Colourings of oriented graphs

Éric SOPENA LaBRI, Bordeaux University France

Outline

Preliminary (basic) notions

Oriented vertex-colourings

Oriented arc-colourings

Definitions Results Open problems

Vertex-Colourings of undirected graphs

A (proper) k-vertex-colouring of a graph G is a mapping $c : V(G) \rightarrow \{1, 2, ..., k\}$ such that every two adjacent vertices are assigned distinct colours.

Edge-Colourings of undirected graphs A (proper) k-edge-colouring of a graph G is a mapping $c : E(G) \rightarrow \{1, 2, ..., k\}$ such that every two incident edges are assigned distinct colours.

The chromatic index $\chi'(G)$ of G is the smallest k for which G has a k-edge-colouring.

Eric Sopena - CID 2007

Line-graphs

The line-graph L(G) of G is given by :

- V(L(G)) = E(G),
- $(e,f) \in E(L(G))$ iff e and f are *incident* in G.

The graph G

The line-graph L(G) of G

(3)

Vertex-colourings vs edge-colourings An edge-colouring of G is nothing but a vertexcolouring of L(G).

Homomorphisms of undirected graphs A homomorphism from G to H is a mapping $h: V(G) \rightarrow V(H)$ such that :

 $xy \in E(G) \implies h(x)h(y) \in E(H)$

Notation.

 $G \rightarrow H$: there exists a homomorphism from G to H Eric Sopena - CID 2007

Vertex-colourings vs homomorphisms

A k-vertex-colouring of G is nothing but a homomorphism from G to K_k , the complete graph on k vertices.

<u>Remark</u>.

 $\chi(G) = k$ if and only if $G \to K_k$ and $G \to K_{k-1}$

(7)

Oriented graphs

An oriented graph is an *antisymmetric* digraph (no directed cycle of length 1 or 2).

An oriented graph is an *orientation* of some undirected graph, obtained by giving to each edge one of its two possible orientations.

(8)

Homomorphisms of oriented graphs A homomorphism from G to H is a mapping $h: V(G) \rightarrow V(H)$ such that : $xy \in E(G) \implies h(x)h(y) \in E(H)$

Oriented vertex colourings (1)

- Oriented Vertex-Colourings of oriented graphs An oriented k-vertex-colouring of an oriented graph G is a mapping $c : V(G) \rightarrow \{1, 2, ..., k\}$ such that:
 - (1) $uv \in E(G) \implies c(u) \neq c(v)$ (2) $uv, wx \in E(G), c(u) = c(x) \implies c(v) \neq c(w)$

Hence, all the arcs linking two colour classes (independent sets) have the same direction.

Oriented vertex colourings

Examples. Any two vertices linked by a directed with of length 1 or 2 must get distinct eolours.

<u>Remark.</u>

An oriented k-colouring of an oriented graph is nothing but a *homomorphism* to a given oriented graph (or *tournament*) of order k.

(2)

Oriented chromatic number (1)

Oriented chromatic number of oriented graphs The oriented chromatic number $\chi_o(G)$ of an oriented graph G is the smallest k such that G admits an oriented k-vertex-colouring. (Or, equivalently, the minimal order of an

oriented graph H such that $G \rightarrow H$)

χ_o = 4

Oriented chromatic number

(2)

Oriented chromatic number of undirected graphs

The oriented chromatic number $\chi_o(U)$ of an *undirected* graph U is the smallest k such that *every orientation* of U admits an oriented k-vertex-colouring:

 $\chi_o(U) = \max \{ \chi_o(G) ; G \text{ orientation of } U \}$

$$\frac{Observation}{\chi(U)} = \min\{\dots\}$$

Oriented chromatic number (3)

Oriented chromatic number of graph families The oriented chromatic number $\chi_o(F)$ of a family F of (undirected or oriented) graphs is given by: $\chi_o(F) = \max \{ \chi_o(G) ; G \in F \}$

Eric Sopena - CID 2007

An oriented graph U is said to be **universal** for a family **F** of oriented (resp. undirected) graphs if every member (resp. every orientation of every member) of **F** admits a homomorphism to U.

 $\mathbf{F} \rightarrow \mathbf{U}$ means $\forall \mathbf{G} \in \mathbf{F}, \mathbf{G} \rightarrow \mathbf{U}$

Example.

The directed cycle on 3 vertices is universal for the family of trees.

<u>Remark</u>.

If U is universal for F then $\chi_o(F) \leq |V(U)|$

Outerplanar graphs Let QR_7 be the tournament given by: $-V(QR_7) = \{0, 1, ..., 6\}$ $-uv \in E(QR_7)$ iff $v - u \pmod{7} = 1, 2 \text{ or } 4$ 0 (non-zero quadratic residues of 7) $6 \bullet$ 1 Claim.

QR₇ is universal for the family O of outerplanar graphs.

Proof of our claim

The graph QR_7 has the following property:

(P₂) For every arc $uv \in E(QR_7)$, there exists a vertex w for every possible orientation of the edges uw and vw:

Proof of our claim (cont.)

Every outerplanar graph has a vertex of degree at most 2.

Simple induction...

Eric Sopena - CID 2007

Oriented cliques (o-cliques)

Oriented cliques

An oriented clique C is (a subraph of) a graph satisfying $\chi_o(C) = |V(C)|$.

Remark. An o-clique is nothing but an oriented graph in which any two vertices are linked by a directed path (in any direction) of length $\leq 2...$

(1)

Oriented cliques (o-cliques)

Oriented o-cliques of order 2^k-1

(2)

Oriented cliques (o-cliques) (3)

planar...

<u>Corollary</u>. $\chi_o(\mathbf{P}) \ge 15$ (P is the family of planar graphs)

Oriented cliques (o-cliques)

Question 1.

What is the maximal order (number of vertices) of a planar o-clique ?

Klostermeyer and MacGillivray (2002)

The order of a planar o-clique is at most 36.

<u>Conjecture</u>. No planar o-clique has more than 15 vertices.

(4)

Complete families of graphs (1)

A family of graphs **F** is said to be **complete** if for any two graphs A,B in **F** there exists a graph C in **F** having both A and B as *subgraphs*.

Examples.

- Outerplanar graphs, planar graphs, graphs with bounded degree, k-trees, etc.
- The family of *connected cubic graphs* is not complete...

<u>**Property</u></u>. Every complete family F with bounded \chi_o admits a universal graph U with |U| = \chi_o(F).</u>**

Complete families of graphs (2)

Oriented chromatic number of complete families To find an upper bound for this oriented chromatic number, it suffices to find a *universal* graph.

Example.

The tournament QR_{11} is universal for the family of graphs *degree at most 3*. Hence,

$$\chi_{o}(D_{3}) \leq 11$$

Complete families of graphs

Open Problem A.

Determine the oriented chromatic number of the family of connected graphs with degree at most 3 (known to be at least 7).

This family is not complete...

<u>Conjecture</u>. The answer is 7.

Best known upper bound : 11

[Vignal, S., 1996]

(3)

(1)

Acyclic colourings of undirected graphs A k-vertex-colouring of an undirected graph G is acyclic if every cycle in G uses at least 3 colours. (in other words, any two colours induce a forest)

<u>Theorem</u> [Borodin, 1979].

Every planar graph admits an acyclic 5-colouring.

And this bound is tight...

Oriented colourings of planar graphs

Theorem [Raspaud, S., 1994] If G admits an acyclic k-vertex-colouring, then $\chi_o(G) \le k \cdot 2^{k-1}$

And this bound is tight [Ochem, 2005].

<u>Corollary</u>.

Every oriented planar graph admits an oriented 80-colouring.

$$\chi_{o}(\mathbf{P}) \leq 80$$

Sketch of proof

Let G be a planar graph and c a k-acyclic colouring of G.

Let a,b be any two colours with a < b. Let H be any orientation of G and consider the subgraph $H_{a,b}$ induced by vertices with colour a or b (which is a forest).

Sketch of proof (cont.)

Choose a vertex in each component of $H_{a,b}$. Associate a bit with value 0 with each of them.

Doing that, we have constructed a homomorphism from $H_{a,b}$ to the following graph:

With any colour a, we associate k-1 such bits (one for each other colour).

We thus obtain an oriented colouring of H using at most k . $2^{k\text{-}1}$ colours.

Open Problem B.

Determine the oriented chromatic number of the family of planar graphs.

<u>Conjecture</u>. no conjecture !...

Best known lower bound : 17 [Marshall, 2001]

Simple colourings[Smolíková, 2000]A simple k-vertex-colouring of an oriented graphG is a mapping $c: V(G) \rightarrow \{1, 2, ..., k\}$ such that:(1) $E(G) \neq \emptyset \Rightarrow \exists u, v s.t. c(u) \neq c(v)$ (2) $uv, wx \in E(G), c(u) \neq c(v), c(u) = c(x)$ $\Rightarrow c(v) \neq c(w)$

Example.

 $\chi_s(G)$ = simple chromatic number of G.

Theorem.
$$\chi_o(P) = \chi_s(P)$$

Open Problem C.

Determine the oriented chromatic number of the family of triangle-free planar graphs.

<u>Conjecture</u>. no conjecture !...

Best known lower bound : 11[Ochem, 2004]Best known upper bound : 47

[Borodin, Ivanova, 2005]

Planar graphs with large girth The girth g(G) of a graph G is the size of a *shortest* cycle in G.

girth	lower bound	upper bound	
3	17	80	Marshall 2001 – Raspaud, S., 1994
4	11	47	Ochem, 2004 – Borodin, Ivanova 2005
5	6	16	Borodin, Kostochka, Nešetřil, Raspaud, S., 1999 – Pinlou, 2007
6	6	11	Borodin, Kostochka, Nešetřil, Raspaud, S., 1999
7≤g≤10	5	7	Nešetřil, Raspaud, S., 1997 – Borodin, Ivanova 2005
11	5	6	id Pinlou, S., 2006
g ≥ 12	5	5	id. – Borodin, Ivanova, Kostochka, 2007

Outerplanar graphs with large girth

girth	lower bound	upper bound	
3	7	7	S., 1997
4	6	6	Hosseini Dolama, 2006 – Pinlou, S., 2006
g ≥ 5	5	5	Nešetřil, Raspaud, S., 1997 – Pinlou, S., 2006

Question 2.

What is the oriented chromatic number of the family of k-outerplanar graphs ?

 $\chi_{o}(2-0) \le 67$ [Esperet, Ochem, 2007]

(3)

Graphs with bounded degree

We have seen before :

 $7 \leq \chi_o(D_3) \leq 11$

Theorem (Kostochka, S., Zhu, 1997). If G has maximum degree Δ , then $\chi_o(G) \leq 2.\Delta^2.2^{\Delta}$ For every Δ , there exists a graph with maximum degree at most Δ and oriented chromatic number at least $2^{\Delta/2}$.

(4)

(partial) k-trees

A k-tree is a graph obtained from the *complete* graph K_k , by repeatedly adding new vertices linked to a *clique of size* k (a 1-tree is a tree...).

A partial k-tree is a *subgraph* of a k-tree.

(5)

(partial) k-trees (cont.)

Theorem (S., 1997). - $\chi_o(T_2) = 7$ - $\chi_o(T_3) = 16$ - $2^{k+1} - 1 \le \chi_o(T_k) \le (k + 1) \cdot 2^k$

O-cliques of order 2^{k+1} – 1 are k-trees...

Universal graph for T_3 : construction due to **J**. Tromp [1990's]

40

Tromp's construction (the graph T_{16})

Property.

For every vertex u, $\Gamma^+(u) \sim \Gamma^-(u) \sim QR_7$

> This property is true for any QR_p , p prime, p = 4k + 3.

$$uv', u'v \in E(T_{16}) \Leftrightarrow vu \in E(QR_7)$$
$$u - v \equiv 1, 2 \text{ or } 4 \pmod{7}$$

(7)

Tromp's construction (the graph T_{16})

Property P₃.

For every *triangle* u,v,w, there exists a vertex z for every possible orientation of the edges uz, vz and wz. (*no graph of order 15 satisfies this property...*)

uv', u'v $\in E(T_{16}) \Leftrightarrow vu \in E(QR_7)$ $u - v \equiv 1, 2 \text{ or } 4 \pmod{7}$

Eric Sopena - CID 2007

Some other results on χ_0 (8) *Open Problem D.* Determine the oriented chromatic number of the family of 2-dimensional grids.

<u>Conjecture</u>. 7 (proven ≤ 11) [Fertin, Raspaud, Roychowdhury, 2003]

QR7 is not universal [Szepietowski, Targan, 2004]

Open Problem E.

Determine the oriented chromatic number of the family of hypercubes.

Complexity

k-O-COL problem

Instance: an oriented graph G Question: is $\chi_o(G) \le k$?

This problem is polynomial for $k \leq 3$, NP-complete for $k \geq 4.$

[Klostermeyer, MacGillivray, 2004]

It is still NP-complete for bipartite planar circuit-free graphs.

[Culus, Demange, 2007]

Oriented Arc-Colourings of oriented graphs An oriented k-arc-colouring of an oriented graph G is a mapping $c : E(G) \rightarrow \{1, 2, ..., k\}$ such that: (1) $uv, vw \in E(G) \Rightarrow c(uv) \neq c(vw)$ (2) $uv, vw, xy, yz \in E(G), c(uv) = c(yz)$ $\Rightarrow c(vw) \neq c(xy)$

Oriented chromatic index of oriented graphs The oriented chromatic index $\chi'_{o}(G)$ of an oriented graph G is the smallest k such that G admits an oriented k-arc-colouring.

Line digraph

The line-digraph LD(G) of a digraph G is given by:

- V(LD(G)) = E(G),
- $(e,f) \in E(LD(G))$ iff f"follows" e

(that is e = uv and f = vw)

Eric Sopena - CID 2007

An oriented arc-colouring of G is nothing but an oriented *vertex-colouring* of the *line-digraph* of G.

Hence, $\chi'_{o}(G)$ is the minimum order of an oriented graph H such that $LD(G) \rightarrow H$.

Eric Sopena - CID 2007

$$\chi'_{o}$$
 versus χ_{o}

Observation.

For every graph G, $\chi'_{o}(G) \leq \chi_{o}(G)$

And this bound is tight:

(1)

Question.

Is there a function Φ such that $\chi_o(G) \leq \Phi(\chi'_o(G))$?

The answer is yes (optimal Φ). [Ochem, Pinlou, S., 2007]

$$\chi'_{o}$$
 versus χ_{o}

Let G be an oriented graph. We define the mapping μ_{G} as follows: $\mu_{G}: 2^{|V(G)|} \rightarrow 2^{|V(G)|}$ $s \rightarrow s \cup \{ \Gamma^{+}(u) ; u \in s \}$

Example.

 $\begin{array}{c} \varnothing \to \varnothing \\ 1 & & & \\ 4 & & & \\ 4 & & & \\ 4 & & & \\ 4 & & & \\ 4 & & & \\ 4 & & & \\ 1,3\}, \{1,4\}, \{2,4\}, \{1,2,3\}, \{1,2,4\}, \{1,3,4\}, \{2,3,4\}, \{1,2,3,4\} \to \{1,2,3,4\}_{50} \end{array}$

 χ'_{o} versus χ_{o}

(4)

Now, let Q(G) be defined as: Q(G) = { $\mu_G(s)$; $s \in 2^{|V(G)|}$ }

Example.

 $\{1,3\}, \{1,4\}, \{2,4\}, \{1,2,3\}, \{1,2,4\}, \{1,3,4\}, \{2,3,4\}, \{1,2,3,4\} \rightarrow \{1,2,3,4\}$

 $\mathbf{Q(T)} = \{ \emptyset, \{1,4\}, \{3,4\}, \{1,2,3\}, \{1,3,4\}, \{2,3,4\}, \{1,2,3,4\} \}$

 χ'_{o} versus χ_{o}

For each subset s in Q(G) define: $s^+ = \{ u \in s ; \Gamma^+(u) \subseteq s \}$

Example.

$$\begin{array}{c}
1 \\
1 \\
2 \\
4 \\
4 \\
4 \\
3 \\
\end{array}$$

$$\begin{array}{c}
1,2,3\}^{+} = \{1\} \\
\{2,3,4\}^{+} = \{2,3\} \\
\emptyset^{+} = \emptyset, \quad \{1,2,3,4\}^{+} = \{1,2,3,4\} \\
\end{array}$$

 $\mathbf{Q(T)} = \{ \emptyset, \{1,4\}, \{3,4\}, \{1,2,3\}, \{1,3,4\}, \{2,3,4\}, \{1,2,3,4\} \}$

<u>Lemma</u>.

Let G be an oriented graph with $\chi'_{o}(G) = k$ and T_{k} be any oriented graph s.t. $LD(G) \rightarrow T_{k}$. Then, $\chi_{o}(G) \leq |Q(T_{k})|$.

Example.

$$\begin{split} \mathsf{c}:\mathsf{V}(\mathsf{G})\to\mathsf{Q}(\mathsf{T}_{\mathsf{k}})\\ \mathsf{u}&\to\mu_{\mathsf{T}\mathsf{k}}(\mathsf{c}'(\Gamma^{\scriptscriptstyle +}(\mathsf{u}))\;)\\ \end{split} \\ \mathsf{Hence},\;\mathsf{LD}(\mathsf{G})\to\mathsf{T}\;\Rightarrow\chi_{\mathsf{o}}(\mathsf{G})\leq 7 \end{split}$$

 $Q(T) = \{ \emptyset, \{1,4\}, \{3,4\}, \{1,2,3\}, \{1,3,4\}, \{2,3,4\}, \{1,2,3,4\} \}$

Lemma.

For every tournament T_k of order k, there exists an oriented graph G with:

 $LD(G) \rightarrow T_k$ and $\chi_0(G) = |Q(T_k)|$

χ'_{o} versus χ_{o}

Finally, let $\Phi(k) = \max \{ |Q(T_k)| ; T_k \text{ tournament of order } k \}$

<u>Theorem</u>. If G is an oriented graph with $\chi'_{o}(G) = k$ then $\chi_{o}(G) \leq \Phi(k)$.

Moreover, this bound is tight.

Values of Φ .

k	0	1	2	3	4	5	6	7	8	9	k≥10
Φ (k)	1	2	3	5	7	12	15	25	31	51	$lpha 2^{k/2} - 1 \le \Phi(k) \le (\lfloor k/2 \rfloor + 2).2^{\lfloor (k-1)/2 \rfloor}$

 α = 2 if k is even, α = 13/(4.2^{1/2}) if k is odd

55

χ'_{o} versus acyclic colourings

Oriented arc-colouring and acyclic colouring

Theorem [Ochem, Pinlou, S., 2007] If G admits an acyclic k-vertex-colouring, then $\chi'_{o}(G) \leq 2k(k-1) - \lfloor k/2 \rfloor$

(k.2^{k-1} for
$$\chi_o$$
)

(Idea of) proof. We have k(k-1)/2 bicoloured forests, each of one being 4-arc-colourable. Among them, we select $\lfloor k/2 \rfloor$ "independent" forests which can be 3-arc-coloured.

Eric Sopena - CID 2007

χ'_{o} versus χ_{o} : outerplanar graphs

Outerplanar graphs

girth	χο	χ΄。
3	7	7
4	6	6
5 ≤ g ≤ 9	5	5
g ≥ 10	5	4

χ'_{o} versus χ_{o} : planar graphs

girth	χο	χ΄ο
3	17 - 80	10 - 38
4	11 - 47	6 - 38
5	6 - 16	5 - 16
6	6 - 11	5 - 11
$7 \le g \le 10$	5 - 7	5 - 7
11	5 - 6	5 - 6
$12 \le g \le 15$	5	5
$16 \le g \le 45$	5	4 - 5
g ≥ 46	5	4

(1)

χ'_{o} versus χ_{o} : planar graphs

Open Problem F.

Determine the oriented chromatic index of the family of planar graphs.

Known to lie between 10 and 38...

Open Problem G.

Determine the smallest k for which every planar graph with girth at least k has oriented chromatic index 4.

(2)

χ_{o}' versus χ_{o} : graphs with bounded degree

Graphs with bounded degree

Theorem [Ochem, Pinlou, S., 2006] If G has maximum degree Δ , then $\chi'_{o}(G) \leq 2 \cdot (\lfloor \Delta^{2}/2 \rfloor + \Delta)$

(2. $\Delta^2.2^{\Delta}$ for χ_o)

For every Δ , there exists oriented graphs with oriented chromatic index $2\Delta - 1$.

Thank you for your attention!

Open Problem A. Determine the oriented chromatic number of the family of connected graphs with degree at most 3.

Open Problem B. Determine the oriented chromatic number of the family of planar graphs.

Open Problem C. Determine the oriented chromatic number of the family of triangle-free planar graphs.

Open Problem D. Determine the oriented chromatic number of the family of 2-dimensional grids.

Open Problem E. Determine the oriented chromatic number of the family of hypercubes.

Open Problem F. Determine the oriented chromatic index of the family of planar graphs.

Open Problem G. Determine the smallest k for which every planar graph with girth at least k has oriented chromatic index 4.