (mod 5).
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k-degenerated graphs

Theorem [HOSSEINI-DOLAMA, S. & ZHU, 2004].

Every k-degenerated graph G admits a (∆(G) + 2k - 1, k)-incidence 

coloring and, therefore, χi(G) ≤ ∆(G) + 2k - 1.

Let k be a positive integer. A graph G is k-degenerated if every 

subgraph of G contains a vertex of degree at most k.

k-degenerated graphs (1)

For instance:

� forests are 1-degenerated,

� K4-minor-free graphs are 2-degenerated,

� planar graphs are 5-degenerated,

� triangle-free planar graphs are 3-degenerated.
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Proof.

Assume the theorem is false and let G be a minimal counter-

example.

k-degenerated graphs (2)

Let v be a vertex of degree t, t ≤ k.

v

x1 x2
xt

Since G is minimal, G’ = G – v  admits a (∆(G) + 2k - 1, k)-incidence 

coloring γ’.

Claim. For every i, 1 ≤ i ≤ t, there 

exists a color ci ∉ {c1, ..., ci-1} that can 

be assigned to the incidence (v,vxi) 

and such that |γ’(A+(xi)) ∪ {ci}| ≤ k.
v

x1 x2
xi

ci

Theorem. Every k-degenerated graph G admits a 

(∆(G) + 2k - 1, k)-incidence coloring.
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Proof (cont.).

k-degenerated graphs (3)

Theorem. Every k-degenerated graph G admits a 

(∆(G) + 2k - 1, k)-incidence coloring.

Claim. For every i, 1 ≤ i ≤ t, there 

exists a color ci ∉ {c1, ..., ci-1} that can 

be assigned to the incidence (v,vxi) 

and such that |γ’(A+(xi)) ∪ {ci}| ≤ k.
v

x1 x2
xi

ci

By induction:

� i = 1: take any color c1 in γ’(A+(x1)), or any color if degG(x1) = 1.

� i > 1: if γ’(A+(xi)) \ {c1,...,ci-1} is not empty, take any color ci in

γ’(A+(xi)) \ {c1,...,ci-1}; 

otherwise (which implies |γ’(A+(xi))| ≤ i – 1 ≤ k – 1), take any 

color not in γ’(A-(xi) ) ∪ {c1,...,ci-1}, which is possible since

|γ’(A-(xi)) ∪ {c1,...,ci-1}| ≤ ∆(G) – 1 + i – 1  ≤ ∆(G) + k – 2.
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Proof (cont.).

k-degenerated graphs (4)

Theorem. Every k-degenerated graph G admits a 

(∆(G) + 2k - 1, k)-incidence coloring.

Claim. For every i, 1 ≤ i ≤ t, there 

exists a color ci ∉ {c1, ..., ci-1} that can 

be assigned to the incidence (v,vxi) 

and such that |γ’(A+(xi)) ∪ {ci}| ≤ k.
v

x1 x2
xi

ci

The theorem then easily follows:

� Color the incidences of A-(v) thanks to the claim,

� Color the incidences of A+(v) using any available color, that is, 

color each incidence (v,vxi) with a color not in 

γ’(A+(xi)) ∪ γ’(A-(xi)) ∪ {c1,...,ci-1}, which is possible since

|γ’(A+(xi)) ∪ γ’(A-(xi)) ∪ {c1,...,ci-1}| ≤ k + ∆(G) – 1 + t – 1 

= ∆(G) + 2k – 2. 

??
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k-degenerated graphs (5)

Theorem. Every k-degenerated graph G admits a 

(∆(G) + 2k - 1, k)-incidence coloring.

Therefore we get the following:

Corollary [HOSSEINI-DOLAMA, S. & ZHU, 2004].

� If G is a K4-minor-free graph, then χi(G) ≤ ∆(G) + 3.

� If G is a planar graph, then χi(G) ≤ ∆(G) + 9.

� If G is a triangle-free planar graph, then χi(G) ≤ ∆(G) + 5.
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Outerplanar graphs

Theorem [HOSSEINI-DOLAMA, S. & ZHU, 2004].

Every outerplanar graph G admits a (∆(G) + 2,2)-incidence 

coloring and, therefore, χi(G) ≤ ∆(G) + 2 (tight bound).

(This result holds more generally for K4-minor free graphs.)

Outerplanar graphs

A graph is outerplanar if it admits a planar drawing such that all 

its vertices lie on the outer face.

Outerplanar graphs 

form a subclass of 

K4-minor-free  graphs.
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Planar graphs

Theorem [HOSSEINI-DOLAMA, S. & ZHU, 2004].

Every planar graph G admits a (∆(G) + 7,7)-incidence coloring

and, therefore, χi(G) ≤ ∆(G) + 7.

Planar graphs

This result has been improved by YANG (best known upper bound 

up to now):

Theorem [YANG, 2012].

Let G be a planar graph. Then we have:

� χi(G) ≤ ∆(G) + 5 if ∆(G) ≠ 6, 

� χi(G) ≤ ∆(G) + 6 if ∆(G) = 6.
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Triangle-free planar graphs

Theorem [HOSSEINI-DOLAMA & S., 2005].

Every triangle-free planar graph G admits a (∆(G) + 4,3)-inciden-

ce coloring and, therefore, χi(G) ≤ ∆(G) + 4.

Triangle-free planar graphs

This result has been improved by BONAMY et al.  whenever the 

maximum degree is large enough:

Theorem [BONAMY, HOCQUARD, KERDJOUDJ & RASPAUD, 2015+].

For every triangle-free planar graph G with ∆(G) ≥ 7,

χi(G) ≤ ∆(G) + 3.



Eric Sopena – C&C 2015 29

Planar graphs with high girth

The girth g(G) of a graph G is the length of a shortest cycle in G.

Theorem [HOSSEINI-DOLAMA & S., 2005].

Let G be a planar graph. Then we have:

� if g(G) ≥ 6 then χi(G) ≤ ∆(G) + 3,

� if g(G) ≥ 11, or g(G) ≥ 6 and ∆(G) ≥ 5, then χi(G) ≤ ∆(G) + 2,

� if g(G) ≥ 16 and ∆(G) ≥ 4 then χi(G) ≤ ∆(G) + 1.

Planar graphs with high girth (1)

From results on the incidence chromatic number of graphs with 

bounded maximum average degree, we get:
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Planar graphs with high girth

The girth g(G) of a graph G is the length of a shortest cycle in G.

Theorem [BONAMY, LÉVÊQUE & PINLOU, 2011].

For every planar graph G with girth g(G) ≥ 14 and ∆(G) ≥ 4, 

(χi(G) ≤ ) χ2(G) ≤ ∆(G) + 1.

Planar graphs with high girth (2)

From results on the distance-two chromatic number of planar 

graphs we get the following improvements:

Theorem [BONAMY, CRANSTON & POSTLE, 2015+].

There exists a constant ∆0 such that every planar graph G with 

girth g(G) ≥ 5 and ∆(G) ≥ ∆0, (χi(G) ≤ ) χ2(G) ≤ ∆(G) + 2.



Graphs with maximum degree 3
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Therefore, the incidence chromatic number of any subcubic

graph is either 4 or 5. 

Graphs with maximum degree 3

After some partial results obtained by SHIU, LAM and CHEN (2002) 

and by WU (2004), MAYDANSKYI finally proved that the ICC 

conjecture holds for graphs with maximum degree 3:

Theorem [MAYDANSKYI, 2005].

For every graph G with ∆(G) = 3, χi(G) ≤ 5 = ∆(G) + 2.

However, we have:

Theorem [LI & TU, 2008].

The problem of deciding whether a semi-cubic graph has 

incidence chromatic number 4 or 5 is an NP-complete problem.

every vertex has either

degree 1 or degree 3



Product graphs (1)
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Example

Cartesian product

The Cartesian product G □ H of two undirected graphs G and H is

given by:

� V(G □ H) = { (u,x) | u ∈ V(G), x ∈ V(H) },

� E(G □ H) = { ((u,x),(v,y)) | u = v and xy ∈ E(H), or

x = y and uv ∈ E(G) }.



Product graphs (2)
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Incidence chromatic number of Cartesian products

Theorem [SUN & SHIU, 2014].

For every two graphs G1 and G2, χi(G1 □ G2) ≤ χi(G1) + χi(G2).

Theorem [SHIAU, SHIAU & WANG, 2015].

If λi is an incidence ki-coloring of Gi, i = 1,2, then G1 □ G2 admits 

a max{ k1 + s(λ2), k2 }-incidence coloring.

Let λ be an incidence coloring of G. We denote by Sλ(u) the set of 

colors used on A+(u) ∪ A-(u). Let s(λ) = max { |Sλ(u)|, u ∈ V(G) }.



Product graphs (3)
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Incidence chromatic number of Cartesian products

Theorem [GREGOR & LUŽAR, 2015+].

If χi(G1) = ∆(G1) + 1, G2 is a subgraph of a regular graph H2 with 

χi(H2) = ∆(H2) + 1 and ∆(G1) + 1 ≥ ∆(H2) – ∆(G2) then, 

χi(G1 □ G2) ≤ ∆(G1 □ G2) + 2.

Incidence chromatic number of Hypercubes

Corollary [SHIAU, SHIAU & WANG, 2015 – GREGOR & LUŽAR, 2015+].

For every n ≥ 1, 

� χi(Qn) = n + 1 = ∆(Qn) + 1 if n = 2m – 1 for some m ≥ 1,

� χi(Qn) = n + 2 = ∆(Qn) + 2 otherwise.

(conjectured by PAI, CHANG, YANG & WU, 2014) 



Some variants...



Interval incidence coloring (1)
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This notion was introduced by JANCZEWSKI, MAŁAFIEJSKA & 

MAŁAFIEJSKI (2007).

Interval incidence coloring

An incidence coloring of a graph G is an interval 

incidence coloring if the set of colors used on A-(u)

forms an interval for every vertex u of G.

u

1

1

2 3
4

4
4

3

3

3

1

1 2

2

4

2

NO...

4

2

1 5
3

3
5

1

3

2

4

4 4

6

3

6

YES!

We denote by χii(G) the interval incidence chromatic number of G.



Interval incidence coloring (2)
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In particular, if G is a subcubic bipartite graph, 4 ≤ χii(G) ≤ 6.

Bipartite graphs

Theorem [JANCZEWSKI, MAŁAFIEJSKA & MAŁAFIEJSKI, 2014].

� For every bipartite graph G, ∆(G) + 1 ≤ χi(G) ≤ χii(G) ≤ 2∆(G).

� If G is a regular bipartite graph, χii(G) = 2∆(G).

JANCZEWSKI, MAŁAFIEJSKA and MAŁAFIEJSKI characterized those

subcubic bipartite graphs G with χii(G) = 4, 5 or 6, respectively.

They also characterized those bipartite graphs G with ∆(G) = 4 

and χii(G) = 5. However, they prove the following:

Theorem [JANCZEWSKI, MAŁAFIEJSKA & MAŁAFIEJSKI, 2014].

Deciding whether χii(G) ≤ 6 for a bipartite graph G with ∆(G) = 4 

is an NP-complete problem.



Interval incidence coloring (3)
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Some other graph classes

Theorem [JANCZEWSKI, MAŁAFIEJSKA & MAŁAFIEJSKI, 2015].

� For every graph G, ∆(G) + 1 ≤ χii(G) ≤ χ(G) ∆(G).

� If G is a path or a cycle, χii(G) ≤ ∆(G) + 2, with strict inequality 

only for Pk, k ≤ 4 (where k stands for the number of edges).

� For every n ≥ 1, χii(K1,n) = ∆(K1,n) + 1.

� For every n ≥ 3, χii(Wn) = ∆(Wn) + 2 + (n mod 2).

� For every n ≥ 1, χii(Kn) = 2∆(Kn).

� For every n1 ≤ ... ≤ nk, χii(Kn1,...,nk) = 2(n1 + ... + nk-2) + nk-1 + nk.



Interval incidence coloring (4)
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Subcubic graphs

Theorem [JANCZEWSKI, MAŁAFIEJSKA & MAŁAFIEJSKI, 2015].

� Deciding whether χii(G) ≤ 4 for a subcubic graph G can be 

done in linear time.

� Deciding whether χii(G) ≤ 5 for a subcubic graph G is an NP-

complete problem.

Non-hereditary property

Theorem [JANCZEWSKI, MAŁAFIEJSKA & MAŁAFIEJSKI, 2015].

For every k ≥ 5, there exists a tree Tk with ∆(Tk) = k such that Tk

contains a subtree T with χii(T) > χii(Tk).



The incidence coloring game (1)
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Let G be a graph and k a positive integer. The incidence coloring

game with k colors is played on G as follows:

� The two players, Alice and Bob, play alternately, Alice playing 

first.

� On his turn, each player assigns a color from {1, ..., k} to an 

uncolored incidence, respecting the adjacency constraints.

� Alice wins the game if and only if the whole graph G is colored.

The incidence coloring game (ANDRES, 2009)

The incidence game chromatic number

The incidence game chromatic number χig(G) of a graph G is the 

smallest k for which Alice has a winning strategy.



The incidence coloring game (2)
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Consider two adjacent vertices:

Upper bound

?

u v

Since (u,uv) has at most 3(∆(G) – 1) + 1 = 3∆(G) – 2 adjacent 

incidences, we get χig(G) ≤ 3∆(G) – 1.

ANDRES proved that for every graph G, χig(G) > (3∆(G) – 1)/2.

Lower bound

These two bounds are tight...



A sample case: stars (1)
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The incidence game chromatic number of stars

We denote by K1,n the star on n + 1 vertices.

Theorem [ANDRES, 2009].

For every k ≥ 1, we have

� χig(K1,2k) = 3k = 3∆(K1,2k)/2,

� χig(K1,2k+1) = 3k + 2.

To prove that χig(G) = p for a given graph G, we need to

1. provide a winning strategy for Alice with p colors,

2. provide a winning strategy for Bob with p – 1 colors or fewer. 



A sample case: stars (2)
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Proof of the even case.

Theorem. For every k ≥ 1, χig(K1,2k) = 3k.

u

� When Alice is forced to color an incidence from A+(u) – which 

happens when all incidences from A-(u) are already colored –

she uses a color already used in A+(u) (except when it is the 

first incidence from A+(u) to be colored). 

(1) Alice’s strategy with 3k colors is based on 

the following rules:

� Alice colors preferably incidences from A-(u).

� If Bob colors an incidence from A+(u) with 

color c, Alice colors another incidence from 

A+(u), if any, with the same color c.

⇒ 2k colors have to be used for A-(u),

⇒ at most k colors will be used for A+(u).



A sample case: stars (3)
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Proof of the even case.

Theorem. For every k ≥ 1, χig(K1,2k) = 3k.

u

(2) Bob’s strategy with 3k – 1 colors or fewer 

is based on the following rule:

� In his k first moves, Bob colors k incidences 

from A+(u) with k distinct colors.

⇒ at most 2k – 1 colors are left for coloring A-(u), 

which is not enough.



A few other results
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Cycles

Theorem [ANDRES, 2009].

For every k ≥ 7, χig(Ck) = 5 = 3∆(Ck) – 1.

Wheels

Theorem [KIM, 2010].

For every k ≥ 7, χig(W2k) ≤ 3k = 3∆(W2k)/2.

Paths

Theorem [KIM, 2010].

For every k ≥ 13, χig(Pk) = 5 = 3∆(Pk) – 1.

.



k-degenerated graphs (1)
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k-degenerated graphs

Theorem [ANDRES, 2009].

For every k-degenerated graph G, k ≥ 1, we have

� χig(G) ≤ 2∆(G) + 4k – 2,

� χig(G) ≤ 2∆(G) + 3k – 1 if ∆(G) ≥ 5k – 1,

� χig(G) ≤ ∆(G) + 8k – 2 if ∆(G) ≤ 5k – 1.

In particular, this gives:

� For every forest F, χig(G) ≤ 2∆(F) + 2,

� For every outerplanar graph G, χig(G) ≤ 2∆(G) + 6,

� For every planar graph G, χig(G) ≤ 2∆(G) + 18.



k-degenerated graphs (2)
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Improvement of ANDRES’s result

Theorem [CHARPENTIER & S., 2013].

For every graph G, χig(G) ≤ (3∆(G) – a(G))/2 + 8a(G) – 1.

The arboricity a(G) of a graph G is the minimum number of 

forests needed to partition the edge set of G. 

In particular, this gives:

� For every k-degenerated graph G, χig(G) ≤ (3∆(G)–k)/2 + 8k – 1,

� For every forest F, χig(G) ≤ 3∆(G)/2 + 6,

� For every outerplanar graph G, χig(G) ≤ 3∆(G)/2 + 14,

� For every planar graph G, χig(G) ≤ 3∆(G)/2 + 21.



Incidence coloring of digraphs (1)
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Adjacent incidences

Two incidences are adjacent if and only if they are of one of the 

following three types:

Examples.

Incidence coloring and incidence chromatic number

Incidence coloring and incidence chromatic number of digraphs are 

defined in a natural way (DUFFY, MACGILLIVRAY and RASPAUD, 2015).
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Let us denote by Ks
n the complete symmetric digraph of order n, 

and by Und(D) the underlying undirected graph of a digraph D.

Then we have:

Theorem [DUFFY, MACGILLIVRAY & RASPAUD, 2015+].

For every digraph D, χi(D) ≤ χi(K
s
p), where p = χ(Und(D)).

The first values of χi(K
s
n) are as follows:

n 1 2 3 4 5 6 7

χi(K
s
n) 0 4 4 5 5 6 6

Theorem [DUFFY, MACGILLIVRAY & RASPAUD, 2015+].

For every p ≥ 1, log2 n ≤ χi(K
s
p) ≤ (2 + o(1)).log2 n.
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A digraph with no pair of opposite arcs is an oriented graph. Then 

we have:

Observation. If D is an oriented graph, then χi(D) ≤ χi(Und(D)).

Theorem [DUFFY, MACGILLIVRAY & RASPAUD, 2015+].

� For every oriented tree T, χi(T) ≤ 3.

� For every oriented cycle C, χi(C) ≤ 4.

� For every oriented bipartite graph G, χi(G) ≤ 4.

As for the undirected case, an incidence 

coloring of a digraph D is nothing but a 

strong arc coloring (using directed 

distance) of S(D).

Do no longer 

depend on ∆...
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Open Question A. By the result of Maydanskyi, we know that graphs 

with maximum degree 3 satisfy the ICC Conjecture. What about 

graphs with maximum degree 4?

Open Question B. Is there any characterization of those graphs G 

with χi(G) = ∆(G) + 1? (Done for regular graphs – SUN, 2012)

Open Question C. What is the maximum value of χi(G) when G is a 

planar graph?

Open Question D. What is the smallest k for which every planar 

graph G with girth at least k and ∆(G) ≥ 3 has incidence chromatic 

number ∆(G) + 1? (The best known value is 14, provided ∆(G) ≥ 4.)
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Open Question E. What is the smallest k for which every planar 

graph G with girth at least k has incidence chromatic number at 

most ∆(G) + 2? (The best known value is 11. This is also true for girth 

6, provided ∆(G) is large enough...)

Open Question G [Janczewski, Małafiejska & Małafiejski]. Is it true 

that for every graph G, χii(G) ≤ 2∆(G)?

Open Question H. What is the maximum value of χi(D) when D is an 

oriented planar graph?

Open Question F  [Gregor & Lužar]. Is it true that χi(G1) = ∆(G1) + 1 

and χi(G2) ≤ ∆(G2) + 2 implies χi(G1 □ G2) ≤ ∆(G1 □ G2) + 2?


