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2 On the maximum average degree and the oriented hromati number of a graphorientations. We an similarly de�ne the oriented hromati number o(H) of an oriented graphH as theminimum number of verties in an oriented graph H 0 suh that H has a (oriented) homomorphism toH 0. The oriented hromati number o(G) of an undireted graph G is then de�ned as the maximumoriented hromati number of its orientations. In some sense, this notion measures how \bad" anorientation of an undireted graph an be. For instane, bipartite graphs may have arbitrarily largeoriented hromati number (see Observation 7 below).Oriented hromati number of (undireted) graphs with bounded degree or with bounded treewidthhas been studied in [19℄. In [18℄ it has been proved that every planar graph has oriented hromatinumber at most 80. The proof depends on the ayli 5-olorability of planar graphs proved in [2℄.Despite many e�orts, no better upper bound is known up to now. The study of planar graphs isthus partiularly hallenging in this ontext. This bound an be signi�antly dereased under somelarge girth assumption [16℄ (reall that the girth g(G) of a graph G is the length of a shortest yle inG). The links between the oriented hromati number and other parameters of a graph (arboriity,maximum degree, ayli hromati number) have been studied in [12℄.In this paper, we study the relationship between the oriented hromati number and the maximumaverage degree of a graph. The maximum average degree mad(G) of a graph G is de�ned as themaximum of the average degrees ad(H) = 2eH=vH taken over all the subgraphs H of G. Our �rstresult is the following :Theorem 11. For every graph G with mad(G) < 7=3, o(G) � 5.2. For every graph G with mad(G) < 11=4 and girth g(G) � 5, o(G) � 7.3. For every graph G with mad(G) < 3, o(G) � 11.4. For every graph G with mad(G) < 10=3, o(G) � 19.Conerning the maximum average degree of planar graphs, we have the following :Observation 2 For every planar graph G with girth at least g, mad(G) < 2g=(g � 2).To see that, observe that if G has girth at least g then the number of faes in G is at most 2e(G)=g.By Euler's formula we then get that 2e(G)v(G) � 2ge(G)2g+(g�2)e(G) and thus mad(G) < 2g=(g � 2).In ase of planar graphs, Theorem 1 therefore leads to the following orollary, whih improvessome results given in [16℄ :Corollary 3 Let G be a planar graph, then1. if G has girth at least 14 then o(G) � 5,2. if G has girth at least 8 then o(G) � 7,3. if G has girth at least 6 then o(G) � 11,4. if G has girth at least 5 then o(G) � 19.It is easy to see that Observation 2, and hene Corollary 1, holds for projetive plane as well.In a ompanion paper [3℄ we ontinue the study of planar graphs and improve some of the aboveresults.Relationships between oriented olorings and ayli olorings have been disussed in [12, 18℄.Reall that a k-oloring of an undireted graph G is said to be ayli if every yle in G uses at leastthree olors. The ayli hromati number an(G) of G is then de�ned as the minimum number kof olors suh that G has an ayli k-oloring. It has been proved in [18℄ that an(G) � k implieso(G) � k � 2k�1. Considering the relationship between the an and mad parameters we prove :Theorem 4 For every m > 15 and every graph G with mad(G) < 4(1� 1=(m� 2)), an(G) � m.Using the above-mentioned theorem of [18℄, Theorem 4 leads to the following orollary :



O.V. Borodin, A.V. Kostohka, J. Ne�set�ril, A. Raspaud and E. Sopena 3Corollary 5 For every n > 25, if mad(G) < 4(1� 2=(n+ 1)) then o(G) � (n+ 5) � 2n+12 .Our next result is the following :Theorem 6 For every k, there exists a graph G of arbitrarily large girth with mad(G) < 4(1� 1=k)and o(G) � k.In ase of bipartite graphs, we have the following :Observation 7 For every n > 0 there exists a bipartite graph Bn with girth 6 suh that o(Bn) � nand mad(Bn) = 4(1� 2=(n+ 1)).To see that, let Bn be the oriented graph obtained from the omplete graph Kn by replaing everyedge by a direted 2-path. Clearly the graph Bn thus obtained has oriented hromati number at leastn (all the \original" verties from Kn must have distint olors) and girth g = 6. Moreover, no propersubgraph of Bn an have the average degree greater than Bn itself and thus :mad(Bn) = 2eBnvBn = 2n(n� 1)n(n�1)2 + n = 4�1� 2n+ 1� :Corollary 2 thus indiates that the mad parameter is a robust parameter. Theorem 3 extends Obser-vation 7 to graphs of arbitrarily large girth.In all the following we will simply say that an undireted graph G has a homomorphism to anoriented graph T , when G, with any orientation L, has a homomorhism to T .The rest of this paper is devoted to the proofs of our theorems. For Theorem 1, we will prove that everygraph satisfying the orresponding onditions has a homomorphism to some speial (oriented) irulantgraph. Reall here that the irulant graph G = G(n; 1; : : : ; d) is de�ned as V (T ) = f0; 1; : : : ; n� 1gand xy 2 E(T ) if and only if y = x+ i (mod n) for some i, 1 � i � d.If n is a prime number of the form 4k+3 and the 0is are the non-zero quadrati residues of n thend = bn�12  and G = G(n; 1; : : : ; d) is a tournament. We will extensively use the following propertyof this kind of tournament :Proposition 8 Let G = G(n; 1; : : : ; d) be a irulant graph suh that the 0is are the non-zeroquadrati residues of n, where n is a prime number of the form 4k + 3. Then for any two dis-tint verties u,v in G and any orientation of a 2-path, there exist at least n�34 2-paths from u to v ofgiven orientation.Proof. By Lemma 6.24 in [14℄ we have the following: if n = 3 (mod 4) is a prime number thenfor any b (exept 0), the number of solutions of the equation x2 + y2 = b (mod n) is n+ 1 and thenumber of solutions of the equation x2�y2 = b is n�1. This implies that for any two distint vertiesu,v in the irulant and any orientation of a 2-path, there exist at least n�34 2-paths from u to v ofgiven orientation 2Let H be any target graph with n verties alled olors. Suppose that we want to onstrut ahomomorphism f of a given graph G to H and let x; y be any two verties to be oloured in G. Wewill say that y allows k olors for x if for a given hoie of the olor of y we still have in any ase atleast k possible hoies for oloring x. Similarly, we will say that y forbids k olors for x if for a givenhoie of the olor of y we still have in any ase n� k possible hoies for oloring x.All the proofs will be based on the so-alled method of reduible on�gurations, ontributed toHeesh [6℄, and used in partiular by Appel and Haken [1℄ in their proof of the four-olor theorem.But we must note that Franklin [4℄ had already used it in the 20s. We �rst provide a (small) set offorbidden on�gurations, that is a set of graphs that a minimal ounter-example G to our theoremannot ontain as subgraphs. We will then assume that every vertex v in G is valued by its degreedeg(v) and de�ne a disharging proedure whih spei�es some transfers of values among the verties



4 On the maximum average degree and the oriented hromati number of a graph
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(i) (ii)Figure 1: Forbidden on�gurations for Theorem 1(1).in G by keeping onstant the sum of all the values. We will then get a ontradition by onsidering themodernized degree deg�(v) of every vertex v, that is the value obtained by v thanks to the dishargingproedure.Drawing onventions : In all the �gures depiting forbidden on�gurations we will draw vertieswith presribed degrees as \white" verties and verties with unbounded degree as \blak verties".All the neighbours of white verties are drawn. Unless otherwise spei�ed, two or more blak vertiesmay oinide in a single vertex, provided they do not share a ommon white neighbour.2 Proof of Theorem 1(1)We will use here the irulant graph T5 = G(5; 1; 2) as target graph. The following an easily beheked :Observation 9 The graph T5 is suh that1. For every pair of (not neessarily distint) verties u; v 2 V (T5) there exists a direted 4-pathonneting u with v for any of the 16 possible orientations of suh a direted 4-path (this followsfrom Proposition 8 in [16℄).2. For every pair of distint verties u; v 2 V (T5) there exists a direted 3-path onneting u with vfor any of all 8 possible orientations of suh a direted 3-path.We will now prove that every graph with maximum average degree less than 7/3 has a homomorphismto T5. Assume G with an orientation L is a minimum ounter-example to the Theorem. Then G mustavoid all the on�gurations depited in Figure 1 :(i) This follows diretly from Observation 9.(ii) Let f be any T5-oloring of G n fv; x1; x2; y2; x3; y3g. The vertex u1 allows three olors for v, sothat we an hoose for v a olor distint from the olors of u2; u3. By Observation 9 we an thenextend f to a T5-oloring of G. This is a ontradition.We now use the following disharging proedure : eah vertex of degree at least 3 gives 1/3 to eahof its 2-neighbours having itself a 2-neighbour and 1/6 to eah of its other 2-neighbours.Let us hek that the modernized degree deg� of eah vertex is at least 7/3 whih ontradits theassumption mad(G) < 7=3. We onsider the possible ases for old degree deg(v):1. deg(v) = 2 : by (i), v has at least one neighbour of degree at least 3. If v has a 2-neighbour thenit reeives 1/3 so that deg�(v) = 7=3. If v has no 2-neighbour then it reeives 1/6 from eah ofits neighbours and thus deg�(v) = 7=3.
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Figure 2: Forbidden on�gurations for Theorem 1(2).2. deg(v) = 3 : by (ii) v gives at mostmaxf2�1=3; 1=3+2�1=6; 3�1=6g = 2=3 and thus deg�(v) � 7=3.3. deg(v) = k � 4 : v gives at most k � 1=3 and thus deg�(v) � k � k=3 > 7=3.Therefore, every vertex in G gets a modernized degree at least 7/3 and the theorem is proved.By using more sophistiated tehniques we prove in our ompanion paper [3℄ that every graph Gwith mad(G) < 12=5 is T5-olorable. By Observation 2 we thus get that every planar graph with girthat least 12 has oriented hromati number at most 5.3 Proof of Theorem 1(2)We will use here the irulant graph T7 = G(7; 1; 2; 4) as target graph. The following observation is adiret onsequene of Proposition 8 :Observation 10 The graph T7 is suh that for eah u; v 2 V (T ) with u 6= v, there exist a direted2-paths onneting u with v of all four possible orientations. It follows that there is a direted 3-pathof any possible orientation linking any two verties (not neessarily distint).Observe that if the ars of a direted 2-path have opposite diretions, then in T7 there is a direted2-path from any vertex v to itself. All that essentially means that if we have a path vxu in G with xof degree 2 then v \forbids" for u at most one olor (atually its own olor, if the two ars have thesame diretion). More preisely, we have the following :Observation 11 Let G be an oriented graph and u; v be two neighbour verties in G. Let f be someT7-oloring of G n fvg. If for a �xed oloring of the neighbours of v distint from u we an use idistint olors for v, then v forbids for u at most two olors for i = 2, one olor for i = 3; 4 and noolors for i > 4.We will now prove that every graph with maximum average degree less than 11/4 and girth at least 5has a homomorphism to T7. Assume G with an orientation L is a minimum ounter-example to theTheorem. Then G must avoid all the on�gurations depited in Figure 2 :(i) This follows diretly from Observation 10.



6 On the maximum average degree and the oriented hromati number of a graph(ii) Let f be any T7-oloring of G n fv; x1; x2g. Then u3 allows exatly three olors for v while u1; u2forbid at most two of them. Thus f an be extended to a T7-oloring of G, a ontradition.(iii) Let f be any T7-oloring of G n fv; x1; x2; x3; x4g. All the ui's forbid at most four olors for vand thus f an be extended to a T7-oloring of G, a ontradition.(iv) Observe �rst that sine G has girth at least 5, u1; u2; u3; u4 are distint but one of u1; u2; u3 mayoinide with u5. Let f be any T7-oloring of G n fv; x1; x2; x3; x4; y4g. Then u4 and u5 allow atleast two olors for x4 and thus at least �ve olors for v while u1; u2; u3 forbid at most three ofthem. Thus f an be extended to a T7-oloring of G, a ontradition.(v) Observe �rst that sine G has girth at least 5, u3 and u4 (resp. u1 and u5) may be identi�ed. Letf be any T7-oloring of Gnfv1; v2; v3; x1; x2; x3g. The verties u1 and u4 (resp. u3 and u5) allowat least two olors for v1 (resp. for v3). Then v1 and v3 allow at least three olors for v2 whileu2 forbids at most one of them. Thus f an be extended to a T7-oloring of G, a ontradition.(vi) Observe �rst that sine G has girth at least 5 no \blak" vertex an oinide with a \white" one.Let f be any T7-oloring of G n fv; x1; x2; x3; y1; y2; y3g. All the ui's allow at least two olorsfor eah xi and thus at least one olor for v. Thus f an be extended to a T7-oloring of G, aontradition.We now use the following disharging proedure : eah vertex of degree at least 3 gives 3/8 to eahof its 2-neighbours and 1/8 to eah of its 3-neighbours having a 2-neighbour.Let us hek that the modernized degree deg� of eah vertex is at least 11/4 whih ontradits theassumption mad(G) < 11=4. We onsider the possible ases for old degree deg(v):1. deg(v) = 2: by (i), v reeives exatly 3/4, and thus deg�(v) = 11=4.2. deg(v) = 3: if v has a 2-neighbour then by (ii) and (v), v gives at most 3=8 + 1=8 = 1=2 butthen it also reeives 1=8 + 1=8 so that deg�(v) � 11=4; if v has no 2-neighbour then by (vi), itgives at most 2=8 to its 3-neighbours having a 2-neighbour and thus deg�(v) � 11=4.3. deg(v) = 4: by (iii) and (iv), v gives at most 9=8 and thus deg�(v) � 23=8 > 11=4.4. deg(v) = k > 4: v gives at most 3k=8 and thus deg�(v) � 5k=8 � 25=8 > 11=4.Therefore, every vertex in G gets a modernized degree at least 11/4 and the theorem is proved.4 Proof of Theorem 1(3)Here we use as target graph the irulant T11 = G(11; 1; 3; 4; 5; 9). From Proposition 8 we have :Observation 12 The graph T11 is suh that for every two distint verties u; v in T11, there are areleast two distint 2-paths linking u and v for every possible orientation of this 2-path and there is a3-path of any possible orientation linking any two (not neessarily distint) verties in T11.We will now prove that every graph with maximum average degree less than 3 has a homomorphismto T11. Assume G with an orientation L is a minimum ounter-example to the Theorem. Then Gmust avoid all the on�gurations depited in Figure 3 :(i) This diretly follows from Observation 12.(ii) Let f be some T11-oloring of Gnfvg. By Observation 12, we an hoose f suh that f(x) 6= f(u3)and thus f an be extended to a T11-oloring of G.(iii) Let f be some T11-oloring of G n fv; x1; x2; x3g. Then u4 allows �ve olors for v and u1; u2; u3forbid at most three olors. Thus f an be extended to a T11-oloring of G.(iv) As before, let f be some T11-oloring of G n fv; x1; x2; x3; x4g. Then u5 allows �ve olors for vand u1; u2; u3; u4 forbid at most four olors. Thus f an be extended to a T11-oloring of G.
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Figure 3: Forbidden on�gurations for Theorem 1(3).We now use the following disharging proedure : eah vertex of degree at least 4 gives 1/2 to eah ofits 2-neighbours.Let us hek that the modernized degree deg� of eah vertex is at least 3 whih ontradits theassumption mad(G) < 3. We onsider all possible ases for old degree deg(v):1. deg(v) = 2: by (i) and (ii), v reeives exatly 1 and thus deg�(v) = 3.2. deg(v) = 3: no hanges.3. deg(v) = 4: by (iii), v gives at most 1 and thus deg�(v) � 3.4. deg(v) = 5: by (iv), v gives at most 3=2 and thus deg�(v) � 7=2 > 3.5. deg(v) = k � 6: v gives at most k=2 and thus deg�(v) � k=2 � 3.Therefore, every vertex in G gets a modernized degree at least 3 and the theorem is proved.5 Proof of Theorem 1(4)Here we use as target graph the irulant T19 = G(19; 1; 4; 5; 6; 7; 9; 11; 16; 17) on 19 verties. FromProposition 8 we have :Observation 13 For eah distint u; v 2 V (T19), and for eah of all four possible orientations of a2-path, there exist at least four distint 2-paths onneting u with v with given orientation.By a tedious ase study we also get the following :Observation 14 For eah distint u; v; w 2 V (T19), and for eah of all eight possible orientationsof edges onneting u; v and w with a vertex, there exist a vertex x 2 V (T19) suh that the edgesonneting x with u; v and w have given orientation.We will now prove that every graph with maximum average degree less than 10/3 has a homomorphismto T19. Assume G with an orientation L is a minimum ounter-example to the Theorem. Then Gmust avoid all the on�gurations depited in Figure 4 :(i) Let f be some T19-oloring of G n fvxg (that is we delete the edge vx). By Observation 13, wehave at least four hoies for oloring x, so that we an hoose for x a olor distint from theolors of u1 and u2. By Observation 14, we an then �nd a olor for v, whih is a ontradition.(ii) Let f be some T19-oloring of G n fx1; : : : ; xm�2g. By Observation 13, we have at least fourhoies for oloring v while u1; : : : ; um�2 forbid at most three of them. Thus we an extend f toa T19-oloring of G, a ontradition.
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Figure 4: Forbidden on�gurations for Theorem 1(4).(iii) Let f be some T19-oloring of G n fx1; : : : ; xm�1g. By Observation 13, we have at least ninehoies for oloring v while u1; : : : ; um�1 forbid at most eight of them. Thus we an extend f toa T19-oloring of G, a ontradition.(iv) Let f be some T19-oloring of G n fx1g. By Observation 13, u4 and u5 allow at least four olorsfor v while u2; u3 forbid at most two of them. Hene we an hoose for v a olor distint fromthe olor of u1 and extend f to a T19-oloring of G, a ontradition.(v) Let f be some T19-oloring of G n fv; x1; x2; x3; x4g. Then u7 allows nine olors for v whileu1; : : : ; u4 forbid at most four of them and u5; u6 at most two of them. Hene we an olor vwith a olor distint from the olors of u1; : : : ; u7. By Observation 14, we an olor x5. We havethen extended f to a T19-oloring of G, a ontradition.We now use the following disharging proedure : eah vertex of degree at least 4 gives 2/3 to eahits 2-neighbour and 1/9 to eah its 3-neighbour.Let us hek that the modernized degree deg� of eah vertex is at least 10/3 whih ontradits theassumption mad(G) < 10=3. We onsider the possible ases for old degree deg(v):1. deg(v) = 2: by (i), v reeives exatly 4=3 and thus deg�(v) � 10=3.2. deg(v) = 3: by (i), v reeives exatly 3 � 1=9 = 1=3 and thus deg�(v) = 10=3.3. deg(v) = 4: if v has no 2-neighbor then it gives at most 4 � 1=9 so that deg�(v) � 32=9 > 10=3.Otherwise, by (ii) and (iv) it gives exatly 2=3 and thus deg�(v) = 10=3.4. deg(v) = 5: by (ii), v gives at most 2�2=3+3�1=9 to its 2- and 3-neighbours so that deg�(v) � 10=3.5. deg(v) = 6: by (iii) and (v), deg�(v) � 6�maxf3 � 2=3 + 3 � 1=9; 4 � 2=3g = 10=3.6. 7 � deg(v) = n � 9: by (iii), deg�(v) � n� (n� 2) � 2=3 � 2 � 1=9 = n=3 + 10=9 > 10=3.7. deg(v) = k � 10: in that ase deg�(v) � n=3 � 10=3.Therefore, every vertex in G gets a modernized degree at least 10/3 and the theorem is proved.



O.V. Borodin, A.V. Kostohka, J. Ne�set�ril, A. Raspaud and E. Sopena 96 Proof of Theorem 2We will prove in this setion that every graph G with mad(G) � 4(1�1=(m�2)), m > 15, has aylihromati number at most m. Suppose G is a minimum ounter-example to the Theorem. Then Gsatis�es the following properties :(i) No 2-vertex in G is adjaent to some j-vertex for j < m. Assume that deg(v) = 2 and let x1; x2be its neighbours, where x1 has degree at mostm�1. Let f be some aylim-oloring of Gnfvg.If f(x1) 6= f(x2) we an olor v with any olor distint from f(x1) and f(x2). Otherwise, wean olor v with a olor distint from f(N(x1)) and f(x2). In both ases, f an be extended toan ayli m-oloring of G, a ontradition.(ii) For every 3-vertex v in G with N(v) = fx1; x2; x3g, we have deg(xi)+deg(xj) � m+1 for every1 � i < j � 3. Assume this is not the ase and let f be any ayli m-oloring of G n fvg. Wehave three ases to onsider :1. f(x1) 6= f(x2) 6= f(x3) 6= f(x1). We an obviously olor v with any olor distint from theolors of its neighbours.2. 1 = f(x1) = f(x2) 6= f(x3) = 2. If some olor  2 f3; : : : ;mg is not used in N(x1) or N(x2)then we an olor v with . Otherwise, deg(x1) � m� 1 and deg(x2) � m� 1. But in thatase, we get by (i) that deg(x3) � 3 and the result follows.3. f(x1) = f(x2) = f(x3) = 1. Suppose deg(x1) + deg(x2) � m. We an then olor v with aolor  6= 1 whih is neither used in N(x1) nor in N(x2).Hene, in all ases f an be extended to an ayli m-oloring of G, a ontradition.(iii) Let v be a vertex in G with N(v) = fu; y1; y2; y3; x1; : : : ; xtg suh that x1; : : : ; xt have degreetwo and y1; y2; y3 have degree at most three. Then t � (m � 10)(m � 5) + 1. Assume onthe ontrary that t � (m � 10)(m � 5). For every i, 1 � i � t, denote by zi the neighbourof xi distint from v and let f be some ayli m-oloring of G n fv; x1; : : : ; xtg. Denote A =f(fu; y1; y2; y3g[N(y1)[N(y2)[N(y3)). Clearly, jAj � 10. There exists a olor  2 f1; : : : ;mgnAsuh that at most tm�10 zj's (ounted with multipliity) are olored with . We olor v with and then olor every xj suh that f(zj) 6=  with any olor distint from  and f(zj). Finally,we olor xj's suh that f(zj) =  with distint olors in f1; : : : ;mg n (fg [ f(fu; y1; y2; y3g)).Sine t=(m � 10) � m � 5, we an do that and thus extend f to an ayli m-oloring of G, aontradition.We now use the following two-step disharging proedure :Step 1 : eah vertex of degree at least 8 gives 1/2 to eah of its 3-neighbours,Step 2 : eah vertex of degree at leastm (before disharging) leaves 4 for itself and uniformly distributesthe rest between its 2-neighbours.Let us hek that the modernized degree deg� of eah vertex is at least 4(1 � 1=(m � 2)) whihontradits the assumption of Theorem 3. We onsider the possible ases for old degree deg(v) :1. deg(v) � 8 : after �rst step of disharging, v has at least 0:5 deg(v), so it an a�ord to save 4for itself and thus deg�(v) � 4.2. 4 � deg(v) � 7 : by (i), deg�(v) = deg(v).3. deg(v) = 3 : by (ii), v annot have two neighbours with degree at most 7. Thus v reeives atleast 1 and deg�(v) � 4.4. deg(v) = 2 : let us hek that v reeives at least m�4m�2 from eah of its neighbors. Indeed, let(v; u) be an edge in E(G). By (i), the degree d of u is at least m. If u has a neighbors of degree



10 On the maximum average degree and the oriented hromati number of a graphat least 4 and b neighbors of degree 3 then v reeives from u :h(d; a; b) = d� 4� b=2d� a� b = 1� 4� b=2� ad� a� b :Hene if a + b=2 � 4, we are done. Suppose on the ontrary that a + b=2 � 3:5. Under theseonditions, h(d; a; b) inreases if any of d; a; b inreases and others are �xed or if a + b is �xedand a inreases. We have three ases to onsider :(a) a � 2. By above, h(d; a; b) � h(m; 2; 0) = m�4m�2 .(b) a � 1; a + b � 5. By our previous observation onerning the behaviour of the funtion hand the fat that if b = 4 then a = 1, we have : h(d; a; b) � h(m; 0; 5) = m�6:5m�5 > m�4m�2 .() a � 1; a+ b � 4. Then by (iii), deg(u) � (m� 10)(m � 5) + 5 andh(d; a; b) � h(m2 � 15m+ 55; 0; 0) = m2 � 15m+ 51m2 � 15m+ 55 > m� 4m� 2 :Thus we get that deg�(v) � 2 + 2 � m�4m�2 = 4(1� 1=(m� 2)).Therefore, every vertex in G gets a modernized degree at least 4(1� 1=(m� 2)) and the theoremis proved.7 Proof of Theorem 3In [13℄ Kriz onstruted for every k; g a graph Hk;g having girth g and hromati number k. Moreover,this graph Hk;g is the union of (k � 1) forests, whose every omponent is a star.By Nash-Williams Theorem [15℄ it means that for every subgraph H 0 of Hk;g we have eH0 �(k � 1)(vH0 � 1). We now de�ne the oriented graph H�k;g obtained from Hk;g by replaing every edgeby a direted 2-path. Clearly the graph H�k;g has girth 2g and oriented hromati number at least k.We laim that m = mad(H�k;g) is at most 4(1 � 1=k). To see that let G be any subgraph of H�k;gwhose average degree is exatly m. It is not diÆult to see that G = H 0� for some subgraph H 0 ofHg;k and thus eG = 2eH0� and vG = vH0� + eH0� . Henem = 2eGvG = 4eH0�vH0� + eH0� = 4 � �1� vH0�vH0� + eH0� �Sine eH0� � (k � 1)(vH0� � 1) we get vH0� + eH0� � kvH0� � (k � 1) and thus m � 4(1 � 1=k). Thetheorem is proved.Referenes[1℄ K. Appel and W. Haken, Every planar map is four olorable, Bull. Amer. Math. So. 82 (1976),711{712.[2℄ O. V. Borodin, On ayli olorings of planar graphs, Disrete Math. 25 (1979), 211{236.[3℄ O. V. Borodin, A. V. Kostohka, J. Ne�set�ril, A. Raspaud and E. Sopena, work in preparation.[4℄ Ph. Franklin, The four olor problem, Amer. J. Math. 42 (1922), 225{236.[5℄ R. H�aggkvist and P. Hell, On A-mote universal graphs, European J. of Combinatoris 13 (1993),23{27.[6℄ H. Heesh, Untersuhungen zum Vierfarbenproblem, B-I-Hohshulsripten 810/ 810a/810b, Bib-liographishes Institut, Manheim-Vienna-Zurih (1969).
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