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eAbstra
t. The oriented 
hromati
 number o(H) of an oriented graph H is de�ned as the minimum order ofan oriented graph H 0 su
h that H has a homomorphism to H 0. The oriented 
hromati
 number o(G) of anundire
ted graph G is then de�ned as the maximum oriented 
hromati
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tion and statement of resultsFor every graph G we denote by V (G), with vG = jV (G)j, its set of verti
es and by E(G), witheG = jE(G)j, its set of ar
s or edges. A homomorphism from a graph G to a graph H is a mapping 'from V (G) to V (H) whi
h preserves the edges (or the ar
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oloring. It is not diÆ
ult to observe that an undire
ted graph G has 
hromati
number k if and only if G has a homomorphism to Kk but no homomorphism to Kk�1 (where Kndenotes the 
omplete graph on n verti
es). Therefore the 
hromati
 number of an undire
ted graph G
an equivalently be de�ned as the minimum number of verti
es in an undire
ted graph H su
h that Ghas a homomorphism to H. We will often say that a graph G is H-
olorable if G has a homomorphismto H and the verti
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2 On the maximum average degree and the oriented 
hromati
 number of a graphorientations. We 
an similarly de�ne the oriented 
hromati
 number o(H) of an oriented graphH as theminimum number of verti
es in an oriented graph H 0 su
h that H has a (oriented) homomorphism toH 0. The oriented 
hromati
 number o(G) of an undire
ted graph G is then de�ned as the maximumoriented 
hromati
 number of its orientations. In some sense, this notion measures how \bad" anorientation of an undire
ted graph 
an be. For instan
e, bipartite graphs may have arbitrarily largeoriented 
hromati
 number (see Observation 7 below).Oriented 
hromati
 number of (undire
ted) graphs with bounded degree or with bounded treewidthhas been studied in [19℄. In [18℄ it has been proved that every planar graph has oriented 
hromati
number at most 80. The proof depends on the a
y
li
 5-
olorability of planar graphs proved in [2℄.Despite many e�orts, no better upper bound is known up to now. The study of planar graphs isthus parti
ularly 
hallenging in this 
ontext. This bound 
an be signi�
antly de
reased under somelarge girth assumption [16℄ (re
all that the girth g(G) of a graph G is the length of a shortest 
y
le inG). The links between the oriented 
hromati
 number and other parameters of a graph (arbori
ity,maximum degree, a
y
li
 
hromati
 number) have been studied in [12℄.In this paper, we study the relationship between the oriented 
hromati
 number and the maximumaverage degree of a graph. The maximum average degree mad(G) of a graph G is de�ned as themaximum of the average degrees ad(H) = 2eH=vH taken over all the subgraphs H of G. Our �rstresult is the following :Theorem 11. For every graph G with mad(G) < 7=3, o(G) � 5.2. For every graph G with mad(G) < 11=4 and girth g(G) � 5, o(G) � 7.3. For every graph G with mad(G) < 3, o(G) � 11.4. For every graph G with mad(G) < 10=3, o(G) � 19.Con
erning the maximum average degree of planar graphs, we have the following :Observation 2 For every planar graph G with girth at least g, mad(G) < 2g=(g � 2).To see that, observe that if G has girth at least g then the number of fa
es in G is at most 2e(G)=g.By Euler's formula we then get that 2e(G)v(G) � 2ge(G)2g+(g�2)e(G) and thus mad(G) < 2g=(g � 2).In 
ase of planar graphs, Theorem 1 therefore leads to the following 
orollary, whi
h improvessome results given in [16℄ :Corollary 3 Let G be a planar graph, then1. if G has girth at least 14 then o(G) � 5,2. if G has girth at least 8 then o(G) � 7,3. if G has girth at least 6 then o(G) � 11,4. if G has girth at least 5 then o(G) � 19.It is easy to see that Observation 2, and hen
e Corollary 1, holds for proje
tive plane as well.In a 
ompanion paper [3℄ we 
ontinue the study of planar graphs and improve some of the aboveresults.Relationships between oriented 
olorings and a
y
li
 
olorings have been dis
ussed in [12, 18℄.Re
all that a k-
oloring of an undire
ted graph G is said to be a
y
li
 if every 
y
le in G uses at leastthree 
olors. The a
y
li
 
hromati
 number a
n(G) of G is then de�ned as the minimum number kof 
olors su
h that G has an a
y
li
 k-
oloring. It has been proved in [18℄ that a
n(G) � k implieso(G) � k � 2k�1. Considering the relationship between the a
n and mad parameters we prove :Theorem 4 For every m > 15 and every graph G with mad(G) < 4(1� 1=(m� 2)), a
n(G) � m.Using the above-mentioned theorem of [18℄, Theorem 4 leads to the following 
orollary :
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hka, J. Ne�set�ril, A. Raspaud and E. Sopena 3Corollary 5 For every n > 25, if mad(G) < 4(1� 2=(n+ 1)) then o(G) � (n+ 5) � 2n+12 .Our next result is the following :Theorem 6 For every k, there exists a graph G of arbitrarily large girth with mad(G) < 4(1� 1=k)and o(G) � k.In 
ase of bipartite graphs, we have the following :Observation 7 For every n > 0 there exists a bipartite graph Bn with girth 6 su
h that o(Bn) � nand mad(Bn) = 4(1� 2=(n+ 1)).To see that, let Bn be the oriented graph obtained from the 
omplete graph Kn by repla
ing everyedge by a dire
ted 2-path. Clearly the graph Bn thus obtained has oriented 
hromati
 number at leastn (all the \original" verti
es from Kn must have distin
t 
olors) and girth g = 6. Moreover, no propersubgraph of Bn 
an have the average degree greater than Bn itself and thus :mad(Bn) = 2eBnvBn = 2n(n� 1)n(n�1)2 + n = 4�1� 2n+ 1� :Corollary 2 thus indi
ates that the mad parameter is a robust parameter. Theorem 3 extends Obser-vation 7 to graphs of arbitrarily large girth.In all the following we will simply say that an undire
ted graph G has a homomorphism to anoriented graph T , when G, with any orientation L, has a homomorhism to T .The rest of this paper is devoted to the proofs of our theorems. For Theorem 1, we will prove that everygraph satisfying the 
orresponding 
onditions has a homomorphism to some spe
ial (oriented) 
ir
ulantgraph. Re
all here that the 
ir
ulant graph G = G(n; 
1; : : : ; 
d) is de�ned as V (T ) = f0; 1; : : : ; n� 1gand xy 2 E(T ) if and only if y = x+ 
i (mod n) for some i, 1 � i � d.If n is a prime number of the form 4k+3 and the 
0is are the non-zero quadrati
 residues of n thend = bn�12 
 and G = G(n; 
1; : : : ; 
d) is a tournament. We will extensively use the following propertyof this kind of tournament :Proposition 8 Let G = G(n; 
1; : : : ; 
d) be a 
ir
ulant graph su
h that the 
0is are the non-zeroquadrati
 residues of n, where n is a prime number of the form 4k + 3. Then for any two dis-tin
t verti
es u,v in G and any orientation of a 2-path, there exist at least n�34 2-paths from u to v ofgiven orientation.Proof. By Lemma 6.24 in [14℄ we have the following: if n = 3 (mod 4) is a prime number thenfor any b (ex
ept 0), the number of solutions of the equation x2 + y2 = b (mod n) is n+ 1 and thenumber of solutions of the equation x2�y2 = b is n�1. This implies that for any two distin
t verti
esu,v in the 
ir
ulant and any orientation of a 2-path, there exist at least n�34 2-paths from u to v ofgiven orientation 2Let H be any target graph with n verti
es 
alled 
olors. Suppose that we want to 
onstru
t ahomomorphism f of a given graph G to H and let x; y be any two verti
es to be 
oloured in G. Wewill say that y allows k 
olors for x if for a given 
hoi
e of the 
olor of y we still have in any 
ase atleast k possible 
hoi
es for 
oloring x. Similarly, we will say that y forbids k 
olors for x if for a given
hoi
e of the 
olor of y we still have in any 
ase n� k possible 
hoi
es for 
oloring x.All the proofs will be based on the so-
alled method of redu
ible 
on�gurations, 
ontributed toHeesh [6℄, and used in parti
ular by Appel and Haken [1℄ in their proof of the four-
olor theorem.But we must note that Franklin [4℄ had already used it in the 20s. We �rst provide a (small) set offorbidden 
on�gurations, that is a set of graphs that a minimal 
ounter-example G to our theorem
annot 
ontain as subgraphs. We will then assume that every vertex v in G is valued by its degreedeg(v) and de�ne a dis
harging pro
edure whi
h spe
i�es some transfers of values among the verti
es
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(i) (ii)Figure 1: Forbidden 
on�gurations for Theorem 1(1).in G by keeping 
onstant the sum of all the values. We will then get a 
ontradi
tion by 
onsidering themodernized degree deg�(v) of every vertex v, that is the value obtained by v thanks to the dis
hargingpro
edure.Drawing 
onventions : In all the �gures depi
ting forbidden 
on�gurations we will draw verti
eswith pres
ribed degrees as \white" verti
es and verti
es with unbounded degree as \bla
k verti
es".All the neighbours of white verti
es are drawn. Unless otherwise spe
i�ed, two or more bla
k verti
esmay 
oin
ide in a single vertex, provided they do not share a 
ommon white neighbour.2 Proof of Theorem 1(1)We will use here the 
ir
ulant graph T5 = G(5; 1; 2) as target graph. The following 
an easily be
he
ked :Observation 9 The graph T5 is su
h that1. For every pair of (not ne
essarily distin
t) verti
es u; v 2 V (T5) there exists a dire
ted 4-path
onne
ting u with v for any of the 16 possible orientations of su
h a dire
ted 4-path (this followsfrom Proposition 8 in [16℄).2. For every pair of distin
t verti
es u; v 2 V (T5) there exists a dire
ted 3-path 
onne
ting u with vfor any of all 8 possible orientations of su
h a dire
ted 3-path.We will now prove that every graph with maximum average degree less than 7/3 has a homomorphismto T5. Assume G with an orientation L is a minimum 
ounter-example to the Theorem. Then G mustavoid all the 
on�gurations depi
ted in Figure 1 :(i) This follows dire
tly from Observation 9.(ii) Let f be any T5-
oloring of G n fv; x1; x2; y2; x3; y3g. The vertex u1 allows three 
olors for v, sothat we 
an 
hoose for v a 
olor distin
t from the 
olors of u2; u3. By Observation 9 we 
an thenextend f to a T5-
oloring of G. This is a 
ontradi
tion.We now use the following dis
harging pro
edure : ea
h vertex of degree at least 3 gives 1/3 to ea
hof its 2-neighbours having itself a 2-neighbour and 1/6 to ea
h of its other 2-neighbours.Let us 
he
k that the modernized degree deg� of ea
h vertex is at least 7/3 whi
h 
ontradi
ts theassumption mad(G) < 7=3. We 
onsider the possible 
ases for old degree deg(v):1. deg(v) = 2 : by (i), v has at least one neighbour of degree at least 3. If v has a 2-neighbour thenit re
eives 1/3 so that deg�(v) = 7=3. If v has no 2-neighbour then it re
eives 1/6 from ea
h ofits neighbours and thus deg�(v) = 7=3.
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Figure 2: Forbidden 
on�gurations for Theorem 1(2).2. deg(v) = 3 : by (ii) v gives at mostmaxf2�1=3; 1=3+2�1=6; 3�1=6g = 2=3 and thus deg�(v) � 7=3.3. deg(v) = k � 4 : v gives at most k � 1=3 and thus deg�(v) � k � k=3 > 7=3.Therefore, every vertex in G gets a modernized degree at least 7/3 and the theorem is proved.By using more sophisti
ated te
hniques we prove in our 
ompanion paper [3℄ that every graph Gwith mad(G) < 12=5 is T5-
olorable. By Observation 2 we thus get that every planar graph with girthat least 12 has oriented 
hromati
 number at most 5.3 Proof of Theorem 1(2)We will use here the 
ir
ulant graph T7 = G(7; 1; 2; 4) as target graph. The following observation is adire
t 
onsequen
e of Proposition 8 :Observation 10 The graph T7 is su
h that for ea
h u; v 2 V (T ) with u 6= v, there exist a dire
ted2-paths 
onne
ting u with v of all four possible orientations. It follows that there is a dire
ted 3-pathof any possible orientation linking any two verti
es (not ne
essarily distin
t).Observe that if the ar
s of a dire
ted 2-path have opposite dire
tions, then in T7 there is a dire
ted2-path from any vertex v to itself. All that essentially means that if we have a path vxu in G with xof degree 2 then v \forbids" for u at most one 
olor (a
tually its own 
olor, if the two ar
s have thesame dire
tion). More pre
isely, we have the following :Observation 11 Let G be an oriented graph and u; v be two neighbour verti
es in G. Let f be someT7-
oloring of G n fvg. If for a �xed 
oloring of the neighbours of v distin
t from u we 
an use idistin
t 
olors for v, then v forbids for u at most two 
olors for i = 2, one 
olor for i = 3; 4 and no
olors for i > 4.We will now prove that every graph with maximum average degree less than 11/4 and girth at least 5has a homomorphism to T7. Assume G with an orientation L is a minimum 
ounter-example to theTheorem. Then G must avoid all the 
on�gurations depi
ted in Figure 2 :(i) This follows dire
tly from Observation 10.
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hromati
 number of a graph(ii) Let f be any T7-
oloring of G n fv; x1; x2g. Then u3 allows exa
tly three 
olors for v while u1; u2forbid at most two of them. Thus f 
an be extended to a T7-
oloring of G, a 
ontradi
tion.(iii) Let f be any T7-
oloring of G n fv; x1; x2; x3; x4g. All the ui's forbid at most four 
olors for vand thus f 
an be extended to a T7-
oloring of G, a 
ontradi
tion.(iv) Observe �rst that sin
e G has girth at least 5, u1; u2; u3; u4 are distin
t but one of u1; u2; u3 may
oin
ide with u5. Let f be any T7-
oloring of G n fv; x1; x2; x3; x4; y4g. Then u4 and u5 allow atleast two 
olors for x4 and thus at least �ve 
olors for v while u1; u2; u3 forbid at most three ofthem. Thus f 
an be extended to a T7-
oloring of G, a 
ontradi
tion.(v) Observe �rst that sin
e G has girth at least 5, u3 and u4 (resp. u1 and u5) may be identi�ed. Letf be any T7-
oloring of Gnfv1; v2; v3; x1; x2; x3g. The verti
es u1 and u4 (resp. u3 and u5) allowat least two 
olors for v1 (resp. for v3). Then v1 and v3 allow at least three 
olors for v2 whileu2 forbids at most one of them. Thus f 
an be extended to a T7-
oloring of G, a 
ontradi
tion.(vi) Observe �rst that sin
e G has girth at least 5 no \bla
k" vertex 
an 
oin
ide with a \white" one.Let f be any T7-
oloring of G n fv; x1; x2; x3; y1; y2; y3g. All the ui's allow at least two 
olorsfor ea
h xi and thus at least one 
olor for v. Thus f 
an be extended to a T7-
oloring of G, a
ontradi
tion.We now use the following dis
harging pro
edure : ea
h vertex of degree at least 3 gives 3/8 to ea
hof its 2-neighbours and 1/8 to ea
h of its 3-neighbours having a 2-neighbour.Let us 
he
k that the modernized degree deg� of ea
h vertex is at least 11/4 whi
h 
ontradi
ts theassumption mad(G) < 11=4. We 
onsider the possible 
ases for old degree deg(v):1. deg(v) = 2: by (i), v re
eives exa
tly 3/4, and thus deg�(v) = 11=4.2. deg(v) = 3: if v has a 2-neighbour then by (ii) and (v), v gives at most 3=8 + 1=8 = 1=2 butthen it also re
eives 1=8 + 1=8 so that deg�(v) � 11=4; if v has no 2-neighbour then by (vi), itgives at most 2=8 to its 3-neighbours having a 2-neighbour and thus deg�(v) � 11=4.3. deg(v) = 4: by (iii) and (iv), v gives at most 9=8 and thus deg�(v) � 23=8 > 11=4.4. deg(v) = k > 4: v gives at most 3k=8 and thus deg�(v) � 5k=8 � 25=8 > 11=4.Therefore, every vertex in G gets a modernized degree at least 11/4 and the theorem is proved.4 Proof of Theorem 1(3)Here we use as target graph the 
ir
ulant T11 = G(11; 1; 3; 4; 5; 9). From Proposition 8 we have :Observation 12 The graph T11 is su
h that for every two distin
t verti
es u; v in T11, there are areleast two distin
t 2-paths linking u and v for every possible orientation of this 2-path and there is a3-path of any possible orientation linking any two (not ne
essarily distin
t) verti
es in T11.We will now prove that every graph with maximum average degree less than 3 has a homomorphismto T11. Assume G with an orientation L is a minimum 
ounter-example to the Theorem. Then Gmust avoid all the 
on�gurations depi
ted in Figure 3 :(i) This dire
tly follows from Observation 12.(ii) Let f be some T11-
oloring of Gnfvg. By Observation 12, we 
an 
hoose f su
h that f(x) 6= f(u3)and thus f 
an be extended to a T11-
oloring of G.(iii) Let f be some T11-
oloring of G n fv; x1; x2; x3g. Then u4 allows �ve 
olors for v and u1; u2; u3forbid at most three 
olors. Thus f 
an be extended to a T11-
oloring of G.(iv) As before, let f be some T11-
oloring of G n fv; x1; x2; x3; x4g. Then u5 allows �ve 
olors for vand u1; u2; u3; u4 forbid at most four 
olors. Thus f 
an be extended to a T11-
oloring of G.
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Figure 3: Forbidden 
on�gurations for Theorem 1(3).We now use the following dis
harging pro
edure : ea
h vertex of degree at least 4 gives 1/2 to ea
h ofits 2-neighbours.Let us 
he
k that the modernized degree deg� of ea
h vertex is at least 3 whi
h 
ontradi
ts theassumption mad(G) < 3. We 
onsider all possible 
ases for old degree deg(v):1. deg(v) = 2: by (i) and (ii), v re
eives exa
tly 1 and thus deg�(v) = 3.2. deg(v) = 3: no 
hanges.3. deg(v) = 4: by (iii), v gives at most 1 and thus deg�(v) � 3.4. deg(v) = 5: by (iv), v gives at most 3=2 and thus deg�(v) � 7=2 > 3.5. deg(v) = k � 6: v gives at most k=2 and thus deg�(v) � k=2 � 3.Therefore, every vertex in G gets a modernized degree at least 3 and the theorem is proved.5 Proof of Theorem 1(4)Here we use as target graph the 
ir
ulant T19 = G(19; 1; 4; 5; 6; 7; 9; 11; 16; 17) on 19 verti
es. FromProposition 8 we have :Observation 13 For ea
h distin
t u; v 2 V (T19), and for ea
h of all four possible orientations of a2-path, there exist at least four distin
t 2-paths 
onne
ting u with v with given orientation.By a tedious 
ase study we also get the following :Observation 14 For ea
h distin
t u; v; w 2 V (T19), and for ea
h of all eight possible orientationsof edges 
onne
ting u; v and w with a vertex, there exist a vertex x 2 V (T19) su
h that the edges
onne
ting x with u; v and w have given orientation.We will now prove that every graph with maximum average degree less than 10/3 has a homomorphismto T19. Assume G with an orientation L is a minimum 
ounter-example to the Theorem. Then Gmust avoid all the 
on�gurations depi
ted in Figure 4 :(i) Let f be some T19-
oloring of G n fvxg (that is we delete the edge vx). By Observation 13, wehave at least four 
hoi
es for 
oloring x, so that we 
an 
hoose for x a 
olor distin
t from the
olors of u1 and u2. By Observation 14, we 
an then �nd a 
olor for v, whi
h is a 
ontradi
tion.(ii) Let f be some T19-
oloring of G n fx1; : : : ; xm�2g. By Observation 13, we have at least four
hoi
es for 
oloring v while u1; : : : ; um�2 forbid at most three of them. Thus we 
an extend f toa T19-
oloring of G, a 
ontradi
tion.
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Figure 4: Forbidden 
on�gurations for Theorem 1(4).(iii) Let f be some T19-
oloring of G n fx1; : : : ; xm�1g. By Observation 13, we have at least nine
hoi
es for 
oloring v while u1; : : : ; um�1 forbid at most eight of them. Thus we 
an extend f toa T19-
oloring of G, a 
ontradi
tion.(iv) Let f be some T19-
oloring of G n fx1g. By Observation 13, u4 and u5 allow at least four 
olorsfor v while u2; u3 forbid at most two of them. Hen
e we 
an 
hoose for v a 
olor distin
t fromthe 
olor of u1 and extend f to a T19-
oloring of G, a 
ontradi
tion.(v) Let f be some T19-
oloring of G n fv; x1; x2; x3; x4g. Then u7 allows nine 
olors for v whileu1; : : : ; u4 forbid at most four of them and u5; u6 at most two of them. Hen
e we 
an 
olor vwith a 
olor distin
t from the 
olors of u1; : : : ; u7. By Observation 14, we 
an 
olor x5. We havethen extended f to a T19-
oloring of G, a 
ontradi
tion.We now use the following dis
harging pro
edure : ea
h vertex of degree at least 4 gives 2/3 to ea
hits 2-neighbour and 1/9 to ea
h its 3-neighbour.Let us 
he
k that the modernized degree deg� of ea
h vertex is at least 10/3 whi
h 
ontradi
ts theassumption mad(G) < 10=3. We 
onsider the possible 
ases for old degree deg(v):1. deg(v) = 2: by (i), v re
eives exa
tly 4=3 and thus deg�(v) � 10=3.2. deg(v) = 3: by (i), v re
eives exa
tly 3 � 1=9 = 1=3 and thus deg�(v) = 10=3.3. deg(v) = 4: if v has no 2-neighbor then it gives at most 4 � 1=9 so that deg�(v) � 32=9 > 10=3.Otherwise, by (ii) and (iv) it gives exa
tly 2=3 and thus deg�(v) = 10=3.4. deg(v) = 5: by (ii), v gives at most 2�2=3+3�1=9 to its 2- and 3-neighbours so that deg�(v) � 10=3.5. deg(v) = 6: by (iii) and (v), deg�(v) � 6�maxf3 � 2=3 + 3 � 1=9; 4 � 2=3g = 10=3.6. 7 � deg(v) = n � 9: by (iii), deg�(v) � n� (n� 2) � 2=3 � 2 � 1=9 = n=3 + 10=9 > 10=3.7. deg(v) = k � 10: in that 
ase deg�(v) � n=3 � 10=3.Therefore, every vertex in G gets a modernized degree at least 10/3 and the theorem is proved.
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hka, J. Ne�set�ril, A. Raspaud and E. Sopena 96 Proof of Theorem 2We will prove in this se
tion that every graph G with mad(G) � 4(1�1=(m�2)), m > 15, has a
y
li

hromati
 number at most m. Suppose G is a minimum 
ounter-example to the Theorem. Then Gsatis�es the following properties :(i) No 2-vertex in G is adja
ent to some j-vertex for j < m. Assume that deg(v) = 2 and let x1; x2be its neighbours, where x1 has degree at mostm�1. Let f be some a
y
li
m-
oloring of Gnfvg.If f(x1) 6= f(x2) we 
an 
olor v with any 
olor distin
t from f(x1) and f(x2). Otherwise, we
an 
olor v with a 
olor distin
t from f(N(x1)) and f(x2). In both 
ases, f 
an be extended toan a
y
li
 m-
oloring of G, a 
ontradi
tion.(ii) For every 3-vertex v in G with N(v) = fx1; x2; x3g, we have deg(xi)+deg(xj) � m+1 for every1 � i < j � 3. Assume this is not the 
ase and let f be any a
y
li
 m-
oloring of G n fvg. Wehave three 
ases to 
onsider :1. f(x1) 6= f(x2) 6= f(x3) 6= f(x1). We 
an obviously 
olor v with any 
olor distin
t from the
olors of its neighbours.2. 1 = f(x1) = f(x2) 6= f(x3) = 2. If some 
olor 
 2 f3; : : : ;mg is not used in N(x1) or N(x2)then we 
an 
olor v with 
. Otherwise, deg(x1) � m� 1 and deg(x2) � m� 1. But in that
ase, we get by (i) that deg(x3) � 3 and the result follows.3. f(x1) = f(x2) = f(x3) = 1. Suppose deg(x1) + deg(x2) � m. We 
an then 
olor v with a
olor 
 6= 1 whi
h is neither used in N(x1) nor in N(x2).Hen
e, in all 
ases f 
an be extended to an a
y
li
 m-
oloring of G, a 
ontradi
tion.(iii) Let v be a vertex in G with N(v) = fu; y1; y2; y3; x1; : : : ; xtg su
h that x1; : : : ; xt have degreetwo and y1; y2; y3 have degree at most three. Then t � (m � 10)(m � 5) + 1. Assume onthe 
ontrary that t � (m � 10)(m � 5). For every i, 1 � i � t, denote by zi the neighbourof xi distin
t from v and let f be some a
y
li
 m-
oloring of G n fv; x1; : : : ; xtg. Denote A =f(fu; y1; y2; y3g[N(y1)[N(y2)[N(y3)). Clearly, jAj � 10. There exists a 
olor 
 2 f1; : : : ;mgnAsu
h that at most tm�10 zj's (
ounted with multipli
ity) are 
olored with 
. We 
olor v with 
and then 
olor every xj su
h that f(zj) 6= 
 with any 
olor distin
t from 
 and f(zj). Finally,we 
olor xj's su
h that f(zj) = 
 with distin
t 
olors in f1; : : : ;mg n (f
g [ f(fu; y1; y2; y3g)).Sin
e t=(m � 10) � m � 5, we 
an do that and thus extend f to an a
y
li
 m-
oloring of G, a
ontradi
tion.We now use the following two-step dis
harging pro
edure :Step 1 : ea
h vertex of degree at least 8 gives 1/2 to ea
h of its 3-neighbours,Step 2 : ea
h vertex of degree at leastm (before dis
harging) leaves 4 for itself and uniformly distributesthe rest between its 2-neighbours.Let us 
he
k that the modernized degree deg� of ea
h vertex is at least 4(1 � 1=(m � 2)) whi
h
ontradi
ts the assumption of Theorem 3. We 
onsider the possible 
ases for old degree deg(v) :1. deg(v) � 8 : after �rst step of dis
harging, v has at least 0:5 deg(v), so it 
an a�ord to save 4for itself and thus deg�(v) � 4.2. 4 � deg(v) � 7 : by (i), deg�(v) = deg(v).3. deg(v) = 3 : by (ii), v 
annot have two neighbours with degree at most 7. Thus v re
eives atleast 1 and deg�(v) � 4.4. deg(v) = 2 : let us 
he
k that v re
eives at least m�4m�2 from ea
h of its neighbors. Indeed, let(v; u) be an edge in E(G). By (i), the degree d of u is at least m. If u has a neighbors of degree
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hromati
 number of a graphat least 4 and b neighbors of degree 3 then v re
eives from u :h(d; a; b) = d� 4� b=2d� a� b = 1� 4� b=2� ad� a� b :Hen
e if a + b=2 � 4, we are done. Suppose on the 
ontrary that a + b=2 � 3:5. Under these
onditions, h(d; a; b) in
reases if any of d; a; b in
reases and others are �xed or if a + b is �xedand a in
reases. We have three 
ases to 
onsider :(a) a � 2. By above, h(d; a; b) � h(m; 2; 0) = m�4m�2 .(b) a � 1; a + b � 5. By our previous observation 
on
erning the behaviour of the fun
tion hand the fa
t that if b = 4 then a = 1, we have : h(d; a; b) � h(m; 0; 5) = m�6:5m�5 > m�4m�2 .(
) a � 1; a+ b � 4. Then by (iii), deg(u) � (m� 10)(m � 5) + 5 andh(d; a; b) � h(m2 � 15m+ 55; 0; 0) = m2 � 15m+ 51m2 � 15m+ 55 > m� 4m� 2 :Thus we get that deg�(v) � 2 + 2 � m�4m�2 = 4(1� 1=(m� 2)).Therefore, every vertex in G gets a modernized degree at least 4(1� 1=(m� 2)) and the theoremis proved.7 Proof of Theorem 3In [13℄ Kriz 
onstru
ted for every k; g a graph Hk;g having girth g and 
hromati
 number k. Moreover,this graph Hk;g is the union of (k � 1) forests, whose every 
omponent is a star.By Nash-Williams Theorem [15℄ it means that for every subgraph H 0 of Hk;g we have eH0 �(k � 1)(vH0 � 1). We now de�ne the oriented graph H�k;g obtained from Hk;g by repla
ing every edgeby a dire
ted 2-path. Clearly the graph H�k;g has girth 2g and oriented 
hromati
 number at least k.We 
laim that m = mad(H�k;g) is at most 4(1 � 1=k). To see that let G be any subgraph of H�k;gwhose average degree is exa
tly m. It is not diÆ
ult to see that G = H 0� for some subgraph H 0 ofHg;k and thus eG = 2eH0� and vG = vH0� + eH0� . Hen
em = 2eGvG = 4eH0�vH0� + eH0� = 4 � �1� vH0�vH0� + eH0� �Sin
e eH0� � (k � 1)(vH0� � 1) we get vH0� + eH0� � kvH0� � (k � 1) and thus m � 4(1 � 1=k). Thetheorem is proved.Referen
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