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� Preliminary (basic) notions

� Homomorphisms and colourings of oriented graphs
(oriented chromatic number, oriented cliques, oriented clique 
numbers, complexity)

� Simple colourings

� 2-dipath colourings

� Some open problems
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Colourings of undirected graphs

A (proper) k-colouring of a (simple, loopless) graph G is a mapping 

c : V(G) → {1, 2, ..., k} 

such that every two adjacent vertices are assigned distinct colours.
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Colourings of undirected graphs

A (proper) k-colouring of a (simple, loopless) graph G is a mapping 

c : V(G) → {1, 2, ..., k} 

such that every two adjacent vertices are assigned distinct colours.

The chromatic number χ(G) of G is the smallest k for which G has a 
k-colouring.
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Colourings of undirected graphs

A (proper) k-colouring of a (simple, loopless) graph G is a mapping 

c : V(G) → {1, 2, ..., k} 

such that every two adjacent vertices are assigned distinct colours.

The chromatic number χ(G) of G is the smallest k for which G has a 
k-colouring.
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Homomorphisms of undirected graphs

A homomorphism from G to H is a mapping h : V(G) → V(H) such 
that :

xy ∈ E(G)   ⇒ h(x)h(y) ∈ E(H)
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Homomorphisms of undirected graphs

A homomorphism from G to H is a mapping h : V(G) → V(H) such 
that :

xy ∈ E(G)   ⇒ h(x)h(y) ∈ E(H)
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Homomorphisms of undirected graphs

A homomorphism from G to H is a mapping h : V(G) → V(H) such 
that :

xy ∈ E(G)   ⇒ h(x)h(y) ∈ E(H)

(H-colouring of G)
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Homomorphisms of undirected graphs

A homomorphism from G to H is a mapping h : V(G) → V(H) such 
that :

xy ∈ E(G)   ⇒ h(x)h(y) ∈ E(H)

Notation.

G → H : there exists a homomorphism from G to H

(H-colouring of G)
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Colourings vs homomorphisms

A k-colouring of G is nothing but a homomorphism from G to Kk, 
the complete graph on k vertices.
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Colourings vs homomorphisms

A k-colouring of G is nothing but a homomorphism from G to Kk, 
the complete graph on k vertices.

Remark.

χ(G) = k if and only if     G → Kk and G → Kk-1
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Oriented graphs

An oriented graph is an antisymmetric (simple, loopless) digraph 
(no directed cycle of length 1 or 2).
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Oriented graphs

An oriented graph is an antisymmetric (simple, loopless) digraph 
(no directed cycle of length 1 or 2).

An oriented graph is an orientation of its underlying undirected 
graph, obtained by giving to each edge one of its two possible 
orientations.
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Homomorphisms of oriented graphs

A homomorphism from G to H is a mapping h : V(G) → V(H) such 
that :

xy ∈ E(G)   ⇒ h(x)h(y) ∈ E(H)
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Homomorphisms of oriented graphs

A homomorphism from G to H is a mapping h : V(G) → V(H) such 
that :

xy ∈ E(G)   ⇒ h(x)h(y) ∈ E(H)
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Oriented colourings of oriented graphs

An oriented k-colouring of an oriented graph G is a mapping 

c : V(G) → {1, 2, ..., k} 

such that:
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Oriented colourings of oriented graphs

An oriented k-colouring of an oriented graph G is a mapping 

c : V(G) → {1, 2, ..., k} 

such that:

(1) uv ∈ E(G)   ⇒ c(u) ≠ c(v)

(2) uv, xy ∈ E(G), c(u) = c(y)   ⇒ c(v) ≠ c(x)
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Oriented colourings of oriented graphs

An oriented k-colouring of an oriented graph G is a mapping 

c : V(G) → {1, 2, ..., k} 

such that:

(1) uv ∈ E(G)   ⇒ c(u) ≠ c(v)

(2) uv, xy ∈ E(G), c(u) = c(y)   ⇒ c(v) ≠ c(x)

⇒
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Oriented colourings of oriented graphs

An oriented k-colouring of an oriented graph G is a mapping 

c : V(G) → {1, 2, ..., k} 

such that:

(1) uv ∈ E(G)   ⇒ c(u) ≠ c(v)

(2) uv, xy ∈ E(G), c(u) = c(y)   ⇒ c(v) ≠ c(x)

⇒

Hence, all the arcs linking two colour classes (independent sets) 
must have the same direction (non-local condition...).
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Examples.
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Examples.

Any two vertices linked

by a directed path of length 1 or 2 

must get distinct colours.
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Examples.

Any two vertices linked

by a directed path of length 1 or 2 

must get distinct colours.
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Remark.

An oriented k-colouring of an oriented graph is nothing but a 
homomorphism to a given oriented graph (or tournament) with k 

vertices.
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Remark.

An oriented k-colouring of an oriented graph is nothing but a 
homomorphism to a given oriented graph (or tournament) with k 

vertices.

The target graph gives

the orientation of arcs

linking any two colour

classes...
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Oriented chromatic number of oriented graphs

The oriented chromatic number χo(G) of an oriented graph G is 
the smallest k for which G admits an oriented k-colouring.

(Or, equivalently, the smallest order of an oriented graph H such 
that G → H)
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Oriented chromatic number of oriented graphs

The oriented chromatic number χo(G) of an oriented graph G is 
the smallest k for which G admits an oriented k-colouring.

(Or, equivalently, the smallest order of an oriented graph H such 
that G → H)

χo = 4
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Oriented chromatic number of undirected graphs

The oriented chromatic number χo(U) of an undirected graph U is 
the smallest k for which every orientation of U admits an oriented 
k-colouring: 

χo(U) = max { χo(G) ; G is an orientation of U }
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Oriented chromatic number of undirected graphs

The oriented chromatic number χo(U) of an undirected graph U is 
the smallest k for which every orientation of U admits an oriented 
k-colouring: 

χo(U) = max { χo(G) ; G is an orientation of U }

χo = 5
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Oriented chromatic number of undirected graphs

The oriented chromatic number χo(U) of an undirected graph U is 
the smallest k for which every orientation of U admits an oriented 
k-colouring: 

χo(U) = max { χo(G) ; G is an orientation of U }

χo = 5

Observation.

χ(U) = min { … }
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� If G is a forest, then χo(G) ≤ 3 (easy)
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� If G is a forest, then χo(G) ≤ 3 (easy)

� Theorem. If G is an outerplanar graph, then χo(G) ≤ 7
(and this bound is tight)
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� If G is a forest, then χo(G) ≤ 3 (easy)

� Theorem. If G is an outerplanar graph, then χo(G) ≤ 7
(and this bound is tight)

The target graph is the tournament QR7, defined as follows:

- V(QR7) = {0, 1, ..., 6}
- uv ∈ E(QR7)   iff v – u (mod 7) = 1, 2 or 4

(non-zero quadratic residues of 7)

4 3

0

5 2

16
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� If G is a forest, then χo(G) ≤ 3 (easy)

� Theorem. If G is an outerplanar graph, then χo(G) ≤ 7
(and this bound is tight)

The target graph is the tournament QR7, defined as follows:

- V(QR7) = {0, 1, ..., 6}
- uv ∈ E(QR7)   iff v – u (mod 7) = 1, 2 or 4

(non-zero quadratic residues of 7)

4 3

0

5 2

16
Property. For every arc uv ∈ E(QR7), there 
exists a vertex w for every possible 
orientation of the edges uw and vw:

0

2

1 0 1 0 1 0 1

4 3,5 6
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� If G is a forest, then χo(G) ≤ 3 (easy)

� Theorem. If G is an outerplanar graph, then χo(G) ≤ 7
(and this bound is tight)

Since every outerplanar graph contains a vertex of degree at 
most 2 we are done...

4 3

0

5 2

16
Property. For every arc uv ∈ E(QR7), there 
exists a vertex w for every possible 
orientation of the edges uw and vw:

0

2

1 0 1 0 1 0 1

4 3,5 6
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� If G is a forest, then χo(G) ≤ 3 (easy)

� Theorem. If G is an outerplanar graph, then χo(G) ≤ 7
(and this bound is tight)

An outerplanar graph with oriented chromatic number 7:
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Graphs with bounded acyclic chromatic number

A k-colouring of an undirected graph U is acyclic if every cycle in U
uses at least 3 colours.
(In other words, any two colours induce a forest.)
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Graphs with bounded acyclic chromatic number

A k-colouring of an undirected graph U is acyclic if every cycle in U
uses at least 3 colours.
(In other words, any two colours induce a forest.)

� Theorem. Every planar graph admits an acyclic 5-coloring 
(and this bound is tight) (Borodin, 1979)
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Graphs with bounded acyclic chromatic number

A k-colouring of an undirected graph U is acyclic if every cycle in U
uses at least 3 colours.
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(and this bound is tight) (Borodin, 1979)



χo of some graph classes (2)

Éric Sopena – DMDOCW’15 52

Graphs with bounded acyclic chromatic number

A k-colouring of an undirected graph U is acyclic if every cycle in U
uses at least 3 colours.
(In other words, any two colours induce a forest.)

� Theorem. Every planar graph admits an acyclic 5-coloring 
(and this bound is tight) (Borodin, 1979)
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Graphs with bounded acyclic chromatic number

A k-colouring of an undirected graph U is acyclic if every cycle in U
uses at least 3 colours.
(In other words, any two colours induce a forest.)

� Theorem. Every planar graph admits an acyclic 5-coloring 
(and this bound is tight) (Borodin, 1979)

?...
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Graphs with bounded acyclic chromatic number

A k-colouring of an undirected graph U is acyclic if every cycle in U
uses at least 3 colours.
(In other words, any two colours induce a forest.)

� Theorem. Every planar graph admits an acyclic 5-coloring 
(and this bound is tight) (Borodin, 1979)

� Theorem. If G has acyclic chromatic number at most k, then 
χo(G) ≤ k . 2k-1 (Raspaud, S., 1994)

(and this bound is tight)

(Ochem, 2005)
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Graphs with bounded acyclic chromatic number

A k-colouring of an undirected graph U is acyclic if every cycle in U
uses at least 3 colours.
(In other words, any two colours induce a forest.)

� Theorem. Every planar graph admits an acyclic 5-coloring 
(and this bound is tight) (Borodin, 1979)

� Theorem. If G has acyclic chromatic number at most k, then 
χo(G) ≤ k . 2k-1 (Raspaud, S., 1994)

(and this bound is tight)

(Ochem, 2005)

� Corollary. If G is planar, then χo(G) ≤ 80
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Graphs with bounded acyclic chromatic number

A k-colouring of an undirected graph U is acyclic if every cycle in U
uses at least 3 colours.
(In other words, any two colours induce a forest.)

� Theorem. Every planar graph admits an acyclic 5-coloring 
(and this bound is tight) (Borodin, 1979)

� Theorem. If G has acyclic chromatic number at most k, then 
χo(G) ≤ k . 2k-1 (Raspaud, S., 1994)

(and this bound is tight)

(Ochem, 2005)

� Corollary. If G is planar, then χo(G) ≤ 80
Best known lower bound : 18 (Marshall, 2012)
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Graphs with bounded acyclic chromatic number

� Theorem. If G has acyclic chromatic number at most k, then 
χo(G) ≤ k . 2k-1 (Raspaud, S., 1994)

Sketch of proof.
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Graphs with bounded acyclic chromatic number

� Theorem. If G has acyclic chromatic number at most k, then 
χo(G) ≤ k . 2k-1 (Raspaud, S., 1994)

Sketch of proof.

Let G be a graph and c a k-acyclic colouring of G.
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Graphs with bounded acyclic chromatic number

� Theorem. If G has acyclic chromatic number at most k, then 
χo(G) ≤ k . 2k-1 (Raspaud, S., 1994)

Sketch of proof.

Let G be a graph and c a k-acyclic colouring of G.

Let a,b be any two colours with a < b and H be any orientation of G. 
Consider the subgraph Ha,b induced by vertices with colour a or b

(Ha,b is a forest).
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Graphs with bounded acyclic chromatic number

� Theorem. If G has acyclic chromatic number at most k, then 
χo(G) ≤ k . 2k-1 (Raspaud, S., 1994)

Sketch of proof.

Let G be a graph and c a k-acyclic colouring of G.

Let a,b be any two colours with a < b and H be any orientation of G. 
Consider the subgraph Ha,b induced by vertices with colour a or b

(Ha,b is a forest).

a < b
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Graphs with bounded acyclic chromatic number

� Theorem. If G has acyclic chromatic number at most k, then 
χo(G) ≤ k . 2k-1 (Raspaud, S., 1994)

Sketch of proof.

Choose a vertex (root) in each component of Ha,b.

a < b
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Graphs with bounded acyclic chromatic number

� Theorem. If G has acyclic chromatic number at most k, then 
χo(G) ≤ k . 2k-1 (Raspaud, S., 1994)

Sketch of proof.

Choose a vertex (root) in each component of Ha,b.

Associate a bit with value 0 with each of them.

0

a < b
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Graphs with bounded acyclic chromatic number

� Theorem. If G has acyclic chromatic number at most k, then 
χo(G) ≤ k . 2k-1 (Raspaud, S., 1994)

Sketch of proof.

Choose a vertex (root) in each component of Ha,b.

Associate a bit with value 0 with each of them.

Apply the following rule:
0

a < b

( a < b ) : keep the same bit

( b > a ) : change the bit
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Graphs with bounded acyclic chromatic number

� Theorem. If G has acyclic chromatic number at most k, then 
χo(G) ≤ k . 2k-1 (Raspaud, S., 1994)

Sketch of proof.

Choose a vertex (root) in each component of Ha,b.

Associate a bit with value 0 with each of them.

Apply the following rule: 0

1

0

a < b

( a < b ) : keep the same bit

( b > a ) : change the bit
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Graphs with bounded acyclic chromatic number

� Theorem. If G has acyclic chromatic number at most k, then 
χo(G) ≤ k . 2k-1 (Raspaud, S., 1994)

Sketch of proof.

Choose a vertex (root) in each component of Ha,b.

Associate a bit with value 0 with each of them.

Apply the following rule: 0

0

01

1

0

a < b

( a < b ) : keep the same bit

( b > a ) : change the bit
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Graphs with bounded acyclic chromatic number

� Theorem. If G has acyclic chromatic number at most k, then 
χo(G) ≤ k . 2k-1 (Raspaud, S., 1994)

Sketch of proof.

Choose a vertex (root) in each component of Ha,b.

Associate a bit with value 0 with each of them.

Apply the following rule: 0

0

0
0

1

1

0

1

0

a < b

( a < b ) : keep the same bit

( b > a ) : change the bit
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Graphs with bounded acyclic chromatic number

� Theorem. If G has acyclic chromatic number at most k, then 
χo(G) ≤ k . 2k-1 (Raspaud, S., 1994)

Sketch of proof.

Doing that, we have constructed a 
homomorphism from Ha,b to the 2-coloured 
directed 4-cycle.

0

10

1
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Graphs with bounded acyclic chromatic number

� Theorem. If G has acyclic chromatic number at most k, then 
χo(G) ≤ k . 2k-1 (Raspaud, S., 1994)

Sketch of proof.

Doing that, we have constructed a 
homomorphism from Ha,b to the 2-coloured 
directed 4-cycle.

With any colour a, we associate k-1 such 
bits (one for each other colour).

0

10

1



χo of some graph classes (2)

Éric Sopena – DMDOCW’15 69

Graphs with bounded acyclic chromatic number

� Theorem. If G has acyclic chromatic number at most k, then 
χo(G) ≤ k . 2k-1 (Raspaud, S., 1994)

Sketch of proof.

Doing that, we have constructed a 
homomorphism from Ha,b to the 2-coloured 
directed 4-cycle.

With any colour a, we associate k-1 such 
bits (one for each other colour).

We thus obtain an oriented colouring of H
using at most k . 2k-1 colours. 0

10

1
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Planar graphs

The girth g(G) of G is the size of a shortest cycle in G. 
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Planar graphs

The girth g(G) of G is the size of a shortest cycle in G. 

� The best known results are as follows:

girth
lower
bound

upper 
bound

≥ 3 18 80 Marshall, 2012 – Raspaud, S., 1994

≥ 4 11 40 Ochem, 2004 – Ochem, Pinlou, 2011

≥ 5 7 16 Marshall, 2012 – Pinlou, 2009

≥ 6 7 11 id. – Borodin, Kostochka, Nešetřil, Raspaud, S., 1999

≥ 7 6 7 Nešetřil, Raspaud, S., 1997 – Borodin, Ivanova, 2005

≥ 8 5 7 Nešetřil, Raspaud, S., 1997 – Borodin, Ivanova, 2005

≥ 9 5 6 Nešetřil, Raspaud, S., 1997 – Marshall, 2015

≥ 12 5 5 Nešetřil, Raspaud, S., 1997 – Borodin, Ivanova, Kostochka, 2007
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Halin graphs

A tree with no
vertex of degree 2
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Halin graphs

� Theorem. Every Halin graph G satisfies χo(G) ≤ 8  (tight bound)
(Dybizbański, Szepietowski, 2014)

A tree with no
vertex of degree 2
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Halin graphs

� Theorem. Every Halin graph G satisfies χo(G) ≤ 8  (tight bound)
(Dybizbański, Szepietowski, 2014)

Square grids

� Theorem. For every integers m and n, χo(Pm � Pn) ≤ 11
(Fertin, Raspaud, Roychowdhury, 2003)

A tree with no
vertex of degree 2
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Halin graphs

� Theorem. Every Halin graph G satisfies χo(G) ≤ 8  (tight bound)
(Dybizbański, Szepietowski, 2014)

Square grids

� Theorem. For every integers m and n, χo(Pm � Pn) ≤ 11
(Fertin, Raspaud, Roychowdhury, 2003)

χo(P7 � P212) ≥ 8 (Dybizbański, Nenca, 2012)

A tree with no
vertex of degree 2



χo of some graph classes (5)

Éric Sopena – DMDOCW’15 76

Graphs with bounded degree

� Every graph G with maximum degree 2, except the directed cycle 
on 5 vertices, satisfies χo(G) ≤ 4 (easy)
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Graphs with bounded degree

� Every graph G with maximum degree 2, except the directed cycle 
on 5 vertices, satisfies χo(G) ≤ 4 (easy)

� Theorem. If G is a graph with maximum degree 3, then χo(G) ≤ 9
(Duffy, 2014+)
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Graphs with bounded degree

� Every graph G with maximum degree 2, except the directed cycle 
on 5 vertices, satisfies χo(G) ≤ 4 (easy)

� Theorem. If G is a graph with maximum degree 3, then χo(G) ≤ 9
(Duffy, 2014+)

There exist such graphs with 
oriented chromatic number 7:
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Graphs with bounded degree

� Every graph G with maximum degree 2, except the directed cycle 
on 5 vertices, satisfies χo(G) ≤ 4 (easy)

� Theorem. If G is a graph with maximum degree 3, then χo(G) ≤ 9
(Duffy, 2014+)

There exist such graphs with 
oriented chromatic number 7:
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Graphs with bounded degree

� Every graph G with maximum degree 2, except the directed cycle 
on 5 vertices, satisfies χo(G) ≤ 4 (easy)

� Theorem. If G is a graph with maximum degree 3, then χo(G) ≤ 9
(Duffy, 2014+)

There exist such graphs with 
oriented chromatic number 7:

� Conjecture. If G is a connected cubic graph, then χo(G) ≤ 7.
(S., 1997)
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Graphs with bounded degree

� Every graph G with maximum degree 2, except the directed cycle 
on 5 vertices, satisfies χo(G) ≤ 4 (easy)

� Theorem. If G is a graph with maximum degree 3, then χo(G) ≤ 9
(Duffy, 2014+)

There exist such graphs with 
oriented chromatic number 7:

� Conjecture. If G is a connected cubic graph, then χo(G) ≤ 7.
(S., 1997)

� Theorem. If G is a graph with maximum degree 4, then
χo(G) ≤ 67    (best known lower bound is 12) (Duffy, 2014+)
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A well-known fact is that the (ordinary) chromatic number χ(G) of 
an undirected graph G is bounded from below by the clique number 
ω(G) of G (maximum order of a clique in G): χ(G) ≥ ω(G).
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A well-known fact is that the (ordinary) chromatic number χ(G) of 
an undirected graph G is bounded from below by the clique number 
ω(G) of G (maximum order of a clique in G): χ(G) ≥ ω(G).

Of course, a similar relation holds for oriented graphs...
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A well-known fact is that the (ordinary) chromatic number χ(G) of 
an undirected graph G is bounded from below by the clique number 
ω(G) of G (maximum order of a clique in G): χ(G) ≥ ω(G).

Of course, a similar relation holds for oriented graphs...

Oriented cliques

An oriented clique C is an oriented graph satisfying χo(C) = |V(C)|.
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A well-known fact is that the (ordinary) chromatic number χ(G) of 
an undirected graph G is bounded from below by the clique number 
ω(G) of G (maximum order of a clique in G): χ(G) ≥ ω(G).

Of course, a similar relation holds for oriented graphs...

Oriented cliques

An oriented clique C is an oriented graph satisfying χo(C) = |V(C)|.

(all tournaments)

Examples.
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A well-known fact is that the (ordinary) chromatic number χ(G) of 
an undirected graph G is bounded from below by the clique number 
ω(G) of G (maximum order of a clique in G): χ(G) ≥ ω(G).

Of course, a similar relation holds for oriented graphs...

Oriented cliques

An oriented clique C is an oriented graph satisfying χo(C) = |V(C)|.

(all tournaments)

Examples.
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A well-known fact is that the (ordinary) chromatic number χ(G) of 
an undirected graph G is bounded from below by the clique number 
ω(G) of G (maximum order of a clique in G): χ(G) ≥ ω(G).

Of course, a similar relation holds for oriented graphs...

Oriented cliques

An oriented clique C is an oriented graph satisfying χo(C) = |V(C)|.

Remark. An o-clique is nothing 
but an oriented graph in which 
any two vertices are linked by 
a directed path (in any 
direction) of length at most 2.(all tournaments)

Examples.



Oriented cliques (o-cliques) (2)
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Building oriented o-cliques of order 2k - 1

Ok Ok
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Structural properties of o-cliques

� Theorem. The minimum number of edges in an o-clique of order 
n is (1 + o(1))nlog2n.

(Füredi, Horak, Parrek, Zhu, 1998 – Kostochka, Łuczak, Simonyi, S., 1999)



Oriented cliques (o-cliques) (3)

Éric Sopena – DMDOCW’15 90

Structural properties of o-cliques

� Theorem. The minimum number of edges in an o-clique of order 
n is (1 + o(1))nlog2n.

(Füredi, Horak, Parrek, Zhu, 1998 – Kostochka, Łuczak, Simonyi, S., 1999)

� Theorem. The order of a planar o-clique is at most 36.
(Klostermeyer, MacGillivray, 2002)
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Structural properties of o-cliques

� Theorem. The minimum number of edges in an o-clique of order 
n is (1 + o(1))nlog2n.

(Füredi, Horak, Parrek, Zhu, 1998 – Kostochka, Łuczak, Simonyi, S., 1999)

� Theorem. The order of a planar o-clique is at most 36.
(Klostermeyer, MacGillivray, 2002)

� Conjecture. The maximum order of a planar o-clique is 15.
(id.)
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Structural properties of o-cliques

� Theorem. The minimum number of edges in an o-clique of order 
n is (1 + o(1))nlog2n.

(Füredi, Horak, Parrek, Zhu, 1998 – Kostochka, Łuczak, Simonyi, S., 1999)

� Theorem. The order of a planar o-clique is at most 36.
(Klostermeyer, MacGillivray, 2002)

� Theorem. The maximum order of a planar o-clique is 15.
(Sen, 2012)
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Structural properties of o-cliques

� Theorem. The minimum number of edges in an o-clique of order 
n is (1 + o(1))nlog2n.

(Füredi, Horak, Parrek, Zhu, 1998 – Kostochka, Łuczak, Simonyi, S., 1999)

� Theorem. The order of a planar o-clique is at most 36.
(Klostermeyer, MacGillivray, 2002)

� Theorem. The maximum order of a planar o-clique is 15.
(Sen, 2012)
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The oriented clique number of an oriented graph may be defined in 
two different ways...
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The oriented clique number of an oriented graph may be defined in 
two different ways...

Absolute oriented clique number

The absolute oriented clique number ωao(G) of an oriented graph 
G is the maximum order of an o-clique subgraph of G.
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The oriented clique number of an oriented graph may be defined in 
two different ways...

Absolute oriented clique number

The absolute oriented clique number ωao(G) of an oriented graph 
G is the maximum order of an o-clique subgraph of G.

Relative oriented clique number

The relative oriented clique number ωro(G) of an oriented graph G
is the maximum size of a subset S of V(G) satisfying: every two 
vertices in S are linked (in G) by a directed path of length at most 2.
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The oriented clique number of an oriented graph may be defined in 
two different ways...

Absolute oriented clique number

The absolute oriented clique number ωao(G) of an oriented graph 
G is the maximum order of an o-clique subgraph of G.

Relative oriented clique number

The relative oriented clique number ωro(G) of an oriented graph G
is the maximum size of a subset S of V(G) satisfying: every two 
vertices in S are linked (in G) by a directed path of length at most 2.
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Example.

x1 x2
xi xj xk

yi,j yk-1,ky1,2
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Example.

x1 x2
xi xj xk

yi,j yk-1,ky1,2

ωao = 3
ωro = k
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Example.

Clearly, for every oriented graph G, we have:   

ωao(G) ≤ ωro(G) ≤ χo(G)

x1 x2
xi xj xk

yi,j yk-1,ky1,2

ωao = 3
ωro = k
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For planar graphs with given girth, the following is known:

(Sen, 2013+)
(Nandy, Sen, S., 2014+)

girth ωao ωro

3 15 15 ≤ ... ≤ 80

4 6 10 ≤ ... ≤ 26

5 5 6

6 3 4

≥ 7 3 3
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Consider the following decision problem:

OCNk: oriented k-colorability
INSTANCE: an oriented graph G
QUESTION: do we have χo(G) ≤ k?
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We have the following:

� Theorem. OCNk is polynomial if k ≤ 3 and NP-complete if k ≥ 4.
(Klostermeyer, MacGillivray, 2002)

Consider the following decision problem:

OCNk: oriented k-colorability
INSTANCE: an oriented graph G
QUESTION: do we have χo(G) ≤ k?
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We have the following:

� Theorem. OCNk is polynomial if k ≤ 3 and NP-complete if k ≥ 4.
(Klostermeyer, MacGillivray, 2002)

And even more:

� Theorem. OCN4 is NP-complete for bounded degree bipartite, or 
bounded degree acyclic oriented graphs

(Culus, Demange, 2006 – Ganian and Hliněný, 2010)

Consider the following decision problem:

OCNk: oriented k-colorability
INSTANCE: an oriented graph G
QUESTION: do we have χo(G) ≤ k?
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We have the following:

� Theorem. OCNk is polynomial if k ≤ 3 and NP-complete if k ≥ 4.
(Klostermeyer, MacGillivray, 2002)

And even more:

� Theorem. OCN4 is NP-complete for bounded degree bipartite, or 
bounded degree acyclic oriented graphs

(Culus, Demange, 2006 – Ganian and Hliněný, 2010)

� Theorem. OCN4 is NP-complete for connected, cubic, planar, bi-
partite and acyclic oriented graphs (Coehlo, Faria, Gravier, Klein, 2013)

Consider the following decision problem:

OCNk: oriented k-colorability
INSTANCE: an oriented graph G
QUESTION: do we have χo(G) ≤ k?



Complexity issues (2)
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Even even more:

� Theorem. For every fixed g ≥ 3, OCN4 is NP-complete for oriented 
graphs that are planar, with girth at most g, bipartite, subcubic, 
with DAG-depth 3, with maximum outdegree 2 and maximum 
indegree 2, and such that every 3-vertex is adjacent to at most 
one 3-vertex!

(Guegan, Ochem, 2014+)
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Even even more:

� Theorem. For every fixed g ≥ 3, OCN4 is NP-complete for oriented 
graphs that are planar, with girth at most g, bipartite, subcubic, 
with DAG-depth 3, with maximum outdegree 2 and maximum 
indegree 2, and such that every 3-vertex is adjacent to at most 
one 3-vertex!

(Guegan, Ochem, 2014+)

� Remark. It is polynomial to decide whether an oriented graph 
admits a homomorphism to a tournament T of order 4, except
when T is the following (contains a directed cycle of length 4):



Complexity issues (3)
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Another related problem:

OWDk: orientation with weak diameter k

INSTANCE: an undirected graph U
QUESTION: does U admit an orientation with 

weak diameter k?

weak distance:  dw(u,v) = min { d(u,v), d(v,u) }



Complexity issues (3)

Éric Sopena – DMDOCW’15 109

Another related problem:

OWDk: orientation with weak diameter k

INSTANCE: an undirected graph U
QUESTION: does U admit an orientation with 

weak diameter k?

weak distance:  dw(u,v) = min { d(u,v), d(v,u) }

� Theorem. OWDk is NP-complete if k ≥ 2.
(Bensmail, Duvignau, Kirgizov, 2013+)
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Another related problem:

OWDk: orientation with weak diameter k

INSTANCE: an undirected graph U
QUESTION: does U admit an orientation with 

weak diameter k?

weak distance:  dw(u,v) = min { d(u,v), d(v,u) }

� Theorem. OWDk is NP-complete if k ≥ 2.
(Bensmail, Duvignau, Kirgizov, 2013+)

� Corollary. It is NP-complete to decide whether an undirected 
graph U admits an orientation which is an o-clique... 
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(Recall that) An oriented k-colouring of an oriented G is a partition of 
V(G) into k independent sets in such a way that all the arcs joining 
any two such sets have the same direction:
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(Recall that) An oriented k-colouring of an oriented G is a partition of 
V(G) into k independent sets in such a way that all the arcs joining 
any two such sets have the same direction:
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(Recall that) An oriented k-colouring of an oriented G is a partition of 
V(G) into k independent sets in such a way that all the arcs joining 
any two such sets have the same direction:

Simple colourings

� do not require the parts to be independent sets
� require at least two parts... (Nešetřil, Smolíková, 2000)
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(Recall that) An oriented k-colouring of an oriented G is a partition of 
V(G) into k independent sets in such a way that all the arcs joining 
any two such sets have the same direction:

Simple colourings

� do not require the parts to be independent sets
� require at least two parts... (Nešetřil, Smolíková, 2000)
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Simple colourings

� do not require the parts to be independent sets
� require at least two parts... (Nešetřil, Smolíková, 2000)
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Simple colourings

� do not require the parts to be independent sets
� require at least two parts... (Nešetřil, Smolíková, 2000)

For every oriented graph G,
χs(G) ≤ χo(G)
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Simple colourings

� do not require the parts to be independent sets
� require at least two parts... (Nešetřil, Smolíková, 2000)

For every oriented graph G,
χs(G) ≤ χo(G)

� Theorem. The maximum oriented chromatic number of planar 
graphs and the maximum simple chromatic number of planar 
graphs coincide... (Smolíková, 2000)
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In 2006, Chen and Wang introduced another weaker version of 
oriented colouring:
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In 2006, Chen and Wang introduced another weaker version of 
oriented colouring:

2-dipath colouring

A 2-dipath k-colouring of an oriented graph G is a mapping 

c : V(G) → {1, 2, ..., k} 

such that any two vertices linked by a directed path of length 1 or 2

get distinct colours.
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In 2006, Chen and Wang introduced another weaker version of 
oriented colouring:

2-dipath colouring

A 2-dipath k-colouring of an oriented graph G is a mapping 

c : V(G) → {1, 2, ..., k} 

such that any two vertices linked by a directed path of length 1 or 2

get distinct colours.

implies
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In 2006, Chen and Wang introduced another weaker version of 
oriented colouring:

2-dipath colouring

A 2-dipath k-colouring of an oriented graph G is a mapping 

c : V(G) → {1, 2, ..., k} 

such that any two vertices linked by a directed path of length 1 or 2

get distinct colours.

but is allowed...

implies
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In 2006, Chen and Wang introduced another weaker version of 
oriented colouring:

2-dipath colouring

A 2-dipath k-colouring of an oriented graph G is a mapping 

c : V(G) → {1, 2, ..., k} 

such that any two vertices linked by a directed path of length 1 or 2

get distinct colours.

2-dipath chromatic number

The 2-dipath chromatic number χ2d(G) of an oriented graph G is 
the smallest k for which G admits a 2-dipath k-colouring.



2-dipath colouring (2)
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Remark. A 2-dipath colouring of an oriented graph G may also be 
viewed as a L(1,1)-labelling of G (using directed distance).



2-dipath colouring (2)

Éric Sopena – DMDOCW’15 124

Remark. A 2-dipath colouring of an oriented graph G may also be 
viewed as a L(1,1)-labelling of G (using directed distance).

We have the following results:

� For every oriented graph G, χ2d(G) ≤ χo(G) (definition)
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Remark. A 2-dipath colouring of an oriented graph G may also be 
viewed as a L(1,1)-labelling of G (using directed distance).

We have the following results:

� For every oriented graph G, χ2d(G) ≤ χo(G) (definition)

� For every oriented graph G, χ2d(G) ≥ ωro(G) ≥ ωao(G) (definition)
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Remark. A 2-dipath colouring of an oriented graph G may also be 
viewed as a L(1,1)-labelling of G (using directed distance).

We have the following results:

� For every oriented graph G, χ2d(G) ≤ χo(G) (definition)

� For every oriented graph G, χ2d(G) ≥ ωro(G) ≥ ωao(G) (definition)

From these observations, we get:

� If G is an oriented outerplanar graph, then χ2d(G) ≤ 7, and this 
bound is tight

(recall that there exists an outerplanar o-clique of order 7)
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Remark. A 2-dipath colouring of an oriented graph G may also be 
viewed as a L(1,1)-labelling of G (using directed distance).

We have the following results:

� For every oriented graph G, χ2d(G) ≤ χo(G) (definition)

� For every oriented graph G, χ2d(G) ≥ ωro(G) ≥ ωao(G) (definition)

From these observations, we get:

� If G is an oriented outerplanar graph, then χ2d(G) ≤ 7, and this 
bound is tight

(recall that there exists an outerplanar o-clique of order 7)

� If G is an oriented planar graph, then χ2d(G) ≤ 80, and there exist 
planar graphs with 2-dipath chromatic number 15.
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� Theorem. If G is an oriented Halin graph, then χ2d(G) ≤ 7 (and this 
bound is tight). (Chen, Wang, 2006)

A tree with no
vertex of degree 2
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� Theorem. If G is an oriented Halin graph, then χ2d(G) ≤ 7 (and this 
bound is tight). (Chen, Wang, 2006)

A tree with no
vertex of degree 2

� Theorem. Determining whether an oriented graph is 2-dipath k-
colourable is polynomial if k ≤ 2 and NP-complete if k ≥ 3

(MacGillivray, Sherk, 2014)
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[MacGillivray, Sherk, 2014]

Let Gk, k ≥ 1, be the oriented graph defined as follows:

� V(Gk) = { (u0 ; u1, ..., uk) : 1 ≤ u0 ≤ k, ui ∈ {+,–} if i ≠ u0, uu0 = * }
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[MacGillivray, Sherk, 2014]

Let Gk, k ≥ 1, be the oriented graph defined as follows:

� V(Gk) = { (u0 ; u1, ..., uk) : 1 ≤ u0 ≤ k, ui ∈ {+,–} if i ≠ u0, uu0 = * }

Example. The oriented graph G3     (3.22 = 12 vertices)

(1;*++) (1;*+-) (1;*-+) (1;*--)

(2;+*+)

(2;+*-)

(2;-*+)

(2;-*-)

(3;++*)

(3;+-*)

(3;-+*)

(3;--*)
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[MacGillivray, Sherk, 2014]

Let Gk, k ≥ 1, be the oriented graph defined as follows:

� V(Gk) = { (u0 ; u1, ..., uk) : 1 ≤ u0 ≤ k, ui ∈ {+,–} if i ≠ u0, uu0 = * }

� E(Gk) = { (u0 ; u1, ..., uk)(v0 ; v1, ..., vk) : uv0 = +, vu0 = – }

Example. The oriented graph G3     (3.22 = 12 vertices)

(1;*++) (1;*+-) (1;*-+) (1;*--)

(2;+*+)

(2;+*-)

(2;-*+)

(2;-*-)

(3;++*)

(3;+-*)

(3;-+*)

(3;--*)
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[MacGillivray, Sherk, 2014]

Let Gk, k ≥ 1, be the oriented graph defined as follows:

� V(Gk) = { (u0 ; u1, ..., uk) : 1 ≤ u0 ≤ k, ui ∈ {+,–} if i ≠ u0, uu0 = * }

� E(Gk) = { (u0 ; u1, ..., uk)(v0 ; v1, ..., vk) : uv0 = +, vu0 = – }

Example. The oriented graph G3     (3.22 = 12 vertices)

(1;*++) (1;*+-) (1;*-+) (1;*--)

(2;+*+)

(2;+*-)

(2;-*+)

(2;-*-)

(3;++*)

(3;+-*)

(3;-+*)

(3;--*)
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[MacGillivray, Sherk, 2014]

Let Gk, k ≥ 1, be the oriented graph defined as follows:

� V(Gk) = { (u0 ; u1, ..., uk) : 1 ≤ u0 ≤ k, ui ∈ {+,–} if i ≠ u0, uu0 = * }

� E(Gk) = { (u0 ; u1, ..., uk)(v0 ; v1, ..., vk) : uv0 = +, vu0 = – }

Example. The oriented graph G3     (3.22 = 12 vertices)

(1;*++) (1;*+-) (1;*-+) (1;*--)

(2;+*+)

(2;+*-)

(2;-*+)

(2;-*-)

(3;++*)

(3;+-*)

(3;-+*)

(3;--*)
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� Theorem. For every k ≥ 1 and every oriented graph G,
χ2d(G) ≤ k iff G → Gk

(MacGillivray, Sherk, 2014)

(1;*++) (1;*+-) (1;*-+) (1;*--)

(2;+*+)

(2;+*-)

(2;-*+)

(2;-*-)

(3;++*)

(3;+-*)

(3;-+*)

(3;--*)
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Open Problem A. Determine the maximum oriented chromatic 

number of connected graphs with degree at most 3 (lies between 7 

and 9, conjectured to be 7).
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Open Problem A. Determine the maximum oriented chromatic 

number of connected graphs with degree at most 3 (lies between 7 

and 9, conjectured to be 7).

Open Problem B. Determine the maximum oriented chromatic 

number of graphs with degree at most 4 (lies between 12 and 67).
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Open Problem C. Determine the maximum oriented chromatic 

number of planar graphs (lies between 18 and 80).

Open Problem A. Determine the maximum oriented chromatic 

number of connected graphs with degree at most 3 (lies between 7 

and 9, conjectured to be 7).

Open Problem B. Determine the maximum oriented chromatic 

number of graphs with degree at most 4 (lies between 12 and 67).
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Open Problem C. Determine the maximum oriented chromatic 

number of planar graphs (lies between 18 and 80).

Open Problem A. Determine the maximum oriented chromatic 

number of connected graphs with degree at most 3 (lies between 7 

and 9, conjectured to be 7).

Open Problem B. Determine the maximum oriented chromatic 

number of graphs with degree at most 4 (lies between 12 and 67).
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Open Problem D. Determine the maximum oriented chromatic 

number of triangle-free planar graphs (lies between 11 and 40).

Open Problem C. Determine the maximum oriented chromatic 

number of planar graphs (lies between 18 and 80).

Open Problem A. Determine the maximum oriented chromatic 

number of connected graphs with degree at most 3 (lies between 7 

and 9, conjectured to be 7).

Open Problem B. Determine the maximum oriented chromatic 

number of graphs with degree at most 4 (lies between 12 and 67).
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Open Problem E. Determine the maximum oriented chromatic 
number of 2-dimensional grids (lies between 8 and 11).
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Open Problem F. Determine the maximum relative oriented clique 

number of planar graphs (lies between  15 and 80).

Open Problem E. Determine the maximum oriented chromatic 
number of 2-dimensional grids (lies between 8 and 11).
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Open Problem F. Determine the maximum relative oriented clique 

number of planar graphs (lies between  15 and 80).

Open Problem G. Determine the maximum relative oriented clique 

number of triangle-free planar graphs (lies between  10 and 26).

Open Problem E. Determine the maximum oriented chromatic 
number of 2-dimensional grids (lies between 8 and 11).
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Open Problem F. Determine the maximum relative oriented clique 

number of planar graphs (lies between  15 and 80).

Open Problem H. Determine the maximum 2-dipath chromatic 

number of planar graphs (again, lies between 18 and 80).

Open Problem G. Determine the maximum relative oriented clique 

number of triangle-free planar graphs (lies between  10 and 26).

Open Problem E. Determine the maximum oriented chromatic 
number of 2-dimensional grids (lies between 8 and 11).
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E. Sopena. Homomorphisms and colourings of oriented graphs: An 
updated survey. Discrete Math., available online (April 2015).
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E. Sopena. Homomorphisms and colourings of oriented graphs: An 
updated survey. Discrete Math., available online (April 2015).
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T → H → A → N → K Y → O → U
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E. Sopena. Homomorphisms and colourings of oriented graphs: An 
updated survey. Discrete Math., available online (April 2015).

Bordeaux Graphs Workshop

BGW’2016
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