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2 On universal graphs for planar oriented graphs of a given girthnumber k if and only if G has a homomorphism to the omplete graph Kk but no homomorphism toKk�1. Therefore, the hromati number �(G) of an undireted graph G an equivalently be de�nedas the minimum number of verties in an undireted graph H suh that G has a homomorphism toH. Homomorphisms of undireted graphs have been extensively studied (see, e.g., [2, 3, 4, 5, 6, 9℄)as a generalization of graph olouring. We an similarly de�ne the oriented hromati number o(H)of an oriented graph H as the minimum number of verties in an oriented graph H 0 suh that Hhas a(n oriented) homomorphism to H 0. We will often say that a graph G is H-olourable if G hasa homomorphism to H and the verties of H will be alled olours. Oriented homomorphisms havebeen studied in [1, 7, 8, 10, 11℄.A di�erene between undireted and direted homomorphisms is that every undireted graph Gwith �(G) � k is Kk-olourable, while the minimum number of verties in an oriented graph H suhthat every oriented graph G with o(G) � k is H-olourable is exponential in k. This di�erene justi�esstudying K-universal oriented graphs, i.e. the oriented graphs H suh that every graph in K is H-olourable. In this paper we study universal graphs for oriented planar graphs of given girth. By girth(resp., length of a path or a yle) of an oriented graph we mean the girth (resp., length of a path oryle) of the underlying undireted graph.Denote by Pk the lass of planar oriented graphs with girth at least k. In partiular, P3 is the lassof all planar oriented graphs. Evidently, P3 � P4 � P5. . . , whih yields that any Pk-universal graphis also Pm-universal for every m > k. The following theorem is a summary of results in [1, 8, 10, 11℄related to planar graphs.Theorem 1 1. There is a P3-universal graph on 80 verties ( [10℄);2. there is a P5-universal graph on 19 verties ( [1℄);3. there is a P6-universal graph on 11 verties ( [1℄);4. there is a P8-universal graph on 7 verties ( [1℄);5. there is a P14-universal graph on 5 verties ( [1℄);6. for every k, there exists a graph G 2 Pk with o(G) � 5 ([8℄);7. there exists a graph G 2 P7 with o(G) � 6 ([8℄);8. there exists a planar oriented graph G with o(G) � 15 ([11℄).In fat, some results in [1℄ ited above have a stronger form in terms of maximum average degree.The maximum average degree mad(G) of a graph G is de�ned to be the maximum of the averagedegrees ad(H) = 2jE(H)j=jV (H)j taken over all the subgraphs H of G. Euler formula implies thatfor eah surfae, any graph with suÆiently large girth embedded in this surfae has small maximumaverage degree. In partiular, for every planar or projetive planar graph G with girth at least g, wehave (see, e.g. [1℄) mad(G) < 2g=(g � 2): (1)That is, if MAD� is the lass of all graphs with the maximum average degree stritly less than �,then MAD2g=(g�2) � Pg for eah g � 3. This explains how statements 2,3 and 5 of Theorem 1 areimplied by the following fats proved in [1℄.2'. there is a MAD10=3-universal graph on 19 verties;3'. there is a MAD3-universal graph on 11 verties;5'. there is a MAD7=3-universal graph on 5 verties.In the present paper we are looking for Pk-universal graphs whih themselves are planar and/orof a given girth. Several existene results are obtained for MAD�-universal graphs. In ontrast withthe statement 1 of Theorem 1, we haveTheorem 2 There are no planar P3- and P4-universal graphs.



O.V. Borodin, A.V. Kostohka, J. Ne�set�ril, A. Raspaud and E. Sopena 3On the other hand, the following is true.Theorem 3 There exists a planar graph on 6 verties whih is universal for the set of graphs inMAD16=7 with girth at least 10.Note that, by (1), Theorem 3 yields the followingCorollary 4 There exists a planar P16-universal graph on 6 verties.It an be also proved that an orientation of the planar graph K5 � e is P31-universal.Clearly, eah direted yle is MAD2-universal, i.e. universal for oriented forests. The situationis similar for graphs G with mad(G) = 2:Proposition 5 For eah k � 3 and for any � > 0, there exists an outerplanar graph G 2 MAD2+�of girth k whih is universal for all graphs with mad at most 2 of girth k.But as soon as mad is greater than 2, the piture hanges. Planar graphs with large girth have,by (1), mad lose to 2, and still the following is true.Theorem 6 For eah k, any Pk-universal graph has maximum average degree at least 3.This together with (1) yields the following.Corollary 7 For eah k, there exists no planar Pk-universal graph of girth at least 6.Reall that when mad approahes 4, another jump takes plae: we have proved in [1℄ that forevery � > 0, there exists a MAD4��{universal graph, while the oriented hromati number of graphsin MAD4 an be arbitrarily large.Finally, we show that there are (non-planar) Pk-universal graphs of large girth if k is suÆientlylarger.Theorem 8 For every g � 2, there exists a graph H of girth g + 1 whih is P40g-universal andMAD2+1=(12g�2)-universal.2 Nonexistene of some planar universal graphsIn this Setion, we prove Theorem 2 by ontradition. If the result is not true, then there exists aminimal by inlusion P4-universal planar graph H. Below we derive a sequene of properties whihare possessed by H. The �rst two of them are immediately implied by the minimality of H.(i) There is no homomorphism of H to any of its proper subgraphs.(ii) For every ar e in H, there exists a graph Ge 2 P4 suh that every homomorphism f : Ge ! Hmaps some ar of Ge to the ar e.(iii) For every ar e in H, for every planar graph G with girth g � 4 and every ar e0 in G thereexists a homomorphism from G to H whih maps e0 to e.Proof. We onstrut an auxiliary graph G0 as follows : take a opy of the graph Ge from (ii). Toevery ar e00 in Ge we \glue" a opy of G by identifying the ars e0 and e00. The graph G0 thus obtainedis learly planar and has girth g0 � 4. Thus, there exists a homomorphism f : G0 ! H. Sine everyhomomorphism of Ge to H uses e, there is an ar e00 from Ge whih is mapped to e. Let G00 be theorresponding opy of G whih is glued to e00. The restrited homomorphism f jG00 is obviously ahomomorphism from G to H whih maps e0 to e. 2(iv) No vertex in H has in-degree or out-degree less than 3.



4 On universal graphs for planar oriented graphs of a given girthProof. Let x 2 V (H). Consider the graph G0 obtained from the direted 6-yle (123456) by addinga vertex 7 and three ars 17, 37 and 57. Clearly, G0 is planar and has girth 4. By (iii), there exists ahomomorphism of G0 to H whih maps vertex 7 to x0. But the verties 1,3 and 5 must get distintolors. It follows that in-degree of x is at least 3. Similarly, the out-degree of x also is at least 3. 2Sine, by (iv), every vertex in H has degree at least 6, H annot be planar. This ontraditionproves Theorem 2.3 Existene of a planar MAD16=7-universal graphThe aim of this setion is to prove Theorem 3 whih immediately implies Corollary 4.Let T denote the irulant graph T (6; 1; 2), i.e. the graph with the vertex-set f1; 2; 3; 4; 5; 6g andsuh that ab is an ar in T if and only if b�a � 1 (mod 6) or b�a � 2 (mod 6). Note that T is planar.Call a subset I of f1; 2; 3; 4; 5; 6g the (i; j)-interval if I = fj; j + 1; : : : ; j + i � 1g (the sums aretaken modulo 6). Any (i; j)-interval will be sometimes alled an i-interval or simply an interval. Foran orientation P of a path and v 2 V (T ), let NPT (v) denote the set of verties w 2 V (T ) suh that Tontains a path isomorphi to P onneting v with w. By indution on the number of ars in P , it iseasy to observe the following fat.Lemma 9 For any v 2 V (T ) and any orientation P of a path with k edges (1 � k � 5), the set NPT (v)is a (k+1)-interval. Moreover, if NPT (v) is a (k+1; j)-interval, then NPT (v+i) is a (k+1; j+i)-interval.Let G be a minimum (with respet to the number of verties) oriented graph with maximumaverage degree less than 16/7 whih has no homomorphism to T . Clearly, G has no verties of degree1. Verties of degree k will be often referred to as k-verties; verties of degree at least three willbe also alled senior verties. We say that a vertex w of G is a quasi-neighbour of v 2 V (G) if itis a neighbour of v or there is a path onneting w and v whose all internal verties have degree 2.A 3-vertex having exatly i ) quasi-neighbours of degree 2 will be sometimes alled a (3; i)-vertex.Similarly, an i-quasi-neighbour (respetively, a (3; i)-quasi-neighbour) of v 2 V (G) is a quasi-neighbourof v whih is an i-vertex (respetively, a (3; i)-vertex). Graph G possesses the following properties.(G1) G ontains no path of length 5 whose internal verties have degree 2.Proof. Assume that G ontains suh a path (v0; : : : ; v5). By the minimality of G, there exists ahomomorphism f : G n f(v1; : : : ; v4g ! T . By Lemma 9, T ontains a 5-path from f(v0) to f(v5)whose orientation is the same as in G[fv0; : : : ; v5g℄. Thus, we an extend f to a homomorphism of Gto T . 2Remark. As in the proof of (G1), the main problem with embedding a subgraph of G whih isa path with internal 2-verties into T is to map the internal verties so that there is a path of givenorientation in T onneting the images of the ends of this path. In partiular, if (v0; : : : ; vi) is a pathin G whose internal verties have degree 2 and we know the image of v0, then for the image of vi, byLemma 9, the path (v0; : : : ; vi) forbids exatly 5� i olours. Sometimes, we shall say in this situationthat v0 forbids for vi 5� i olours (or, equivalently, allows i+ 1 olours).(G2) G ontains no (3; i)-verties for any i � 7.Proof. Assume that G ontains a (3; i)-vertex v, and the senior quasi-neighbours of v are u1; u2and u3. Let the shortest path from v to uj (j = 1; 2; 3) ontain ij 2-verties. By the minimalityof G, there exists a homomorphism f to T of the graph G0 obtained from G by deleting v and allits 2-quasi-neighbours. We laim that f an be extended to a homomorphism of G to T . By theremark above, eah uj forbids for v exatly 4� ij olours. Thus, altogether they forbid for v at most12� i1 � i2 � i3 = 12� i olours, and if i > 6, we have an admissible olour for v. 2



O.V. Borodin, A.V. Kostohka, J. Ne�set�ril, A. Raspaud and E. Sopena 5(G3) G ontains no (3; 6)-vertex whih is adjaent to a (3; 6)-, (3; 5)- or (3; 4)-vertex.Proof. Assume that G ontains a (3; 6)-vertex v whih is adjaent to a (3; j)-vertex u (j � 4). Then,by (G1), v is onneted with other senior quasi-neighbours by 4-paths. Let v1 and v2 be these distintfrom u senior quasi-neighbours of v, and u1 and u2 be distint from v senior quasi-neighbours of u.Let G0 be obtained from G by deleting u, v, and their 2-quasi-neighbours. By the minimality of G,there exists a homomorphism f of G0 to T . By the remark, v1 and v2 forbid for v at most two olours,and u1 and u2 forbid for u at most four olours. Let � and � be two olours allowed for u. By theseond part of Lemma 9, the quadruple of olours forbidden for v by u if we olour u with � di�ersfrom that if we olour u with �. Thus, in at least one ase, there is a olour in T allowed for v. 2(G4) If some (3; 4)-vertex in G has a (3; 6)-quasi-neighbour on distane two, then G does notontain another (3; i)-quasi-neighbour for i � 5 on distane two.Proof. Assume that G ontains a (3; 4)-vertex v whih has a (3; 6)-quasi-neighbour u and a (3; 5)-quasi-neighbourw, both on distane two from v. Then the third senior quasi-neighbour x is on distane3 from v. Let u1 and u2 (respetively, w1 and w2) be the distint from v senior quasi-neighbours of u(respetively, of w).Let G0 be obtained from G by deleting v, u, w, and their 2-quasi-neighbours. By the minimalityof G, there exists a homomorphism f of G0 to T . By the remark, w1 and w2 forbid for w at most fourolours, u1 and u2 forbid for u at most three olours and x forbids for v exatly two olours. Let �and � be two olours allowed for w. The size of the union of the set of olours allowed for v by w ifwe olour w with � and the set of olours allowed for v by w if we olour w with � is at least four.Thus, we an hoose a olour for w so that w and x together forbid for v at most four olours.Reall that we have a hoie of three olours for u, eah of whih allows for v a 3-interval of olours.But the union of three distint 3-intervals has the size at least �ve. Consequently, we an extend fon whole G.If w is a (3; 6){vertex, then the proof is only easier. 2The proofs of the following four fats are very similar to that of (G3) and (G4), and we omit them.(G5) No (3; 6)-vertex in G has a (3; 6)- or (3; 5)-quasi-neighbour on distane two.(G6) No (3; 6)-vertex in G has a (3; 6)-quasi-neighbour on distane at most three.(G7) If a (3; 4)-vertex v in G is adjaent to a (3; 5){vertex, then it has no other (3; 5)-quasi-neighbour on distane at most two, and no (3; 6)-quasi-neighbour on distane at most three.(G8) If a (3; 5)-vertex v in G hss a (3; 6)-quasi-neighbour on distane three, then v has neitheranother (3; 6)-quasi-neighbour on distane three, nor a (3; 5)-quasi-neighbour on distane at most two.Now, let eah vertex of G have the harge equal to its degree. We de�ne a disharging proedureas follows:(a) eah senior vertex gives the amount 1/7 to eah 2-quasi-neighbour;(b) eah senior vertex whih is not a (3; 6)-vertex gives the amount (4 � k)=21 to eah (3; 6)-quasi-neighbour on distane k � 3 ;() eah senior vertex whih is neither a (3; 6)-vertex nor a (3; 5)-vertex gives the amount (3 � k)=21to eah (3; 5)-quasi-neighbour on distane k � 2 .For eah v 2 V (G), let d?(v) denote the harge of vertex v after our proedure. Sine the sumof harges did not hange, it is enough to verify that d?(v) � 16=7 for eah v 2 V (G), to prove thetheorem.CASE 1. dG(v) = k � 4. Note that along any path with internal 2-verties starting at v, v sendsat most 3/7. Indeed, if it sends something to the senior quasi-neighbour at the end of this path, thenthis path has less than three 2-verties. Thus, d?(v) � k � 3k=7 = 4k=7 � 16=7.



6 On universal graphs for planar oriented graphs of a given girthCASE 2. dG(v) = 2. Then v reeives 1/7 from eah of its senior quasi-neighbours. Thus, d?(v) �2 + 2=7 = 16=7.CASE 3. v is a (3; i)-vertex and i � 3. By the rules, along a path of length j + 1 with internal2-verties starting at v, v sends at most j=7+(3�j)=21 = 1=7+2j=21. Hene d?(v) � 3�3=7�2i=21 �3� 3=7� 2=7 = 16=7.CASE 4. v is a (3; 4)-vertex. If v has no (3; 6)-quasi-neighbour on distane at most three, then,in view of (G7), it sends to (3; 5)-quasi-neighbours at most 3/21, and d?(v) � 3� 4=7� 3=21 = 16=7.So, let u1 be a (3; 6)-quasi-neighbour of v on minimum distane. By (G3), the distane between vand u1 is at least two. If this distane is exatly two, then, by (G4) and (G7), at most one (3; 5)- or(3; 6)-quasi-neighbour of v di�erent from u1 is on distane at most three, and v gives to that vertex atmost 1/21. Thus, in this ase d?(v) � 3� 4=7� 2=21� 1=21 = 16=7. Finally, let the distane betweenv and u1 be exatly three. By (G7), v is not adjaent to a (3; 5)-vertex, and hene gives to eah ofsenior quasi-neighbours at most 1/21. Again, d?(v) � 3� 4=7 � 3=21 = 16=7.CASE 5. v is a (3; 5)-vertex. If v has no (3; 6)-quasi-neighbours on distane at most three, thenit gives nothing to senior verties, and d?(v) � 3� 5=7 = 16=7. So, let u1 be a (3; 6)-quasi-neighbourof v. By (G3) and (G5), the distane between v and u1 is exatly three. Moreover, by (G8), noneof the remaining senior quasi-neighbours u2 and u3 is a (3; 6)-vertex on distane at most three fromv. Sine the sum of the distanes from v to u2 and u3 is equal to �ve, one of them, say u2, is ondistane at most two from v, and the other is on distane at least three from v. By (G8), u2 is not a(3; 5)-vertex, and u3 is not a (3; 6)-vertex on distane at most three from v. Thus, v gives nothing tou3 and reeives exatly 1/21 from u2. In total, d?(v) � 3� 5=7� 1=21 + 1=21 = 16=7.CASE 6. v is a (3; 6)-vertex. If v has no senior quasi-neighbours on distane at least four, then, by(G6) and (b), it reeives from eah senior quasi-neighbour at least 1/21, and d?(v) � 3� 6=7+3=21 =16=7. So, let the distane between v and an its senior quasi-neighbour u1 be at least four. If at leastone of the remaining senior quasi-neighbours u2 and u3 is adjaent to v, then v reeives 1/7 from thisvertex and has d?(v) at least 16=7. If this is not the ase, then one of u2 and u3 is on distane at mosttwo and the other at most three from v. Again, v reeives at least 2=21 + 1=21 = 1=7 from u2 and u3.Therefore, eah vertex v in G has d?(v) � 16=7 whih ontradits the fat that mad(G) < 16=7.This proves Theorem 3.4 On the girth of planar universal graphsIn this Setion, we prove Proposition 5 and Theorem 6.Let M(k) denote the set of oriented graphs of girth at least k with maximum average degree atmost two whih have no homomorphisms to other graphs of girth at least k with maximum averagedegree at most two. Sine any M(k)-universal graph admits a homomorphism from eah orientedgraph with maximum average degree at most two, we �rst desribeM(k).Let G 2M(k). If two ars wv and uv enter the same vertex in G then the graph G0 obtained fromG by identifying w with u must be not inM(k). The only reason for it an be that the path (wvu) isa part of a yle of length k or k+1 in G. Similar observation holds if two ars leave the same vertexin G. These observations imply the following lemma.Lemma 10 Let M(k)1 denote the set of all direted yles of length at least k, and M(k)2 denotethe set of uniyli oriented graphs whose yle has length k or k + 1 and suh that eah soure inthis yle is entered by exatly one direted path, and from eah sink in the yle starts exatly onedireted path. Then M(k) �M(k)1 [M(k)2.Let m = maxfk; d1=�eg. We onstrut the universal graph F in question as the disjoint union ofgraphs F1 and F2. Eah omponent of F1 onsists of two direted yles with exatly one ommonvertex. One of these yles has length 2m and another has one of the lengths k; k + 1; : : : ; k + 2m.Eah omponent of F2 onsists of some oriented yle C of length k or k+1 with exatly one diretedyle of length 2m attahed to every soure or sink in C.



O.V. Borodin, A.V. Kostohka, J. Ne�set�ril, A. Raspaud and E. Sopena 7Observe that every omponent of F is outerplanar of girth at least k and has maximum averagedegree less than 2 + 2=(2m) � 2 + �. It follows that F also possesses these properties. On the otherhand, any graph in M(k)1 has a homomorphism to some omponent of F1, and any graph in M(k)2has a homomorphism to some omponent of F2. This proves the proposition.To prove Theorem 6, onsider an arbitrary minimal by inlusion Pk-universal graph H. Ifmad(H) � 3, we are done. Suppose that mad(H) < 3. Repeating the argument of Setion 2, weobtain that the properties (i){(iii) in Setion 2 hold also for our H (with replaing 4 by k in (iii)).Instead of (iv) we an prove only the following weaker statement.(iv0) No vertex in H has in-degree or out-degree equal to 0.Proof. Let x 2 V (H). Consider the direted yle Ck as the graph G0. Sine, by (iii), we an mapany of its vertex to x, x has positive in- and out-degrees. 2Call an ar e inident with a vertex v exeptional for v, if e is the only ar whih leaves v or e isthe only ar whih enters v. Denote by EA the set of all exeptional ars in H, and by nm the numberof verties of degree m in H. The following observation is obvious in view of (iv0).(v) If d(v) = 2, then both ars inident with v are exeptional for v. If d(v) = 3, then exatly onear inident with v is exeptional for v.(vi) An ar uv annot be exeptional for both u and v.Proof. Assume it is. Let G be the yle (x1; : : : ; x2k+1) whose ars are x2i�1x2i and x2i+1x2i (i =1; : : : ; k) and x1x2k+1. By (iii), there exists a homomorphism of G into H mapping x1x2 to uv. Sineuv is exeptional for v, x3x2 also should be mapped to uv. Similarly, x3x4 should be mapped into uvand so on. Finally, x2k+1 should be mapped to u whih is a ontradition. 2From (v) and (vi) we onlude that(vii) jEAj � 2n2 + n3.(viii) A vertex v of degree m annot be adjaent to m � 1 ars whih are exeptional for otherverties.Proof. Assume it is. Beause of symmetry, we may assume that all ars entering v are exeptionaland these ars are y1v; : : : ; ytv. Denote Y = fy1; : : : ; ytg.Let G be as in the proof of (vi). By (iii), there exists a homomorphism of G to H mapping x1x2to y1v. By the de�nition of Y , the ar x3x2 must be mapped to an ar of the kind yiv. Sine yiv isexeptional for yi, x3x4 also must be mapped to yiv, and so on. Finally, x2k+1 should be mapped toyj for some j whih yields existene of the ar y1yj. Similarly, we obtain that the out-degree of everyyi in H[Y ℄ is at least 1; in partiular, jY j � 3. But then the average degree of H[Y [ fvg℄ is at least3, whih ontradits the assumption mad(H) < 3. 2By (viii), we have jEAj �P1m=2 nm(m� 2). Comparing this with (vii), we get2n2 + n3 � 1Xm=2nm(m� 2);whih is equivalent to n2 � 1Xm=4nm(m� 2)=2:



8 On universal graphs for planar oriented graphs of a given girthSine (m� 2)=2 � m� 3 for m � 4, this implies thatn2 � 1Xm=4nm(m� 3);that is, Xv2V (H) dH(v) = 1Xm=2nmm � 1Xm=2nm3 = 3jV (H)j:This proves the theorem.5 On the girth of Pk-universal graphsIn this Setion, we prove Theorem 8. To do it, we need the following lemma (see Alon and Spener,pp. 238{239):Lemma 11 Let Y be the sum of n mutually independent indiator variables, � = E(Y ). For all � > 0,P[Y < (1� �)�℄ < e��2�=2: 2Let g be �xed and � = 1=3g. We hoose any n suh thatn� > 200 lnn (2)and onstrut a random direted graph G (with loops) as follows. Let U = fu1; : : : ; ung, W =fw1; : : : ; wng. For eah wi and uj , the ar wiuj exists with probability p = n��1 independently of anyother ars. Our G is obtained from this bipartite oriented graph by identifying wi with ui into thevertex vi for eah i 2 f1; : : : ; ng. Denote V = f1; : : : ; ng.So de�ned G with high probability has short yles and even loops, but not many. Let S1 be theevent that there exists k; 2 � k � 2g � 1, and M � V with jM j = k suh that jE(G(M))j � k + 1.Note that S1 inludes the event that a vertex with a loop belongs to some yle of length at most2g � 1.Lemma 12 P[S1℄ < 1=3.Proof. P[S1℄ � 2g�1Xk=2  nk! k2k + 1!pk+1 � 2g�1Xk=2 12�k �nek �k  k2ek + 1!k+1 n(��1)(k+1) �2g�1Xk=2 12�e2k+1n�(k+1)�1 � e2(2g�1)n2g��1 = e2(2g�1)n�1=3:By (2), the last expression is less than �e4=200�g < 1=3. 2For eah A � V , let N+(A) = fv 2 V j 9x 2 A : xv 2 E(G)g and N�(A) = fv 2 V j9x 2 A : vx 2 E(G)g. Let S2 be the event that for some A � V with jAj < 1=p, the inequalityminfjN+(Aj; jN�(Ajg < pnjAj=4 holds.Lemma 13 P[S2℄ � 1=10.



O.V. Borodin, A.V. Kostohka, J. Ne�set�ril, A. Raspaud and E. Sopena 9Proof. Let A � V with jAj = a < 1=p and v 2 V . Clearly, P[v 2 N+(A)℄ = 1 � (1 � p)a. Sinea < 1=p, we have 1� (1� p)a � 1� 1 + pa� p2 a2! = pa(1� p(a� 1)=2) > pa=2:It follows that E[jN+(A)j℄ > npa=2. By Lemma 11, we haveP[jN+(A)j < npa=4℄ < expf�pan=16g:Similarly, P[jN�(A)j < npa=4℄ < expf�pan=16g. Thus,P[S2℄ < d1=peXa=1 2 na! expf�pan=16g �� d1=peXa=1 �nea �a expf�an�=16g < 1Xa=1 �ne1�n�=16�a :By (2), n�=16 > 10 lnn, and so, P[S2℄ < 1Xa=1n�3a < 1=10: 2Let S3 be the event that for some A � V with jAj = d1=pe, the inequality minfjN+(Aj; jN�(Ajg <4(e�1)5e n holds.Lemma 14 P[S3℄ � 1=n.Proof. Let A � V with jAj = a = d1=pe and v 2 V . Sine pa � 1,P[v 2 N+(A)℄ = 1� (1� p)a > 1� e�pa � 1� e�1:It follows that E[jN+(A)j℄ > n(e� 1)=e. By Lemma 11, we haveP[jN+(A)j < 0:8n(e� 1)=e℄ < expf�0:02n(e � 1)=eg:Similarly, P[jN�(A)j < 0:8n(e� 1)=e℄ < expf�0:02n(e � 1)=eg. Thus,P[S3℄ < 2 nd1=pe! expf�0:02n(e � 1)=eg �� n1=p expf�0:01ng < expfn1�� lnn� 0:01ng:By (2), n1�� lnn < n=200, and so, P[S3℄ < expf� lnng = 1=n: 2By Lemmas 12{14, with probality at least 1/3, G possesses the following properties:(i) No two yles of length at most g have a ommon vertex (in partiular, no vertex with a loopbelongs to a yle of length at most g);



10 On universal graphs for planar oriented graphs of a given girth(ii) For eah A � V with jAj < 1=p, the inequality minfjN+(A)j; jN�(A)jg � pnjAj=4 holds;(iii) For eah A � V with jAj = d1=pe, the inequality minfjN+(A)j; jN�(A)jg � 4(e�1)5e n holds.It follows that there exists a digraph G = (V;E) possessing all properties (i){(iii). Denote byH = (V;E0) the oriented graph obtained from G by deleting one ar from eah yle of length at mostg in G (in partiular, every loop and an ar in every 2-yle must be deleted). By (i), it an be doneand the resulting H has girth at least g + 1. By (ii), for eah A � V with jAj < 1=p, we haveminfjN+H (A)j; jN�H (A)jg � pnjAj=4� jAj > pnjAj=5 = n�jAj=5: (3)Similarly, under onditions (2), for eah A � V with jAj = d1=pe, we haveminfjN+H (A)j; jN�H (A)jg � 4(e � 1)5e n� d1=pe > 0:505n� n� > n=2: (4)For an orientation P of a path and v 2 V , let NP (v) denote the set of suh verties w 2 V thatH ontains a path isomorphi to P onneting v with w. Now, we prove that for eah v 2 V and foreah orientation P of a 4g-path, jNP (v)j > n=2: (5)Indeed, if jNPkH (v)j � 1=p for at least one initial subpath Pk with k edges of P , (1 � k � 4g� 1), thenthis follows from (4). Otherwise, by (3) and (2),jN4gH (v)j � (n�=5)4g = n4=3=54g > n;whih is impossible.Inequality (5) implies that for eah v; x 2 V and for eah orientation of a 8g-path, x an be reahedfrom v by a path of this orientation. Now we are ready to prove Theorem 8.A smallest ounterexample to any of the statements of the theorem must have no 1-verties. Byabove, it has no subpath on 8g� 1 verties of degree 2. Then the �rst statement follows from the fatthat any planar graph without 1- and 2-verties has girth at most �ve, and the seond follows fromthe disharging proedure when eah vertex v of degree at least three gives 1=(24g � 2) to eah of its2-quasi-neighbours.Referenes[1℄ O. V. Borodin, A. V. Kostohka, J. Ne�set�ril, A. Raspaud and E. Sopena, On the maximumaverage degree and the oriented hromati number of a graph. Preprint 96-336, KAM Series,Charles University, Prague, (1996).[2℄ R. H�aggkvist and P. Hell, On A-mote universal graphs, European J. of Combinatoris 13 (1993),23{27.[3℄ P. Hell and J. Ne�set�ril, On the omplexity of H-oloring, J. Combin. Theory B 48 (1990), 92�110.[4℄ P. Hell, J. Ne�set�ril and X. Zhu, Duality of graph homomorphisms, Combinatoris, Paul Erd}os isEighty, Vol. 2, Bolyai Soiety Mathematial Studies, 271-282 (1996).[5℄ P. Hell, J. Ne�set�ril and X. Zhu, Duality and polynomial testing of tree homomorphisms, Transa-tions of the AMS, 348 (4) (1996), 1281{1297.[6℄ T. R. Jensen and B. Toft, Graph oloring problems, Wiley Intersiene (1995).[7℄ A. V. Kostohka, E. Sopena and X. Zhu, Ayli and oriented hromati numbers of graphs, J.Graph Theory, to appear.
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