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Graph colouring

Brook’s Theorem

Every connected graph G which is
neither an odd cycle nor a complete
graph is ∆(G)-colourable.
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Graph colouring

Brook’s Theorem

Every planar graph is 4-colourable.

Four-Colour
Theorem
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Graph colouring

Brook’s Theorem
If G has no Kn as a minor, 
then G is (n-1)-colourable

Four-Colour
Theorem

Hadwiger’s
conjecture
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Motivation

⇒ Upper bounds on 
the chromatic number 
(NP-hard to compute) 
in terms of 
parameters or 
properties easy to 
compute or verify…If G has no Kn as a minor, then G 

is (n-1)-colourable

Every planar graph is 4-colourable.

Every connected graph G which is
neither an odd cycle nor a 
complete graph is ∆(G)-colourable.
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Motivation

⇒ Upper bounds on 
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(NP-hard to compute) 
in terms of 
parameters or 
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compute or verify…

But none of these bounds is “good” for bipartite 
graphs…

Every planar graph is 4-colourable.

Every connected graph G which is
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Motivation

⇒ Upper bounds on 
the chromatic number 
(NP-hard to compute) 
in terms of 
parameters or 
properties easy to 
compute or verify…

But none of these bounds is “good” for bipartite 
graphs…

Signed graphs may help to get “better” results…

Every planar graph is 4-colourable.

Every connected graph G which is
neither an odd cycle nor a 
complete graph is ∆(G)-colourable.

If G has no Kn as a minor, then G 
is (n-1)-colourable
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Motivation

Since the 1950’s, several theories have been 
extended from graphs to signed graphs (minors, 
nowhere-zero flows, colouring, …).  
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Our goal

• Investigate relations between minors and 
homomorphisms of signed graphs,
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Motivation

Our goal

• Investigate relations between minors and 
homomorphisms of signed graphs,

• Extend colouring (or homomorphism) results 
from graphs to signed graphs,

Since the 1950’s, several theories have been 
extended from graphs to signed graphs (minors, 
nowhere-zero flows, colouring, …).  
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Motivation

Our goal

• Investigate relations between minors and 
homomorphisms of signed graphs,

• Extend colouring (or homomorphism) results 
from graphs to signed graphs,

• …with a special focus on minor-closed families 
of graphs (e.g. planar graphs).

Since the 1950’s, several theories have been 
extended from graphs to signed graphs (minors, 
nowhere-zero flows, colouring, …).  
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Outline

• Preliminaries

• Signed graphs

• Odd signed graphs

• Signed bipartite graphs

• Homomorphisms to signed projective 
cubes

• Chromatic number of signed graphs



Preliminaries
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Vertex Colouring

A (proper) k-vertex-colouring of a graph G is a 
mapping c : V(G) → {1,2,...,k} such that every two 
adjacent vertices are assigned distinct colours.

1

32

3 1

2
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Vertex Colouring

A (proper) k-vertex-colouring of a graph G is a 
mapping c : V(G) → {1,2,...,k} such that every two 
adjacent vertices are assigned distinct colours.

The chromatic number χχχχ(G) of G is the smallest 
k for which G has a k-vertex-colouring.

χχχχ = 3

1

32

3 1

2
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A homomorphism from G to H is a mapping              
h : V(G) → V(H) such that :

xy ∈ E(G)   ⇒ h(x)h(y) ∈ E(H)



Graph homomorphisms
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A homomorphism from G to H is a mapping              
h : V(G) → V(H) such that :

xy ∈ E(G)   ⇒ h(x)h(y) ∈ E(H)

Notation.
G → H : there exists a homomorphism from G to H
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Homomorphisms and colourings

A k-vertex-colouring of G is nothing but a 
homomorphism from G to Kk, the complete graph
on k vertices.
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Homomorphisms and colourings

A k-vertex-colouring of G is nothing but a 
homomorphism from G to Kk, the complete graph
on k vertices.

Remark.
χ(G) = k     if and only if     G → Kk and G → Kk-1
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Homomorphisms and colourings

A k-vertex-colouring of G is nothing but a 
homomorphism from G to Kk, the complete graph
on k vertices.

The chromatic number χ(G) of G can equivalently 
be defined as the smallest order of a (complete) 
graph H such that G → H.



Graph minors

A graph H is a minor of G if H can be obtained 
from G by deleting vertices, deleting edges and 
contracting edges.
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is a minor of
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A graph H is a minor of G if H can be obtained 
from G by deleting vertices, deleting edges and 
contracting edges.

is a minor of
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Hadwiger’s Conjecture (1943).
If a graph G has no Kn as a minor, 
then G is (n-1)-colourable.
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Hadwiger’s Conjecture (1943).
If a graph G has no Kn as a minor, 
then G is (n-1)-colourable.

• n = 2: if G has no edge, then G is 1-colourable.
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Hadwiger’s Conjecture (1943).
If a graph G has no Kn as a minor, 
then G is (n-1)-colourable.

• n = 2: if G has no edge, then G is 1-colourable.

• n = 3: if G has no cycle (G is a forest), then G 
is 2-colourable.
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Hadwiger’s Conjecture (1943).
If a graph G has no Kn as a minor, 
then G is (n-1)-colourable.

• n = 2: if G has no edge, then G is 1-colourable.

• n = 3: if G has no cycle (G is a forest), then G 
is 2-colourable.

• n = 4: if G is a partial 2-tree, then G is 3-
colourable.
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Hadwiger’s Conjecture (1943).
If a graph G has no Kn as a minor, 
then G is (n-1)-colourable.

• n = 5: equivalent to the Four-Colour Theorem 
(Wagner, 1937).



Hadwiger’s Conjecture

Eric Sopena – CID 2013 33

Hadwiger’s Conjecture (1943).
If a graph G has no Kn as a minor, 
then G is (n-1)-colourable.

• n = 5: equivalent to the Four-Colour Theorem 
(Wagner, 1937).

• n = 6: Robertson, Seymour & Thomas (1993).
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Hadwiger’s Conjecture (1943).
If a graph G has no Kn as a minor, 
then G is (n-1)-colourable.

• n = 5: equivalent to the Four-Colour Theorem 
(Wagner, 1937).

• n = 6: Robertson, Seymour & Thomas (1993).

• n ≥ 7: open…



Signed graphs



Signified graphs
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positive edge

negative edge

A signified graph is a pair (G,Σ) where G is a 
graph and Σ a signature on G, that is a subset of 
E(G). Edges belonging to Σ are negative edges,

while other edges are positive edges.



Signified graphs
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positive edge

negative edge

Frank Harary. On the notion of balance of a signed graph. 
Michigan Math. J. 2(2):143-146 (1954). (Social Psychology: 
“like” and “dislike” relations in social networks.)

A signified graph is a pair (G,Σ) where G is a 
graph and Σ a signature on G, that is a subset of 
E(G). Edges belonging to Σ are negative edges,

while other edges are positive edges.



Resigning
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Let (G,Σ) be a signified graph and v a vertex of 
V(G). By resigning at v, we mean changing the sign
of every edge incident to v.

v
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Let (G,Σ) be a signified graph and v a vertex of 
V(G). By resigning at v, we mean changing the sign
of every edge incident to v.

v v



Resigning
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Resigning sequentially at vertices v1, …, vk, is
equivalent to changing the signs of the edge-cut
(S, E(G)\S), where S = {v1, …, vk}. 

v1

v2

v3
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Resigning sequentially at vertices v1, …, vk, is
equivalent to changing the signs of the edge-cut
(S, E(G)\S), where S = {v1, …, vk}. 

v1

v2

v3 v1

v2

v3



Signed graphs
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Two signified graphs (G,Σ) and (G’,Σ’) are 
equivalent if G = G’ and (G’,Σ’) can be obtained
from (G,Σ) by a sequence of resignings.
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Two signified graphs (G,Σ) and (G’,Σ’) are 
equivalent if G = G’ and (G’,Σ’) can be obtained
from (G,Σ) by a sequence of resignings.

A signed graph is an equivalence class of 
signified graphs. A signed graph is denoted (G,Σ), 
where (G,Σ) is any representative of this class.



Signed graphs
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Two signified graphs (G,Σ) and (G’,Σ’) are 
equivalent if G = G’ and (G’,Σ’) can be obtained
from (G,Σ) by a sequence of resignings.

A signed graph is an equivalence class of 
signified graphs. A signed graph is denoted (G,Σ), 
where (G,Σ) is any representative of this class.



Cycles in signed graphs
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A cycle in (G,Σ) is either balanced, if it contains
an even number of negative edges, or unbalanced, 
if it contains an odd number of negative edges.



Cycles in signed graphs
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A cycle in (G,Σ) is either balanced, if it contains
an even number of negative edges, or unbalanced, 
if it contains an odd number of negative edges.

A balanced
cycle

An unbalanced
cycle
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Cycles in signed graphs

Theorem (Zaslavsky, 1982).
Two signified graphs are equivalent 
if and only if they have the same 
set of unbalanced cycles.
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Cycles in signed graphs

Theorem (Zaslavsky, 1982).
Two signified graphs are equivalent 
if and only if they have the same 
set of unbalanced cycles.



Homomorphisms of signed graphs
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A homomorphism of (G,Σ) to (H,Τ) is a sign-
preserving homomorphism from (G,Σ’) to (H,Τ), 
where (G,Σ’) and (G,Σ) are equivalent.
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A homomorphism of (G,Σ) to (H,Τ) is a sign-
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where (G,Σ’) and (G,Σ) are equivalent.
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A homomorphism of (G,Σ) to (H,Τ) is a sign-
preserving homomorphism from (G,Σ’) to (H,Τ), 
where (G,Σ’) and (G,Σ) are equivalent.



Homomorphisms of signed graphs
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A homomorphism of (G,Σ) to (H,Τ) is a sign-
preserving homomorphism from (G,Σ’) to (H,Τ), 
where (G,Σ’) and (G,Σ) are equivalent.



Minors of signed graphs

Eric Sopena – CID 2013 57

A signed graph (H,Τ) is a minor of (G,Σ) if (H,Τ)
can be obtained from (G,Σ) by 

• resigning,

• deleting vertices, 

• deleting edges, and 

• contracting positive edges, not belonging to an 
unbalanced 3-cycle.
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A signed graph (H,Τ) is a minor of (G,Σ) if (H,Τ)
can be obtained from (G,Σ) by 

• resigning,

• deleting vertices, 

• deleting edges, and 

• contracting positive edges, not belonging to an 
unbalanced 3-cycle.

Note that none of these operations can create an 
unbalanced cycle, in contrast to graph minor
operations that may produce odd cycles…
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is a minor of
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is a minor of
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is a minor of



Minors of signed graphs
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is a minor of



Consistent signed graphs
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A signed graph is consistent if

• the length of every balanced cycle is even,

• the lengths of all unbalanced cycles have the 
same parity.



Consistent signed graphs
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A signed graph is consistent if

• the length of every balanced cycle is even,

• the lengths of all unbalanced cycles have the 
same parity.

We thus have two classes of consistent signed
graphs:

• odd signed graphs: all unbalanced cycles are 
of odd length,

• signed bipartite graphs: all unbalanced cycles 
are of even length.



Consistent signed graphs
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An odd signed graph
balanced → even length

unbalanced → odd length



Consistent signed graphs
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An odd signed graph
balanced → even length

unbalanced → odd length

A signed bipartite graph
balanced → even length

unbalanced → even length



Consistent signed graphs
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The odd K5
balanced → even length

unbalanced → odd length

The signed bipartite 
graph (K3,3,M)

balanced → even length

unbalanced → even length



Odd signed graphs



Odd signed graphs

Eric Sopena – CID 2013 69

balanced → even length, unbalanced → odd length

Theorem (Zaslavsky, 1982).
Two signified graphs are equivalent if and only if they 
have the same set of unbalanced cycles.



Odd signed graphs
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balanced → even length, unbalanced → odd length

Theorem (Zaslavsky, 1982).
Two signified graphs are equivalent if and only if they 
have the same set of unbalanced cycles.

Every odd signed graph (G,Σ) can be represented
by (G, E(G)). 



Odd signed graphs
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balanced → even length, unbalanced → odd length

Theorem (Zaslavsky, 1982).
Two signified graphs are equivalent if and only if they 
have the same set of unbalanced cycles.

Every odd signed graph (G,Σ) can be represented
by (G, E(G)). Thus, for (G1,Σ1), (G2,Σ2)  two odd
signed graphs, 

(G1,Σ1) →→→→ (G2,Σ2) if and only if G1 →→→→ G2.



Odd signed graphs
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balanced → even length, unbalanced → odd length

Theorem (Zaslavsky, 1982).
Two signified graphs are equivalent if and only if they 
have the same set of unbalanced cycles.

Every odd signed graph (G,Σ) can be represented
by (G, E(G)). Thus, for (G1,Σ1), (G2,Σ2)  two odd
signed graphs, 

(G1,Σ1) →→→→ (G2,Σ2) if and only if G1 →→→→ G2.
Homomorphism questions can be translated in terms of 
homomorphisms of odd signed graphs…



Odd Hadwiger’s conjecture
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Odd Hadwiger’s Conjecture (Gerards & Seymour).
If (G,E(G)) has no (Kn, E(Kn)) as a minor, then G is 
(n-1)-colourable.



Odd Hadwiger’s conjecture
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Case n = 3.
• Hadwiger’s Conjecture says that every forest

is 2-colourable (K3-minor free).

Odd Hadwiger’s Conjecture (Gerards & Seymour).
If (G,E(G)) has no (Kn, E(Kn)) as a minor, then G is 
(n-1)-colourable.
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Case n = 3.
• Hadwiger’s Conjecture says that every forest

is 2-colourable (K3-minor free).

• Odd Hadwiger’s Conjecture says that every
bipartite graph is 2-colourable.

Odd Hadwiger’s Conjecture (Gerards & Seymour).
If (G,E(G)) has no (Kn, E(Kn)) as a minor, then G is 
(n-1)-colourable.



Odd Hadwiger’s conjecture
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• n = 4: proved by Catlin (1979),

• n = 5: announced by Guenin (2005, 
unpublished), would imply the Four-Colour
Theorem.

Odd Hadwiger’s Conjecture (Gerards & Seymour).
If (G,E(G)) has no (Kn, E(Kn)) as a minor, then G is 
(n-1)-colourable.



Signed bipartite graphs



Signed bipartite graphs
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balanced → even length, unbalanced → even length



Signed bipartite graphs
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With every graph G, one can associate a signed
bipartite graph S(G) by replacing each edge of G 
by an unbalanced 4-cycle.

balanced → even length, unbalanced → even length



Signed bipartite graphs
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G



Signed bipartite graphs
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G

(bipartite) S(G)



Signed bipartite graphs
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Theorem (Naserasr, Rollová, ES, 2012+).
For every graph G, and every k ≥ 3,

χ(G) ≤ k if and only if S(G) → (Kk,k, M)



Signed bipartite graphs

Eric Sopena – CID 2013 83

Theorem (Naserasr, Rollová, ES, 2012+).
For every graph G, and every k ≥ 3,

χ(G) ≤ k if and only if S(G) → (Kk,k, M)

Questions about chromatic number can be translated in 
terms of homomorphisms of signed bipartite graphs…



Signed bipartite graphs
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Theorem (Naserasr, Rollová, ES, 2012+).
For every graphs G and H, 

G → H if and only if S(G) → S(H)
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Theorem (Naserasr, Rollová, ES, 2012+).
For every graphs G and H, 

G → H if and only if S(G) → S(H)
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Theorem (Naserasr, Rollová, ES, 2012+).
For every graphs G and H, 

G → H if and only if S(G) → S(H)
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Theorem (Naserasr, Rollová, ES, 2012+).
For every graphs G and H, 

G → H if and only if S(G) → S(H)

Homomorphism questions can be translated in terms of 
homomorphisms of signed bipartite graphs…



Signed bipartite graphs
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Theorem (Naserasr, Rollová, ES, 2012+).
For every integer n and every graph G, Kn is a 
minor of G if and only if (Kn,Σ) is a minor of S(G) 
for some (any) Σ.
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Theorem (Naserasr, Rollová, ES, 2012+).
For every integer n and every graph G, Kn is a 
minor of G if and only if (Kn,Σ) is a minor of S(G) 
for some (any) Σ.

Hadwiger’s Conjecture can thus be restated as:

Hadwiger’s Conjecture (1943).
If a graph G has no Kn as a minor, then 

S(G) → (Kn-1,n-1,M)
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Hadwiger’s Conjecture (1943).
If a graph G has no Kn as a minor, then 

S(G) → (Kn-1,n-1,M)
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Hadwiger’s Conjecture (1943).
If a graph G has no Kn as a minor, then 

S(G) → (Kn-1,n-1,M)

For n = 4, we prove the following generalization:

Theorem (Naserasr, Rollová, ES, 2012+).
If G is bipartite and has no K4-minor then, for 
every signature Σ on G, (G,Σ) → (K3,3,M).
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Theorem (Naserasr, Rollová, ES, 2012+).
If G is bipartite and has no K4-minor then, for 
every signature Σ on G, (G,Σ) → (K3,3,M).



Signed bipartite graphs
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Conjecture. If G is bipartite and (G,Σ) has no 
(K4,E(K4)) as a minor, then (G,Σ) → (K3,3,M).

We propose the following stronger statement:

Theorem (Naserasr, Rollová, ES, 2012+).
If G is bipartite and has no K4-minor then, for 
every signature Σ on G, (G,Σ) → (K3,3,M).
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Conjecture. If G is bipartite and (G,Σ) has no 
(K4,E(K4)) as a minor, then (G,Σ) → (K3,3,M).
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Conjecture. If G is bipartite and (G,Σ) has no 
(K4,E(K4)) as a minor, then (G,Σ) → (K3,3,M).

Guenin proposed the following:

Conjecture (Guenin, 2005). 
If G is bipartite and (G,Σ) has no 
(K5,E(K5)) as a minor, then (G,Σ) →
(K4,4,M).



Signed bipartite graphs
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Conjecture. If G is bipartite and (G,Σ) has no 
(K4,E(K4)) as a minor, then (G,Σ) → (K3,3,M).

Guenin proposed the following:

Conjecture (Guenin, 2005). 
If G is bipartite and (G,Σ) has no 
(K5,E(K5)) as a minor, then (G,Σ) →
(K4,4,M).

We know that such a conjecture does not hold for n ≥ 7…



The signed graph F = (K7,7,Φ)
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The Fano plane

1

2

3

4

56

7
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The Fano plane The signed graph F = (K7,7,Φ)

(i, {a,b,c}) ∈∈∈∈ Φ iff i ∈∈∈∈ {a,b,c}

1

2

3

4

56

7

1 2 3 4 5 6 7

123 147 156 246 257 345 367



The signed graph F = (K7,7,Φ)
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1

2

3

4

56

7

1 2 3 4 5 6 7

123 147 156 246 257 345 367

Theorem (Naserasr, Rollová, ES, 2012+).
There is no value n for which F → (Kn,n,M).



Homomorphisms to 
signed projective cubes
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The projective cube of dimension d is the Cayley
graph PCd = ( (Z2)d, { e1, e2, …, ed, j } ), where

ei = (0,…,0,1,0,…,0) and j = (1,1,…,1).

(0,1) (1,1)

(0,0) (1,0)

(0,1,1) (1,1,1)

(0,1,0)

(0,0,0)

(1,0,1)

(1,0,0)

(0,0,1)

(1,1,0)
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The projective cube of dimension d is the Cayley
graph PCd = ( (Z2)d, { e1, e2, …, ed, j } ), where

ei = (0,…,0,1,0,…,0) and j = (1,1,…,1).

(0,1) (1,1)

(0,0) (1,0)

(0,1,1) (1,1,1)

(0,1,0)

(0,0,0)

(1,0,1)

(1,0,0)

(0,0,1)

(1,1,0)
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The signed projective cube of dimension d is 
defined by SPCd = (PCd, J).

(0,1) (1,1)

(0,0) (1,0)

(0,1,1) (1,1,1)

(0,1,0)

(0,0,0)

(1,0,1)

(1,0,0)

(0,0,1)

(1,1,0)

SPC2 SPC3 ≅≅≅≅ (K4,4,M)
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If d is even, SPCd is an odd signed graph.

(0,1) (1,1)

(0,0) (1,0)



Signed projective cubes
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If d is odd, SPCd is a signed bipartite graph.

(0,1,1) (1,1,1)

(0,1,0)

(0,0,0)

(1,0,1)

(1,0,0)

(0,0,1)

(1,1,0)
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If (G,Σ) admits a homomorphism to SPCd, then:

• (G,Σ) must be an odd signed graph if d is even,

• (G,Σ) must be a signed bipartite graph is d is
odd.

(0,1) (1,1)

(0,0) (1,0)

(0,1,1) (1,1,1)

(0,1,0)

(0,0,0)

(1,0,1)

(1,0,0)

(0,0,1)

(1,1,0)
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If (G,Σ) admits a homomorphism to SPCd, then:

• (G,Σ) must be an odd signed graph if d is even,

• (G,Σ) must be a signed bipartite graph is d is
odd.

The SPCd-homomorphism problem is equivalent to 
a packing problem:

Theorem (Guenin, 2005). A consistent signed 
graph admits a homomorphism to SPCd iff it 
admits at least d edge-disjoint signatures.



Homomorphisms to SPCd
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The unbalanced girth of (G,Σ) is the shortest
length of an unbalanced cycle of (G,Σ).
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The unbalanced girth of (G,Σ) is the shortest
length of an unbalanced cycle of (G,Σ).

Conjecture (Naserasr, 2007). Every consistent 
planar signed graph with unbalanced girth k 
admits a homomorphism to SPCk-1.
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The unbalanced girth of (G,Σ) is the shortest
length of an unbalanced cycle of (G,Σ).

Conjecture (Naserasr, 2007). Every consistent 
planar signed graph with unbalanced girth k 
admits a homomorphism to SPCk-1.

This conjecture is related to a conjecture of 
Seymour…
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An odd
edge-cut:

X with |X| odd V(G)\X

Conjecture (Seymour, 1975). Every k-regular 
planar multigraph with no odd edge-cut of less 
than k edges is k-edge-colourable.
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This conjecture, if true, generalizes the Four-
Colour Theorem: for k = 3, it claims that every
bridgeless cubic planar multigraph is 3-edge-
colourable, which is equivalent to the Four-Colour
Theorem by the result of Tait (1880).

Conjecture (Seymour, 1975). Every k-regular 
planar multigraph with no odd edge-cut of less 
than k edges is k-edge-colourable.
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This conjecture has been proved for

• k = 4,5: Guenin (2003),

• k = 6: Dvořák, Kawarabayashi & Král’ (2010),

• k = 7: Edwards & Kawarabayashi (2011),

• k = 8: Chudnovsky, Edwards & Seymour (2012). 

Conjecture (Seymour, 1975). Every k-regular 
planar multigraph with no odd edge-cut of less 
than k edges is k-edge-colourable.
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Conjecture (Seymour, 1975). Every k-regular 
planar multigraph with no odd edge-cut of less 
than k edges is k-edge-colourable.

Conjecture (Naserasr, 2007). Every consistent 
planar signed graph with unbalanced girth k 
admits a homomorphism to SPCk-1.
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Conjecture (Seymour, 1975). Every k-regular 
planar multigraph with no odd edge-cut of less 
than k edges is k-edge-colourable.

Conjecture (Naserasr, 2007). Every consistent 
planar signed graph with unbalanced girth k 
admits a homomorphism to SPCk-1.

Theorem (Naserasr, 2007 – Naserasr, Rollová, 
ES, 2013). These two conjectures are 
equivalent.
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Corollary. Every planar signed bipartite graph of 
unbalanced girth 4 (resp. 6, 8) admits a 
homomorphism to SPC3 (resp. SPC5, SPC7).

Since Seymour’s conjecture holds for k ≤ 8, we get 
the following: 



Seymour’s Conjecture
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In particular, since the unbalanced girth of every 
bipartite graph is at least 4:

Corollary. Every planar signed bipartite graph 
admits a homomorphism to SPC3 ≅≅≅≅ (K4,4,M).
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In particular, since the unbalanced girth of every 
bipartite graph is at least 4:

This is an extension of the Four-Colour Theorem, 
since χ(G) ≤ k if and only if S(G) → (Kk,k,M)…

Corollary. Every planar signed bipartite graph 
admits a homomorphism to SPC3 ≅≅≅≅ (K4,4,M).



The chromatic number
of signed graphs



Chromatic number
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Recall that the chromatic number χχχχ(G) of a graph 
G can equivalently be defined as the smallest 
order of a graph H such that G →→→→ H.
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Similarly, we can thus define the chromatic 
number χχχχ(G,Σ) of a signed graph (G,Σ) as the 
smallest order of a graph H such that (G,Σ) →→→→
(H,Τ) for some signature Τ of H.

Recall that the chromatic number χχχχ(G) of a graph 
G can equivalently be defined as the smallest 
order of a graph H such that G →→→→ H.
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Similarly, we can thus define the chromatic 
number χχχχ(G,Σ) of a signed graph (G,Σ) as the 
smallest order of a graph H such that (G,Σ) →→→→
(H,Τ) for some signature Τ of H.

Recall that the chromatic number χχχχ(G) of a graph 
G can equivalently be defined as the smallest 
order of a graph H such that G →→→→ H.

Note that if (G,Σ) → (G’,Σ’) then χ(G,Σ) ≤ χ(G’,Σ’). 



K4-minor free graphs
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Theorem (Naserasr, Rollová, ES, 2012+).
For every K4-minor free graph G and signature Σ 
on G, (G,Σ) → ST5, so that χ(G,Σ) ≤ 5. 

Moreover, this bound is tight.
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Theorem (Naserasr, Rollová, ES, 2012+).
For every K4-minor free graph G and signature Σ 
on G, (G,Σ) → ST5, so that χ(G,Σ) ≤ 5. 

Moreover, this bound is tight.

The signed
graph ST5χ = 5



Planar graphs
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An acyclic colouring of a graph G is a proper 
colouring of G such that any two colours induce a 
forest (in other words, each cycle of G uses at 
least 3 colours).
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An acyclic colouring of a graph G is a proper 
colouring of G such that any two colours induce a 
forest (in other words, each cycle of G uses at 
least 3 colours).

Theorem (Ochem, Pinlou, 
Sen, 2012+).
If G is acyclically k-colorable 
then, for every signature Σ
on G, χ(G,Σ) ≤ k.2k-2.
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An acyclic colouring of a graph G is a proper 
colouring of G such that any two colours induce a 
forest (in other words, each cycle of G uses at 
least 3 colours).

Theorem (Ochem, Pinlou, Sen, 2012+).
If G is acyclically k-colorable then, for every
signature Σ on G, χ(G,Σ) ≤ k.2k-2.

Corollary. If G is planar, then χ(G,Σ) ≤ 40.
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The following planar signed graph has 12 vertices 
and chromatic number 10:



Complexity
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Problem: K-CHROMATIC-SIGNED-GRAPH

Input: A signed graph (G,Σ).

Question: Is χ(G,Σ) ≤ k?
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Problem: K-CHROMATIC-SIGNED-GRAPH

Input: A signed graph (G,Σ).

Question: Is χ(G,Σ) ≤ k?

Proposition. The problem K-CHROMATIC-SIGNED-
GRAPH is polynomial for k = 1,2 and NP-complete
for k ≥ 3.
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Proposition. The problem k-CHROMATIC-SIGNED-
GRAPH is polynomial for k = 1,2 and NP-complete
for k ≥ 3.

• χ(G,Σ) ≤ 2 iff G is bipartite and (G,Σ) contains no 
unbalanced cycle

• k-CHROMATIC-SIGNED-GRAPH contains k-CHROMATIC-GRAPH

Problem: K-CHROMATIC-SIGNED-GRAPH

Input: A signed graph (G,Σ).

Question: Is χ(G,Σ) ≤ k?



S-cliques
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An S-clique is a signed graph (G,Σ) such that

χ(G,Σ) = |V(G)|.
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An S-clique is a signed graph (G,Σ) such that

χ(G,Σ) = |V(G)|.

This means that no two vertices can be identified
in a homomorphic image of (G,Σ)…
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An S-clique is a signed graph (G,Σ) such that

χ(G,Σ) = |V(G)|.

Proposition. A signed graph (G,Σ) is an S-clique if 
and only if, for any two vertices u and v, either uv
is an edge or u and v belong to some unbalanced
4-cycle.
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Proposition. A signed graph (G,Σ) is an S-clique if 
and only if, for any two vertices u and v, either uv
is an edge or u and v belong to some unbalanced
4-cycle.

Every (Kn,n,M), k ≥ 3, is thus an S-clique…



S-cliques
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This example shows that the difference between
χ(G) and χ(G,Σ) can be arbitrarily large…

χ(Kn,n,M) = 2nχ(Kn,n) = 2



S-clique numbers
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The absolute S-clique number χas(G,Σ) is the 
maximum order of an S-clique subgraph of (G,Σ).
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The absolute S-clique number χas(G,Σ) is the 
maximum order of an S-clique subgraph of (G,Σ).

χas(G,Σ) = 4



S-clique numbers
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The relative S-clique number χrs(G,Σ) is the 
maximum size of a subset S of V(G) such that no 
two vertices in S can be identified in any
homomorphic image of (G,Σ).



S-clique numbers

Eric Sopena – CID 2013 140

The relative S-clique number χrs(G,Σ) is the 
maximum size of a subset S of V(G) such that no 
two vertices in S can be identified in any
homomorphic image of (G,Σ).

χrs(Gk,Σ) = k
v1 v2 v3 vk

w1,2

u1,2

For every vi,vj, create a UC4 using new vertices ui,j and wi,j… 
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The difference

χχχχrs(G,Σ) - χχχχas(G,Σ) 
can be arbitrarily large… 

χχχχas(Gk,Σ) = 4
χχχχrs(Gk,Σ) = k

v1 v2 v3 vk

w1,2

u1,2

For every vi,vj, create a UC4 using new vertices ui,j and wi,j… 



S-clique numbers
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Proposition.
For every signed graph (G,Σ):

χχχχas(G,Σ) ≤  χχχχrs(G,Σ)  ≤  χχχχ(G,Σ).
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Proposition.
For every signed graph (G,Σ):

χχχχas(G,Σ) ≤  χχχχrs(G,Σ)  ≤  χχχχ(G,Σ).

Note that computing any of these S-clique 
numbers is NP-hard, since both these problems
contain the problem of computing the clique 
number of a graph (simply set Σ = ∅)…



Planar S-cliques
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Theorem (Naserasr, Rollová, ES, 2012+).
The maximum order of a planar S-clique is 8.
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Theorem (Naserasr, Rollová, ES, 2012+).
The maximum order of a planar S-clique is 8.

A planar S-clique of order 8



Open questions



A few open questions…
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1. Determine the maximum chromatic number of a 
planar signed graph (lies between 10 and 40).

2. Determine the optimal bound for χrs(G,Σ) when
G is planar (the optimal bound for χas is 8).

3. Is it true that if G is bipartite and (G,Σ) has 
no (K4,E(K4)) as a minor, then (G,Σ) → (K3,3,M)?

4. Is it true that every consistent planar signed 
graph with unbalanced girth k admits a 
homomorphism to SPCk-1? (equivalent to 
Seymour’s conjecture…)



Thank you for your
attention…


