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Outline

» Preliminary (basic) notions

» Homomorphisms and colourings of oriented graphs
(oriented chromatic number, oriented cliques, oriented clique
numbers, complexity)

» Simple colourings
» 2-dipath colourings

» Some open problems
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Preliminary (basic) notions (1)

Colourings of undirected graphs

A (proper) k-colouring of a (simple, loopless) graph G is a mapping
c:V(G) - {1, 2, ..., k}
such that every two adjacent vertices are assigned distinct colours.
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Preliminary (basic) notions (1)

Colourings of undirected graphs

A (proper) k-colouring of a (simple, loopless) graph G is a mapping
c:V(G) - {1, 2, ..., k}
such that every two adjacent vertices are assigned distinct colours.
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The chromatic number X(G) of G is the smallest k for which G has a

k-colouring.
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Preliminary (basic) notions (1)

Colourings of undirected graphs

A (proper) k-colouring of a (simple, loopless) graph G is a mapping
c:V(G) - {1, 2, ..., k}
such that every two adjacent vertices are assigned distinct colours.

2 3
1<I:I>2 <I:I>
3 1 X=3

The chromatic number X(G) of G is the smallest k for which G has a
k-colouring.
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Preliminary (basic) notions (2)

Homomorphisms of undirected graphs

A homomorphism from G to H is a mapping h : V(G) — V(H) such
that :

xy U E(G) = h(x)h(y) U E(H)
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Homomorphisms of undirected graphs

A homomorphism from G to H is a mapping h : V(G) — V(H) such
that :

xy U E(G) = h(x)h(y) U E(H)

— s

Eric Sopena— DMDOCW’15



Preliminary (basic) notions (2)

Homomorphisms of undirected graphs

A homomorphism from G to H is a mapping h : V(G) — V(H) such
that :

xy U E(G) = h(x)h(y) U E(H)

— s

(H-colouring of G)
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Preliminary (basic) notions (2)

Homomorphisms of undirected graphs

A homomorphism from G to H is a mapping h : V(G) — V(H) such
that :

xy U E(G) = h(x)h(y) U E(H)

— s

(H-colouring of G)

Notation.

G — H :there exists a homomorphism from G to H
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Preliminary (basic) notions (3)

Colourings vs homomorphisms

A k-colouring of G is nothing but a homomorphism from G to K,,
the complete graph on k vertices.

Eric Sopena— DMDOCW’15
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Preliminary (basic) notions (3)

Colourings vs homomorphisms

A k-colouring of G is nothing but a homomorphism from G to K,,

the complete graph on k vertices.
— <T
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Preliminary (basic) notions (3)

Colourings vs homomorphisms

A k-colouring of G is nothing but a homomorphism from G to K,,

the complete graph on k vertices.
— <T

X(G)=k ifandonlyif G - K,andG L K,

Remark.
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Preliminary (basic) notions (4)

Oriented graphs

An oriented graph is an antisymmetric (simple, loopless) digraph
(no directed cycle of length 1 or 2).

]
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Preliminary (basic) notions (4)

Oriented graphs

An oriented graph is an antisymmetric (simple, loopless) digraph
(no directed cycle of length 1 or 2).

o

An oriented graph is an orientation of its underlying undirected
graph, obtained by giving to each edge one of its two possible
orientations.
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Preliminary (basic) notions (5)

Homomorphisms of oriented graphs

A homomorphism from G to H is a mapping h : V(G) — V(H) such
that :

xy U E(G) = h(x)h(y) U E(H)

Eric Sopena— DMDOCW’15
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Preliminary (basic) notions (5)

Homomorphisms of oriented graphs

A homomorphism from G to H is a mapping h : V(G) — V(H) such
that :

xy U E(G) = h(x)h(y) U E(H)

RS

Eric Sopena— DMDOCW’15

18



Oriented colourings

(1)

Oriented colourings of oriented graphs

An oriented k-colouring of an oriented graph G is a mapping
c:V(G) - {1, 2, ..., k}
such that:

Eric Sopena— DMDOCW’15
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Oriented colourings

Oriented colourings of oriented graphs

An oriented k-colouring of an oriented graph G is a mapping
c:V(G) - {1, 2, ..., k}
such that:
(1) uv U E(G) = c(u) #c(v)
(2) uv, xy U E(G), c(u) =cly) = c(v) # c(x)

Eric Sopena— DMDOCW’15
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Oriented colourings

(1)

Oriented colourings of oriented graphs

An oriented k-colouring of an oriented graph G is a mapping
c:V(G) - {1, 2, ..., k}
such that:
(1) uv U E(G) = c(u) #c(v)
(2) uv, xy U E(G), c(u) =cly) = c(v) # c(x)

— 0 — 0<><o
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Oriented colourings (1)

Oriented colourings of oriented graphs

An oriented k-colouring of an oriented graph G is a mapping
c:V(G) - {1, 2, ..., k}
such that:
(1) uv U E(G) = c(u) #c(v)
(2) uv, xy U E(G), c(u) =cly) = c(v) # c(x)

— 0 — 0<><o

Hence, all the arcs linking two colour classes (independent sets)
must have the same direction (non-local condition...).

Eric Sopena— DMDOCW’15
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Oriented colourings

(2)

Examples.

Eric Sopena— DMDOCW’15
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Oriented colourings (2)

Examples.
o—0—

Any two vertices linked
by a directed path of length 1 or 2
must get distinct colours.
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Oriented colourings (2)

Examples.
o—0—

Any two vertices linked
by a directed path of length 1 or 2
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Oriented colourings (2)

Examples.
o—0—

Any two vertices linked
by a directed path of length 1 or 2
must get distinct colours.

d N
e
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Oriented colourings (3)

Remark.

An oriented k-colouring of an oriented graph is nothing but a
homomorphism to a given oriented graph (or tournament) with k
vertices.

Eric Sopena— DMDOCW’15
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Oriented colourings (3)

Remark.

An oriented k-colouring of an oriented graph is nothing but a
homomorphism to a given oriented graph (or tournament) with k

vertices.

L <

The target graph gives
the orientation of arcs
linking any two colour
classes...
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Oriented chromatic number (1)

Oriented chromatic number of oriented graphs

The oriented chromatic number X (G) of an oriented graph G is
the smallest k for which G admits an oriented k-colouring.

(Or, equivalently, the smallest order of an oriented graph H such
that G — H)
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Oriented chromatic number (1)

Oriented chromatic number of oriented graphs

The oriented chromatic number X (G) of an oriented graph G is
the smallest k for which G admits an oriented k-colouring.

(Or, equivalently, the smallest order of an oriented graph H such
that G — H)

UZN -
==
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Oriented chromatic number (2)

Oriented chromatic number of undirected graphs

The oriented chromatic number X (U) of an undirected graph U is
the smallest k for which every orientation of U admits an oriented
k-colouring:

X,(U) = max {X,(G); G is an orientation of U }
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Oriented chromatic number (2)

Oriented chromatic number of undirected graphs

The oriented chromatic number X (U) of an undirected graph U is
the smallest k for which every orientation of U admits an oriented
k-colouring:

X,(U) = max {X,(G); G is an orientation of U }

Xo =2
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Oriented chromatic number (2)

Oriented chromatic number of undirected graphs

The oriented chromatic number X (U) of an undirected graph U is
the smallest k for which every orientation of U admits an oriented
k-colouring:

X,(U) = max {X,(G); G is an orientation of U }

Observation.
X(U)=min{... }

Xo =2
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X, of some graph classes

(1)

» If Gis a forest, then X (G) <3

Eric Sopena— DMDOCW’15
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X, of some graph classes
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» If Gis a forest, then X (G) <3
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X, of some graph classes

(1)

» If Gis a forest, then X (G) <3
: — -<T
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X, of some graph classes

(1)

» If Gis a forest, then X (G) <3
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X, of some graph classes

(1)

» If Gis a forest, then X (G) <3
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X, of some graph classes

(1)

» If Gis a forest, then X (G) <3

» Theorem. If G is an outerplanar graph, then X (G) <7
(and this bound is tight)

Eric Sopena— DMDOCW’15
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X, of some graph classes (1)

» If Gis a forest, then X (G) <3 (easy)

» Theorem. If G is an outerplanar graph, then X (G) <7
(and this bound is tight)

The target graph is the tournament QR, defined as follows:

-V(QR,) =10, 1, ..., 6}
-uv LJE(QR,) iff v=u(mod7)=1,20r4

(non-zero quadratic residues of 7)

6@ 1

5@ 2

A ®;
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X, of some graph classes (1)

» If Gis a forest, then X (G) <3 (easy)

» Theorem. If G is an outerplanar graph, then X (G) <7
(and this bound is tight)

The target graph is the tournament QR, defined as follows:

-V(QR,) =10, 1, ..., 6}
-uv LJE(QR,) iff v=u(mod7)=1,20r4

(non-zero quadratic residues of 7)

5@ 2

4 3
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X, of some graph classes (1)

» If Gis a forest, then X (G) <3 (easy)

» Theorem. If G is an outerplanar graph, then X (G) <7
(and this bound is tight)

The target graph is the tournament QR, defined as follows:

-V(QR,) =10, 1, ..., 6}
-uv LJE(QR,) iff v=u(mod7)=1,20r4

(non-zero quadratic residues of 7)

Property. For every arc uv L E(QR,), there
6@ 1 exists a vertex w for every possible
orientation of the edges uw and vw:

5@ 2

o 1 o 1 o 1 o 1
o o O O
¥ S T VARV VARV,
2 4 3,5 6
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X, of some graph classes

(1)

» If Gis a forest, then X (G) <3

» Theorem. If G is an outerplanar graph, then X (G) <7
(and this bound is tight)

Since every outerplanar graph contains a vertex of degree at
most 2 we are done...

(easy)

o — o & > e—e
0]
Property. For every arc uv L E(QR,), there
6@ 1 exists a vertex w for every possible
orientation of the edges uw and vw:
5@ 2 o 1 o0 1 0 1 o0 1
YV VYNV
8 8 V
2 4 3,5 6
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45



X, of some graph classes

(17)

» If Gis a forest, then X (G) <3

» Theorem. If G is an outerplanar graph, then X (G) <7
(and this bound is tight)

An outerplanar graph with oriented chromatic number 7:

Eric Sopena— DMDOCW’15
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X, of some graph classes (2)

Graphs with bounded acyclic chromatic number

A k-colouring of an undirected graph U is acyclic if every cycle in U
uses at least 3 colours.
(In other words, any two colours induce a forest.)

Eric Sopena— DMDOCW’15
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X, of some graph classes (2)

Graphs with bounded acyclic chromatic number

A k-colouring of an undirected graph U is acyclic if every cycle in U
uses at least 3 colours.
(In other words, any two colours induce a forest.)

» Theorem. Every planar graph admits an acyclic 5-coloring
(and this bound is tight) (Borodin, 1979)
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X, of some graph classes (2)

Graphs with bounded acyclic chromatic number

A k-colouring of an undirected graph U is acyclic if every cycle in U
uses at least 3 colours.

(In other words, any two colours induce a forest.)

» Theorem. Every planar graph admits an acyclic 5-coloring
(and this bound is tight) (Borodin, 1979)

Eric Sopena— DMDOCW’15

53



X, of some graph classes (2)

Graphs with bounded acyclic chromatic number

A k-colouring of an undirected graph U is acyclic if every cycle in U
uses at least 3 colours.

(In other words, any two colours induce a forest.)

» Theorem. Every planar graph admits an acyclic 5-coloring
(and this bound is tight) (Borodin, 1979)

» Theorem. If G has acyclic chromatic number at most k, then

XO(G) <k.2k1 (Raspaud, S., 1994)
(and this bound is tight)

(Ochem, 2005)
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X, of some graph classes (2)

Graphs with bounded acyclic chromatic number

A k-colouring of an undirected graph U is acyclic if every cycle in U
uses at least 3 colours.

(In other words, any two colours induce a forest.)

» Theorem. Every planar graph admits an acyclic 5-coloring
(and this bound is tight) (Borodin, 1979)

» Theorem. If G has acyclic chromatic number at most k, then

XO(G) <k.2k1 (Raspaud, S., 1994)
(and this bound is tight)

(Ochem, 2005)
» Corollary. If G is planar, then X,(G) <80
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X, of some graph classes (2)

Graphs with bounded acyclic chromatic number

A k-colouring of an undirected graph U is acyclic if every cycle in U
uses at least 3 colours.

(In other words, any two colours induce a forest.)

» Theorem. Every planar graph admits an acyclic 5-coloring
(and this bound is tight) (Borodin, 1979)

» Theorem. If G has acyclic chromatic number at most k, then
Xo(G) £ k. 2k1 (Raspaud, S., 1994)
(and this bound is tight)

(Ochem, 2005)

» Corollary. If G is planar, then X,(G) <80
Best known lower bound : 18 (Marshall, 2012)
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X, of some graph classes (2)

Graphs with bounded acyclic chromatic number

» Theorem. If G has acyclic chromatic number at most k, then
XO(G) <k.2k1 (Raspaud, S., 1994)

Sketch of proof.

Eric Sopena— DMDOCW’15 57



X, of some graph classes (2)

Graphs with bounded acyclic chromatic number

» Theorem. If G has acyclic chromatic number at most k, then
XO(G) <k.2k1 (Raspaud, S., 1994)

Sketch of proof.
Let G be a graph and c a k-acyclic colouring of G.
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X, of some graph classes (2)

Graphs with bounded acyclic chromatic number

» Theorem. If G has acyclic chromatic number at most k, then
XO(G) <k.2k1 (Raspaud, S., 1994)

Sketch of proof.
Let G be a graph and c a k-acyclic colouring of G.

Let a,b be any two colours with a < b and H be any orientation of G.

Consider the subgraph H, , induced by vertices with colour a or b
(H,, is a forest).

Eric Sopena— DMDOCW’15
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X, of some graph classes (2)

Graphs with bounded acyclic chromatic number

» Theorem. If G has acyclic chromatic number at most k, then
XO(G) <k.2k1 (Raspaud, S., 1994)

Sketch of proof.
Let G be a graph and c a k-acyclic colouring of G.

Let a,b be any two colours with a < b and H be any orientation of G.
Consider the subgraph H, , induced by vertices with colour a or b

(H,, is a forest).

a<b ‘f‘\'
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X, of some graph classes (2)

Graphs with bounded acyclic chromatic number

» Theorem. If G has acyclic chromatic number at most k, then
XO(G) <k.2k1 (Raspaud, S., 1994)

Sketch of proof. a<b

Choose a vertex (root) in each component of H,_ ,. ® O
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X, of some graph classes (2)

Graphs with bounded acyclic chromatic number

» Theorem. If G has acyclic chromatic number at most k, then
XO(G) <k.2k1 (Raspaud, S., 1994)

Sketch of proof. a<b

Choose a vertex (root) in each component of H,_ ,. ® O
Associate a bit with value 0 with each of them.

0
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X, of some graph classes (2)

Graphs with bounded acyclic chromatic number

» Theorem. If G has acyclic chromatic number at most k, then
XO(G) <k.2k1 (Raspaud, S., 1994)

Sketch of proof. a<b
® O

Choose a vertex (root) in each component of H,_ ,.
Associate a bit with value 0 with each of them.

Apply the following rule: -

®—® (a<b):keepthe same bit
®—@® (b>a):change the bit
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X, of some graph classes (2)

Graphs with bounded acyclic chromatic number

» Theorem. If G has acyclic chromatic number at most k, then
XO(G) <k.2k1 (Raspaud, S., 1994)

Sketch of proof. a<b
® O

Choose a vertex (root) in each component of H,_ ,.
Associate a bit with value 0 with each of them.

Apply the following rule: - 0
®—® (a<b):keepthe same bit
®—@® (b>a):change the bit 1
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X, of some graph classes (2)

Graphs with bounded acyclic chromatic number

» Theorem. If G has acyclic chromatic number at most k, then
XO(G) <k.2k1 (Raspaud, S., 1994)

Sketch of proof. a<b
Choose a vertex (root) in each component of H,_ ,. ® O
Associate a bit with value 0 with each of them. "

Apply the following rule:

0

®—® (a<b):keepthe same bit
®—@® (b>a):change the bit
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X, of some graph classes (2)

Graphs with bounded acyclic chromatic number

» Theorem. If G has acyclic chromatic number at most k, then
XO(G) <k.2k1 (Raspaud, S., 1994)

Sketch of proof. a<b
Choose a vertex (root) in each component of H,_ ,. ® O
Associate a bit with value 0 with each of them. "

Apply the following rule:

0

®—® (a<b):keepthe same bit
®—@® (b>a):change the bit
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X, of some graph classes (2)

Graphs with bounded acyclic chromatic number

» Theorem. If G has acyclic chromatic number at most k, then
XO(G) <k.2k1 (Raspaud, S., 1994)

Sketch of proof.

Doing that, we have constructed a
homomorphism from H, , to the 2-coloured

directed 4-cycle. 5 , Lol
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X, of some graph classes (2)

Graphs with bounded acyclic chromatic number

» Theorem. If G has acyclic chromatic number at most k, then
XO(G) <k.2k1 (Raspaud, S., 1994)

Sketch of proof.

Doing that, we have constructed a
homomorphism from H, , to the 2-coloured
directed 4-cycle. 5 , ol
With any colour a, we associate k-1 such
bits (one for each other colour).
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X, of some graph classes (2)

Graphs with bounded acyclic chromatic number

» Theorem. If G has acyclic chromatic number at most k, then
XO(G) <k.2k1 (Raspaud, S., 1994)

Sketch of proof.

Doing that, we have constructed a
homomorphism from H, , to the 2-coloured
directed 4-cycle. 5 , ol
With any colour a, we associate k-1 such
bits (one for each other colour).

We thus obtain an oriented colouring of H
using at most k. 21 colours. 0 | @< o1
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X, of some graph classes

(3)

Planar graphs

The girth g(G) of G is the size of a shortest cycle in G.

Eric Sopena— DMDOCW’15
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X, of some graph classes (3)

Planar graphs

The girth g(G) of G is the size of a shortest cycle in G.

> The best known results are as follows:

: lower upper
girth bound bssnd
> 3 18 80 Marshall, 2012 — Raspaud, S., 1994
11 40 Ochem, 2004 — Ochem, Pinlou, 2011
> 7 16 Marshall, 2012 — Pinlou, 2009
> 7 11 id. — Borodin, Kostochka, Nesetfil, Raspaud, S., 1999
> 6 7 Nesetfil, Raspaud, S., 1997 — Borodin, lvanova, 2005
5 7 Nesetfil, Raspaud, S., 1997 — Borodin, lvanova, 2005
> 5 6 Nesettil, Raspaud, S., 1997 — Marshall, 2015
>12 5 5 Nesetfil, Raspaud, S., 1997 — Borodin, lvanova, Kostochka, 2007

Eric Sopena— DMDOCW’15
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X, of some graph classes

(4)

Halin graphs

i A tree with no
‘ vertex of degree 2 .

-

Eric Sopena— DMDOCW’15
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X, Of some graph classes (4)

i A tree with no
‘ vertex of degree 2 .

» Theorem. Every Halin graph G satisfies X (G) < 8 (tight bound)
(Dybizbanski, Szepietowski, 2014)

Halin graphs
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X, Of some graph classes (4)

i A tree with no
‘ vertex of degree 2 .

» Theorem. Every Halin graph G satisfies X (G) < 8 (tight bound)
(Dybizbanski, Szepietowski, 2014)

Halin graphs

Square grids

» Theorem. For every integers mandn, X (P, OP,) <11
(Fertin, Raspaud, Roychowdhury, 2003)
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X, Of some graph classes (4)

i A tree with no
‘ vertex of degree 2 .

» Theorem. Every Halin graph G satisfies X (G) < 8 (tight bound)

(Dybizbanski, Szepietowski, 2014)

Halin graphs

Square grids

» Theorem. For every integers mandn, X (P, OP,) <11
(Fertin, Raspaud, Roychowdhury, 2003)

XO(P7 o P212) 28 (Dybizbanski, Nenca, 2012)
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X, of some graph classes (5)

Graphs with bounded degree

» Every graph G with maximum degree 2, except the directed cycle
on 5 vertices, satisfies X (G) <4 (easy)
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X, of some graph classes (5)

Graphs with bounded degree

» Every graph G with maximum degree 2, except the directed cycle
on 5 vertices, satisfies X (G) <4 (easy)

» Theorem. If G is a graph with maximum degree 3, then X (G) <9
(Duffy, 2014+)
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X, of some graph classes (5)

Graphs with bounded degree

» Every graph G with maximum degree 2, except the directed cycle
on 5 vertices, satisfies X (G) <4 (easy)

» Theorem. If G is a graph with maximum degree 3, then X (G) <9
(Duffy, 2014+)

There exist such graphs with
oriented chromatic number 7:

.
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X, of some graph classes (5)

Graphs with bounded degree

» Every graph G with maximum degree 2, except the directed cycle
on 5 vertices, satisfies X (G) <4 (easy)

» Theorem. If G is a graph with maximum degree 3, then X (G) <9
(Duffy, 2014+)

There exist such graphs with
oriented chromatic number 7:
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X, of some graph classes (5)

Graphs with bounded degree

» Every graph G with maximum degree 2, except the directed cycle
on 5 vertices, satisfies X (G) <4 (easy)

» Theorem. If G is a graph with maximum degree 3, then X (G) <9
(Duffy, 2014+)

There exist such graphs with
oriented chromatic number 7:

e

» Conjecture. If G is a connected cubic graph, then X (G) < 7.
(S., 1997)
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X, of some graph classes (5)

Graphs with bounded degree

» Every graph G with maximum degree 2, except the directed cycle
on 5 vertices, satisfies X (G) <4 (easy)

» Theorem. If G is a graph with maximum degree 3, then X (G) <9
(Duffy, 2014+)

There exist such graphs with
oriented chromatic number 7:

e

» Conjecture. If G is a connected cubic graph, then X (G) < 7.
(S., 1997)

» Theorem. If G is a graph with maximum degree 4, then

X,(G) <67 (best known lower bound is 12) (Duffy, 2014+)
Eric Sopena— DMDOCW’15 31



Oriented cliques (o-cliques) (1)

A well-known fact is that the (ordinary) chromatic number X(G) of
an undirected graph G is bounded from below by the cligue number
wW(G) of G (maximum order of a clique in G): X(G) = W(G).
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Oriented cliques (o-cliques) (1)

A well-known fact is that the (ordinary) chromatic number X(G) of
an undirected graph G is bounded from below by the cligue number
wW(G) of G (maximum order of a clique in G): X(G) = W(G).

Of course, a similar relation holds for oriented graphs...
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Oriented cliques (o-cliques) (1)

A well-known fact is that the (ordinary) chromatic number X(G) of
an undirected graph G is bounded from below by the cligue number
wW(G) of G (maximum order of a clique in G): X(G) = W(G).

Of course, a similar relation holds for oriented graphs...

Oriented cliques
An oriented clique Cis an oriented graph satisfying X (C) = | V(C)].
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Oriented cliques (o-cliques) (1)

A well-known fact is that the (ordinary) chromatic number X(G) of
an undirected graph G is bounded from below by the cligue number

wW(G) of G (maximum order of a clique in G): X(G) = W(G).

Of course, a similar relation holds for oriented graphs...

Oriented cliques
An oriented clique Cis an oriented graph satisfying X (C) = | V(C)].

Examples.

ol

(all tournaments)
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Oriented cliques (o-cliques) (1)

A well-known fact is that the (ordinary) chromatic number X(G) of
an undirected graph G is bounded from below by the cligue number

wW(G) of G (maximum order of a clique in G): X(G) = W(G).

Of course, a similar relation holds for oriented graphs...

Oriented cliques
An oriented clique Cis an oriented graph satisfying X (C) = | V(C)].

Examples.

ol

(all tournaments) \ /
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Oriented cliques (o-cliques) (1)

A well-known fact is that the (ordinary) chromatic number X(G) of
an undirected graph G is bounded from below by the cligue number

wW(G) of G (maximum order of a clique in G): X(G) = W(G).

Of course, a similar relation holds for oriented graphs...

Oriented cliques
An oriented clique Cis an oriented graph satisfying X (C) = | V(C)].

Examples.
Remark. An o-clique is nothing

but an oriented graph in which
any two vertices are linked by
a directed path (in any

(all tournaments) \ / direction) of length at most 2.

Eric Sopena— DMDOCW’15
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Oriented cliques (o-cliques)

(2)

Building oriented o-cliques of order 2%- 1

o o— —0

/

Eric Sopena— DMDOCW’15
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Oriented cliques (o-cliques) (3)

Structural properties of o-cliques

» Theorem. The minimum number of edges in an o-clique of order
nis (1 + o(1))nlog,n.
(FUredi, Horak, Parrek, Zhu, 1998 — Kostochka, tuczak, Simonyi, S., 1999)
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Oriented cliques (o-cliques) (3)

Structural properties of o-cliques

» Theorem. The minimum number of edges in an o-clique of order
nis (1 + o(1))nlog,n.
(FUredi, Horak, Parrek, Zhu, 1998 — Kostochka, tuczak, Simonyi, S., 1999)

» Theorem. The order of a planar o-clique is at most 36.
(Klostermeyer, MacGillivray, 2002)
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Oriented cliques (o-cliques) (3)

Structural properties of o-cliques

» Theorem. The minimum number of edges in an o-clique of order
nis (1 + o(1))nlog,n.
(FUredi, Horak, Parrek, Zhu, 1998 — Kostochka, tuczak, Simonyi, S., 1999)
» Theorem. The order of a planar o-clique is at most 36.
(Klostermeyer, MacGillivray, 2002)

» Conjecture. The maximum order of a planar o-clique is 15.
(id.)
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Oriented cliques (o-cliques) (3)

Structural properties of o-cliques

» Theorem. The minimum number of edges in an o-clique of order
nis (1 + o(1))nlog,n.
(FUredi, Horak, Parrek, Zhu, 1998 — Kostochka, tuczak, Simonyi, S., 1999)
» Theorem. The order of a planar o-clique is at most 36.
(Klostermeyer, MacGillivray, 2002)

» Theorem. The maximum order of a planar o-clique is 15.
(Sen, 2012)
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Oriented cliques (o-cliques) (3)

Structural properties of o-cliques

» Theorem. The minimum number of edges in an o-clique of order
nis (1 + o(1))nlog,n.
(FUredi, Horak, Parrek, Zhu, 1998 — Kostochka, tuczak, Simonyi, S., 1999)

» Theorem. The order of a planar o-clique is at most 36.
(Klostermeyer, MacGillivray, 2002)

» Theorem. The maximum order of a planar o-clique is 15.

(Sen, 2012)
K e
: R :/ A

>
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L
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Oriented cligue numbers... (1)

The oriented clique number of an oriented graph may be defined in
two different ways...

Eric Sopena— DMDOCW’15
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Oriented cligue numbers... (1)

The oriented clique number of an oriented graph may be defined in
two different ways...

Absolute oriented cligue number

The absolute oriented clique number w, (G) of an oriented graph
G is the maximum order of an o-clique subgraph of G.

Eric Sopena— DMDOCW’15

95



Oriented cligue numbers... (1)

The oriented clique number of an oriented graph may be defined in
two different ways...

Absolute oriented cligue number

The absolute oriented clique number w, (G) of an oriented graph
G is the maximum order of an o-clique subgraph of G.

Relative oriented clique number

The relative oriented cligue number w, (G) of an oriented graph G
is the maximum size of a subset S of V(G) satisfying: every two
vertices in S are linked (in G) by a directed path of length at most 2.
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Oriented cligue numbers... (1)

The oriented clique number of an oriented graph may be defined in
two different ways...

Absolute oriented cligue number

The absolute oriented clique number w, (G) of an oriented graph
G is the maximum order of an o-clique subgraph of G.

Relative oriented clique number

The relative oriented cligue number w, (G) of an oriented graph G
is the maximum size of a subset S of V(G) satisfying: every two
vertices in S are linked (in G) by a directed path of length at most 2.
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Oriented cliqgue numbers...

(2)

Example.

Eric Sopena— DMDOCW’15
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Oriented cliqgue numbers...

(2)

Example.
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Oriented cligue numbers... (2)

Example.
Y12
@
Ooao = 3
W, =k
‘ ‘ ro
X1

Clearly, for every oriented graph G, we have:

w,,(G) < W (G) < X,(G)
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Oriented cliqgue numbers...

(3)

For planar graphs with given girth, the following is known:

Eric Sopena— DMDOCW’15

girth W, W,
3 15 15<...<80
4 6 10<...£26
5 5 6
6 3 4
=7 3 3

(Sen, 2013+)
(Nandy, Sen, S., 2014+)
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Complexity issues (1)

Consider the following decision problem:

OCN,: oriented k-colorability
INSTANCE: an oriented graph G
QUESTION: do we have X (G) < k?
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Complexity issues (1)

Consider the following decision problem:

OCN,: oriented k-colorability
INSTANCE: an oriented graph G
QUESTION: do we have X (G) < k?

We have the following:

» Theorem. OcN, is polynomial if k <3 and NP-complete if k > 4.
(Klostermeyer, MacGillivray, 2002)
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Complexity issues (1)

Consider the following decision problem:

OCN,: oriented k-colorability
INSTANCE: an oriented graph G
QUESTION: do we have X (G) < k?

We have the following:

» Theorem. OcN, is polynomial if k <3 and NP-complete if k > 4.
(Klostermeyer, MacGillivray, 2002)
And even more:

» Theorem. ocN, is NP-complete for bounded degree bipartite, or
bounded degree acyclic oriented graphs

(Culus, Demange, 2006 — Ganian and Hlinény, 2010)
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Complexity issues (1)

Consider the following decision problem:

OCN,: oriented k-colorability
INSTANCE: an oriented graph G
QUESTION: do we have X (G) < k?

We have the following:

» Theorem. OcN, is polynomial if k <3 and NP-complete if k > 4.
(Klostermeyer, MacGillivray, 2002)
And even more:

» Theorem. ocN, is NP-complete for bounded degree bipartite, or
bounded degree acyclic oriented graphs

(Culus, Demange, 2006 — Ganian and Hlinény, 2010)

» Theorem. ocN, is NP-complete for connected, cubic, planar, bi-

partite and acyclic oriented graphs (Coehlo, Faria, Gravier, Klein, 2013)
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Complexity issues (2)

Even even more:

» Theorem. For every fixed g = 3, ocN, is NP-complete for oriented
graphs that are planar, with girth at most g, bipartite, subcubic,
with DAG-depth 3, with maximum outdegree 2 and maximum
indegree 2, and such that every 3-vertex is adjacent to at most
one 3-vertex!

(Guegan, Ochem, 2014+)
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Complexity issues (2)

Even even more:

» Theorem. For every fixed g = 3, ocN, is NP-complete for oriented
graphs that are planar, with girth at most g, bipartite, subcubic,
with DAG-depth 3, with maximum outdegree 2 and maximum
indegree 2, and such that every 3-vertex is adjacent to at most
one 3-vertex!

(Guegan, Ochem, 2014+)

» Remark. It is polynomial to decide whether an oriented graph
admits a homomorphism to a tournament T of order 4, except
when T is the following (contains a directed cycle of length 4):
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Complexity issues

(3)

Another related problem:

OWD,:
INSTANCE:
QUESTION:

orientation with weak diameter k

an undirected graph U
does U admit an orientation with
weak diameter k?

weak distance: d (u,v) = min {d(u,v), d(v,u) }

Eric Sopena— DMDOCW’15

108



Complexity issues (3)

Another related problem:

OWD,: orientation with weak diameter k

INSTANCE: an undirected graph U
QUESTION: does U admit an orientation with
weak diameter k?

weak distance: d (u,v) = min {d(u,v), d(v,u) }

» Theorem. owb, is NP-complete if k= 2.
(Bensmail, Duvignau, Kirgizov, 2013+)
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Complexity issues (3)

Another related problem:

OWD,: orientation with weak diameter k

INSTANCE: an undirected graph U
QUESTION: does U admit an orientation with
weak diameter k?

weak distance: d (u,v) = min {d(u,v), d(v,u) }

» Theorem. owb, is NP-complete if k= 2.
(Bensmail, Duvignau, Kirgizov, 2013+)

» Corollary. It is NP-complete to decide whether an undirected
graph U admits an orientation which is an o-clique...

Eric Sopena— DMDOCW’15 110



Simple colourings (1)

(Recall that) An oriented k-colouring of an oriented G is a partition of
V(G) into k independent sets in such a way that all the arcs joining
any two such sets have the same direction:
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Simple colourings (1)

(Recall that) An oriented k-colouring of an oriented G is a partition of
V(G) into k independent sets in such a way that all the arcs joining
any two such sets have the same direction:
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Simple colourings (1)

(Recall that) An oriented k-colouring of an oriented G is a partition of
V(G) into k independent sets in such a way that all the arcs joining
any two such sets have the same direction:

Simple colourings

» do not require the parts to be independent sets
» require at least two parts... (NesetFil, Smolikova, 2000)
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Simple colourings (1)

(Recall that) An oriented k-colouring of an oriented G is a partition of
V(G) into k independent sets in such a way that all the arcs joining
any two such sets have the same direction:

Simple colourings

» do not require the parts to be independent sets
» require at least two parts... (NesetFil, Smolikova, 2000)
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Simple colourings (17)

Simple colourings

» do not require the parts to be independent sets
» require at least two parts... (NesetFil, Smolikova, 2000)
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Simple colourings (17)

For every oriented graph G,
Simple colourings Xs(G) < X,(G)

» do not require the parts to be independent sets
» require at least two parts... (NesetFil, Smolikova, 2000)
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Simple colourings (2)

» Theorem. The maximum oriented chromatic number of planar
graphs and the maximum simple chromatic number of planar
graphs coincide... (Smolikova, 2000)

For every oriented graph G,
Simple colourings Xs(G) < X,(G)

» do not require the parts to be independent sets
» require at least two parts... (NesetFil, Smolikova, 2000)
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2-dipath colouring (1)

In 2006, Chen and Wang introduced another weaker version of
oriented colouring:
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2-dipath colouring (1)

In 2006, Chen and Wang introduced another weaker version of
oriented colouring:

2-dipath colouring
A 2-dipath k-colouring of an oriented graph G is a mapping
c:V(G) - {1, 2, ..., k}
such that any two vertices linked by a directed path of length 1 or 2
get distinct colours.
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2-dipath colouring (1)

In 2006, Chen and Wang introduced another weaker version of
oriented colouring:

2-dipath colouring
A 2-dipath k-colouring of an oriented graph G is a mapping
c:V(G) - {1, 2, ..., k}
such that any two vertices linked by a directed path of length 1 or 2
get distinct colours.

o—0 o—0
implies

o—0—0 O > >
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2-dipath colouring (1)

In 2006, Chen and Wang introduced another weaker version of
oriented colouring:

2-dipath colouring
A 2-dipath k-colouring of an oriented graph G is a mapping
c:V(G) - {1, 2, ..., k}
such that any two vertices linked by a directed path of length 1 or 2
get distinct colours.

(O—() L —
implies
®o—0—0 % > >
but is allowed...
®o—0
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2-dipath colouring (1)

In 2006, Chen and Wang introduced another weaker version of
oriented colouring:

2-dipath colouring
A 2-dipath k-colouring of an oriented graph G is a mapping
c:V(G) - {1, 2, ..., k}

such that any two vertices linked by a directed path of length 1 or 2
get distinct colours.

2-dipath chromatic number

The 2-dipath chromatic number X,4(G) of an oriented graph G is
the smallest k for which G admits a 2-dipath k-colouring.
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2-dipath colouring (2)

Remark. A 2-dipath colouring of an oriented graph G may also be
viewed as a L(1,1)-labelling of G (using directed distance).
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2-dipath colouring (2)

Remark. A 2-dipath colouring of an oriented graph G may also be
viewed as a L(1,1)-labelling of G (using directed distance).

We have the following results:

» For every oriented graph G, X,4(G) < X,(G) (definition)
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2-dipath colouring (2)

Remark. A 2-dipath colouring of an oriented graph G may also be
viewed as a L(1,1)-labelling of G (using directed distance).

We have the following results:

» For every oriented graph G, X,4(G) < X,(G) (definition)
» For every oriented graph G, X,4(G) 2 W,,(G) 2 W,,(G)  (definition)
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2-dipath colouring (2)

Remark. A 2-dipath colouring of an oriented graph G may also be
viewed as a L(1,1)-labelling of G (using directed distance).

We have the following results:

» For every oriented graph G, X,4(G) < X,(G) (definition)
» For every oriented graph G, X,4(G) 2 W,,(G) 2 W,,(G)  (definition)

From these observations, we get:

» If G is an oriented outerplanar graph, then X,4(G) < 7, and this
bound is tight

(recall that there exists an outerplanar o-clique of order 7)

Eric Sopena— DMDOCW’15 126



2-dipath colouring (2)

Remark. A 2-dipath colouring of an oriented graph G may also be
viewed as a L(1,1)-labelling of G (using directed distance).

We have the following results:

» For every oriented graph G, X,4(G) < X,(G) (definition)
» For every oriented graph G, X,4(G) 2 W,(G) =2 W,,(G) (definition)

From these observations, we get:

» If G is an oriented outerplanar graph, then X,4(G) < 7, and this
bound is tight

(recall that there exists an outerplanar o-clique of order 7)

» If G is an oriented planar graph, then X,4(G) < 80, and there exist
planar graphs with 2-dipath chromatic number 15.
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2-dipath colouring (3)

» Theorem. If G is an oriented Halin graph, then X,,(G) < 7 (and this
bound is tight). (Chen, Wang, 2006)

N
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2-dipath colouring (3)

» Theorem. If G is an oriented Halin graph, then X,,(G) < 7 (and this
bound is tight). (Chen, Wang, 2006)

q..
T

» Theorem. Determining whether an oriented graph is 2-dipath k-
colourable is polynomial if k <2 and NP-complete if k=3
(MacGillivray, Sherk, 2014)
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A homomorphism model (1)

[MacGillivray, Sherk, 2014]
Let G,, k = 1, be the oriented graph defined as follows:
» V(G) ={(uy; uy ...,u):1<u, <k, u, U{+-}ifiZuy, u,=*}
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A homomorphism model (1)

[MacGillivray, Sherk, 2014]
Let G,, k = 1, be the oriented graph defined as follows:
» V(G) ={(uy; uy ...,u):1<u, <k, u, U{+-}ifiZuy, u,=*}

Example. The oriented graph G; (3.2° = 12 vertices)

(L*++)  (L*+) (L) (1)

O O O O
(2,+*+) @ @ (3++%)
(2,+*-) @ ® (3+%)
(2,-*+) @ ® (3-+%
(2;-*) @ ® (3-%
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A homomorphism model (1)

[MacGillivray, Sherk, 2014]
Let G,, k = 1, be the oriented graph defined as follows:
» V(G) ={(uy; uy ...,u):1<u, <k, u, U{+-}ifiZuy, u,=*}

» E(G) ={(ug; ug e udvy; vy ey Vi) 1 U=+, Vg =—}

Example. The oriented graph G; (3.2° = 12 vertices)

(L*++)  (L*+) (L) (1)

(2;+*+) @ @ (3;++%)
(2;+*) @ ® (3+%
(2;-*+) @ ® (3-+%
(2;-*) @ ® (3-%
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A homomorphism model (1)

[MacGillivray, Sherk, 2014]
Let G,, k = 1, be the oriented graph defined as follows:
» V(G) ={(uy; uy ...,u):1<u, <k, u, U{+-}ifiZuy, u,=*}

» E(G) ={(ug; ug e udvy; vy ey Vi) 1 U=+, Vg =—}

Example. The oriented graph G; (3.2° = 12 vertices)

(L++) (L) (LA+) (1)

® ®
(2;+%+) @ @ (3++%)
(247 ® 3+
(2;-*+) @ ® -+
(2-*) @ ® (-7
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A homomorphism model (1)

[MacGillivray, Sherk, 2014]
Let G,, k = 1, be the oriented graph defined as follows:
» V(G) ={(uy; uy ...,u):1<u, <k, u, U{+-}ifiZuy, u,=*}

» E(G) ={(ug; ug e udvy; vy ey Vi) 1 U=+, Vg =—}

Example. The oriented graph G, (3.22 = 12 vertices)

(L*++)  (L*+)  (LA+) (1)

O O
(2;+*+) @ —@ (3;++%)
(2+7) ® 3+
(2-*+) @ —@ (3;-+%)
(2-*) @ @® (3--%)
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A homomorphism model (2)

» Theorem. For every k= 1 and every oriented graph G,
X,4(G) < kiff G - G,
(MacgGillivray, Sherk, 2014)

(L*++)  (L*+)  (LA+) (1)

O O
(2;+*+) @ —@ (3;++%)
(2+7) ® 3+
(2-*+) @ —@ (3;-+%)
(2-*) @ @® (3--%)
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Some open problems... (1)
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Some open problems... (1)

Open Problem A. Determine the maximum oriented chromatic
number of connected graphs with degree at most 3 (lies between 7
and 9, conjectured to be 7).
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Some open problems... (1)

Open Problem A. Determine the maximum oriented chromatic
number of connected graphs with degree at most 3 (lies between 7
and 9, conjectured to be 7).

Open Problem B. Determine the maximum oriented chromatic
number of graphs with degree at most 4 (lies between 12 and 67).
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Some open problems... (1)

Open Problem A. Determine the maximum oriented chromatic
number of connected graphs with degree at most 3 (lies between 7
and 9, conjectured to be 7).

Open Problem B. Determine the maximum oriented chromatic
number of graphs with degree at most 4 (lies between 12 and 67).

Open Problem C. Determine the maximum oriented chromatic
number of planar graphs (lies between 18 and 80).
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Some open problems... (1)

Open Problem A. Determine the maximum oriented chromatic
number of connected graphs with degree at most 3 (lies between 7
and 9, conjectured to be 7).

Open Problem B. Determine the maximum oriented chromatic
number of graphs with degree at most 4 (lies between 12 and 67).

Open Problem C. Determine the maximum oriented chromatic
number of planar graphs (lies bet 18 and 80). :
f p graphs (lies between 18 and 80) l@ Like __
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Some open problems... (1)

Open Problem A. Determine the maximum oriented chromatic
number of connected graphs with degree at most 3 (lies between 7
and 9, conjectured to be 7).

Open Problem B. Determine the maximum oriented chromatic
number of graphs with degree at most 4 (lies between 12 and 67).

Open Problem C. Determine the maximum oriented chromatic
number of planar graphs (lies between 18 and 80).

Open Problem D. Determine the maximum oriented chromatic
number of triangle-free planar graphs (lies between 11 and 40).

Eric Sopena— DMDOCW’15 141



Some open problems... (2)

Open Problem E. Determine the maximum oriented chromatic
number of 2-dimensional grids (lies between 8 and 11).
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Some open problems... (2)

Open Problem E. Determine the maximum oriented chromatic
number of 2-dimensional grids (lies between 8 and 11).

Open Problem F. Determine the maximum relative oriented clique
number of planar graphs (lies between 15 and 80).
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Some open problems... (2)

Open Problem E. Determine the maximum oriented chromatic
number of 2-dimensional grids (lies between 8 and 11).

Open Problem F. Determine the maximum relative oriented clique
number of planar graphs (lies between 15 and 80).

Open Problem G. Determine the maximum relative oriented clique
number of triangle-free planar graphs (lies between 10 and 26).
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Some open problems... (2)

Open Problem E. Determine the maximum oriented chromatic
number of 2-dimensional grids (lies between 8 and 11).

Open Problem F. Determine the maximum relative oriented clique
number of planar graphs (lies between 15 and 80).

Open Problem G. Determine the maximum relative oriented clique
number of triangle-free planar graphs (lies between 10 and 26).

Open Problem H. Determine the maximum 2-dipath chromatic
number of planar graphs (again, lies between 18 and 80).
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E. Sopena. Homomorphisms and colourings of oriented graphs: An
updated survey. Discrete Math., available online (April 2015).
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