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Abstract. The oriented chromatic number o(H) of an oriented graph H is defined as the minimum order of
an oriented graph H' such that H has a homomorphism to H'. The oriented chromatic number o(G) of an
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paper we study the links between o(G) and mad(G) defined as the maximum average degree of the subgraphs
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1 Introduction and statement of results

For every graph G we denote by V(G), with vg = |[V(G)|, its set of vertices and by E(G), with
eq = |E(Q)|, its set of arcs or edges. A homomorphism from a graph G to a graph H is a mapping ¢
from V(G) to V(H) which preserves the edges (or the arcs), that is zy € E(G) = ¢(z)p(y) € E(H).

Homomorphisms of graphs have been studied in the literature [5, 7, 8, 9, 10, 12, 16, 17, 18, 19] as a
generalization of graph coloring. It is not difficult to observe that an undirected graph G has chromatic
number £ if and only if G has a homomorphism to Kj; but no homomorphism to Kj;_; (where K,
denotes the complete graph on n vertices). Therefore the chromatic number of an undirected graph G
can equivalently be defined as the minimum number of vertices in an undirected graph H such that G
has a homomorphism to H. We will often say that a graph G is H-colorable if G has a homomorphism
to H and the vertices of H will be called colors.

Oriented graphs are directed graphs without opposite arcs. In other words an oriented graph is
an orientation of an undirected graph, obtained by assigning to every edge one of the two possible
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orientations. We can similarly define the oriented chromatic number o( H) of an oriented graph H as the
minimum number of vertices in an oriented graph H' such that H has a (oriented) homomorphism to
H'. The oriented chromatic number o(G) of an undirected graph G is then defined as the maximum
oriented chromatic number of its orientations. In some sense, this notion measures how “bad” an
orientation of an undirected graph can be. For instance, bipartite graphs may have arbitrarily large
oriented chromatic number (see Observation 7 below).

Oriented chromatic number of (undirected) graphs with bounded degree or with bounded treewidth
has been studied in [19]. In [18] it has been proved that every planar graph has oriented chromatic
number at most 80. The proof depends on the acyclic 5-colorability of planar graphs proved in [2].
Despite many efforts, no better upper bound is known up to now. The study of planar graphs is
thus particularly challenging in this context. This bound can be significantly decreased under some
large girth assumption [16] (recall that the girth g(G) of a graph G is the length of a shortest cycle in
G). The links between the oriented chromatic number and other parameters of a graph (arboricity,
maximum degree, acyclic chromatic number) have been studied in [12].

In this paper, we study the relationship between the oriented chromatic number and the maximum
average degree of a graph. The maximum average degree mad(G) of a graph G is defined as the
maximum of the average degrees ad(H) = 2ep /vy taken over all the subgraphs H of G. Our first
result is the following :

Theorem 1

<7/3, o(G) < 5.

< 11/4 and girth ¢(G) > 5, o(G) < T.
<3, 0(G) <11.

< 10/3, o(G) < 19.

1. For every graph G with mad
2. For every graph G with mad
3. For every graph G with mad
4. For every graph G with mad

2283

Concerning the maximum average degree of planar graphs, we have the following :
Observation 2 For every planar graph G with girth at least g, mad(G) < 2g/(g — 2).

To see that, observe that if G has girth at least g then the number of faces in G is at most 2¢(G)/g.
By Euler’s formula we then get that 26((0)) < Qgﬁée_(g)e(c) and thus mad(G) < 2g/(g — 2).
In case of planar graphs, Theorem 1 therefore leads to the following corollary, which improves

some results given in [16] :

Corollary 3 Let G be a planar graph, then

if G has girth at least 1] then o(G) <

if G has girth at least 8 then o(G) < 7
if G has girth at least 6 then o(G) < 11,
4. if G has girth at least 5 then o(G) < 19

o o~

It is easy to see that Observation 2, and hence Corollary 1, holds for projective plane as well.
In a companion paper [3] we continue the study of planar graphs and improve some of the above
results.

Relationships between oriented colorings and acyclic colorings have been discussed in [12, 18].
Recall that a k-coloring of an undirected graph G is said to be acyclic if every cycle in G uses at least
three colors. The acyclic chromatic number acn(G) of G is then defined as the minimum number &
of colors such that G has an acyclic k-coloring. It has been proved in [18] that acn(G) < k implies
o(G) < k-2*=1. Considering the relationship between the acn and mad parameters we prove :

Theorem 4 For every m > 15 and every graph G with mad(G) < 4(1 — 1/(m — 2)), acn(G) < m.

Using the above-mentioned theorem of [18], Theorem 4 leads to the following corollary :
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Corollary 5 For every n > 25, if mad(G) < 4(1 —2/(n + 1)) then o(G) < (n +5) - 2"t
Our next result is the following :

Theorem 6 For every k, there exists a graph G of arbitrarily large girth with mad(G) < 4(1 — 1/k)
and o(G) > k.

In case of bipartite graphs, we have the following :

Observation 7 For every n > 0 there exists a bipartite graph By with girth 6 such that o(By) > n
and mad(B,) = 4(1 —2/(n + 1)).

To see that, let B;,, be the oriented graph obtained from the complete graph K, by replacing every
edge by a directed 2-path. Clearly the graph B,, thus obtained has oriented chromatic number at least
n (all the “original” vertices from K, must have distinct colors) and girth ¢ = 6. Moreover, no proper
subgraph of B, can have the average degree greater than B, itself and thus :

mad(Bn):2eB" _ 2n(n —1) :4<1_ 2 )

UB,, @_’_n n+1

Corollary 2 thus indicates that the mad parameter is a robust parameter. Theorem 3 extends Obser-
vation 7 to graphs of arbitrarily large girth.

In all the following we will simply say that an undirected graph G has a homomorphism to an
oriented graph T, when G, with any orientation L, has a homomorhism to 7.
The rest of this paper is devoted to the proofs of our theorems. For Theorem 1, we will prove that every
graph satisfying the corresponding conditions has a homomorphism to some special (oriented) circulant
graph. Recall here that the circulant graph G = G(n;c1,...,¢q) is defined as V(T') = {0,1,...,n —1}
and zy € E(T) if and only if y =2 +¢; (mod n) for some i, 1 <14 <d.

If n is a prime number of the form 4k + 3 and the ¢,s are the non-zero quadratic residues of n then

n—1

d=["5] and G = G(n;c1,...,cq) is a tournament. We will extensively use the following property

of this kind of tournament :

Proposition 8 Let G = G(n;cy,...,cq) be a circulant graph such that the cis are the non-zero
quadratic residues of m, where n is a prime number of the form 4k + 3. Then for any two dis-
tinct vertices u,v in G and any orientation of a 2-path, there exist at least "Tf?’ 2-paths from u to v of
given orientation.

Proof. By Lemma 6.24 in [14] we have the following: if n = 3 (mod 4) is a prime number then
for any b (except 0), the number of solutions of the equation #2 + y?> =b (mod n) is n + 1 and the
number of solutions of the equation z? —y? = b is n — 1. This implies that for any two distinct vertices
u,v in the circulant and any orientation of a 2-path, there exist at least "Tf‘g 2-paths from v to v of
given orientation a

Let H be any target graph with n vertices called colors. Suppose that we want to construct a
homomorphism f of a given graph G to H and let x,y be any two vertices to be coloured in G. We
will say that y allows k colors for z if for a given choice of the color of y we still have in any case at
least k possible choices for coloring z. Similarly, we will say that y forbids k colors for z if for a given
choice of the color of y we still have in any case n — k possible choices for coloring z.

All the proofs will be based on the so-called method of reducible configurations, contributed to
Heesh [6], and used in particular by Appel and Haken [1] in their proof of the four-color theorem.
But we must note that Franklin [4] had already used it in the 20s. We first provide a (small) set of
forbidden configurations, that is a set of graphs that a minimal counter-example G to our theorem
cannot contain as subgraphs. We will then assume that every vertex v in G is valued by its degree
deg(v) and define a discharging procedure which specifies some transfers of values among the vertices



4 On the mazimum average degree and the oriented chromatic number of a graph

Ug
X1
\Y
ng \©X3

Yo Y3
. e

(i) (i)

Figure 1: Forbidden configurations for Theorem 1(1).

in G by keeping constant the sum of all the values. We will then get a contradiction by considering the
modernized degree deg*(v) of every vertex v, that is the value obtained by v thanks to the discharging
procedure.

Drawing conventions : In all the figures depicting forbidden configurations we will draw vertices
with prescribed degrees as “white” vertices and vertices with unbounded degree as “black vertices”.
All the neighbours of white vertices are drawn. Unless otherwise specified, two or more black vertices
may coincide in a single vertex, provided they do not share a common white neighbour.

2 Proof of Theorem 1(1)

We will use here the circulant graph T5 = G(5;1,2) as target graph. The following can easily be
checked :

Observation 9 The graph Ts is such that

1. For every pair of (not necessarily distinct) vertices u,v € V(Ty) there exists a directed 4-path
connecting u with v for any of the 16 possible orientations of such a directed 4-path (this follows
from Proposition 8 in [16]).

2. For every pair of distinct vertices u,v € V(Ts) there exists a directed 3-path connecting u with v
for any of all 8 possible orientations of such a directed 3-path.

We will now prove that every graph with maximum average degree less than 7/3 has a homomorphism
to Ts. Assume G with an orientation L is a minimum counter-example to the Theorem. Then G must
avoid all the configurations depicted in Figure 1 :

(i) This follows directly from Observation 9.

(ii) Let f be any Ts-coloring of G\ {v,x1,x2,y2,x3,y3}. The vertex uy allows three colors for v, so
that we can choose for v a color distinct from the colors of us, u3. By Observation 9 we can then
extend f to a Ts-coloring of G. This is a contradiction.

We now use the following discharging procedure : each vertex of degree at least 3 gives 1/3 to each
of its 2-neighbours having itself a 2-neighbour and 1/6 to each of its other 2-neighbours.

Let us check that the modernized degree deg* of each vertex is at least 7/3 which contradicts the
assumption mad(G) < 7/3. We consider the possible cases for old degree deg(v):

1. deg(v) =2 : by (i), v has at least one neighbour of degree at least 3. If v has a 2-neighbour then
it receives 1/3 so that deg*(v) = 7/3. If v has no 2-neighbour then it receives 1/6 from each of
its neighbours and thus deg*(v) = 7/3.
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Figure 2: Forbidden configurations for Theorem 1(2).

2. deg(v) = 3: by (ii) v gives at most maxz{2-1/3,1/3+2-1/6,3-1/6} = 2/3 and thus deg*(v) > 7/3.
3. deg(v) =k >4 : v gives at most k- 1/3 and thus deg*(v) > k —k/3 > 7/3.

Therefore, every vertex in G gets a modernized degree at least 7/3 and the theorem is proved.

By using more sophisticated techniques we prove in our companion paper [3] that every graph G
with mad(G) < 12/5 is Ts-colorable. By Observation 2 we thus get that every planar graph with girth
at least 12 has oriented chromatic number at most 5.

3 Proof of Theorem 1(2)

We will use here the circulant graph 77 = G(7;1,2,4) as target graph. The following observation is a
direct consequence of Proposition 8 :

Observation 10 The graph Ty is such that for each u,v € V(T) with u # v, there exist a directed
2-paths connecting u with v of all four possible orientations. It follows that there is a directed 3-path
of any possible orientation linking any two vertices (not necessarily distinct).

Observe that if the arcs of a directed 2-path have opposite directions, then in T% there is a directed
2-path from any vertex v to itself. All that essentially means that if we have a path vzu in G with z
of degree 2 then v “forbids” for u at most one color (actually its own color, if the two arcs have the
same direction). More precisely, we have the following :

Observation 11 Let G be an oriented graph and u,v be two neighbour vertices in G. Let f be some
T7-coloring of G\ {v}. If for a fized coloring of the neighbours of v distinct from u we can use i
distinct colors for v, then v forbids for u at most two colors for i = 2, one color for i = 3,4 and no
colors for 1 > 4.

We will now prove that every graph with maximum average degree less than 11/4 and girth at least 5
has a homomorphism to 77. Assume G with an orientation L is a minimum counter-example to the
Theorem. Then G' must avoid all the configurations depicted in Figure 2 :

(i) This follows directly from Observation 10.
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(ii) Let f be any Tr-coloring of G'\ {v,z1,z2}. Then usz allows exactly three colors for v while uy, uo
forbid at most two of them. Thus f can be extended to a T%-coloring of GG, a contradiction.

(iii) Let f be any Ty-coloring of G \ {v, z1,z2,z3,24}. All the wu;’s forbid at most four colors for v
and thus f can be extended to a Tr-coloring of G, a contradiction.

(iv) Observe first that since G has girth at least 5, uy, ug, u3, ug are distinct but one of uy, ug, ug may
coincide with us. Let f be any Ty-coloring of G \ {v, x1, z2, z3,24,y4}. Then uy and us allow at
least two colors for x4 and thus at least five colors for v while uq, us,u3 forbid at most three of
them. Thus f can be extended to a T7-coloring of GG, a contradiction.

(v) Observe first that since G has girth at least 5, ug and u4 (resp. u; and us) may be identified. Let
f be any Tr-coloring of G'\ {v1,v9,v3, 21,22, z3}. The vertices u; and ug (resp. us and uz) allow
at least two colors for vy (resp. for v3). Then v; and vs allow at least three colors for v, while
uo forbids at most one of them. Thus f can be extended to a T7-coloring of G, a contradiction.

(vi) Observe first that since G has girth at least 5 no “black” vertex can coincide with a “white” one.
Let f be any Tr-coloring of G\ {v,z1,z2,23,y1,92,y3}. All the u;’s allow at least two colors
for each z; and thus at least one color for v. Thus f can be extended to a T%-coloring of G, a
contradiction.

We now use the following discharging procedure : each vertex of degree at least 3 gives 3/8 to each
of its 2-neighbours and 1/8 to each of its 3-neighbours having a 2-neighbour.

Let us check that the modernized degree deg” of each vertex is at least 11/4 which contradicts the
assumption mad(G) < 11/4. We consider the possible cases for old degree deg(v):

1. deg(v) = 2: by (i), v receives exactly 3/4, and thus deg*(v) = 11/4.

2. deg(v) = 3: if v has a 2-neighbour then by (ii) and (v), v gives at most 3/8 + 1/8 = 1/2 but
then it also receives 1/8 4+ 1/8 so that deg*(v) > 11/4; if v has no 2-neighbour then by (vi), it
gives at most 2/8 to its 3-neighbours having a 2-neighbour and thus deg*(v) > 11/4.

3. deg(v) = 4: by (iii) and (iv), v gives at most 9/8 and thus deg*(v) > 23/8 > 11/4.

4. deg(v) = k > 4: v gives at most 3k/8 and thus deg*(v) > 5k/8 > 25/8 > 11/4.

Therefore, every vertex in G gets a modernized degree at least 11/4 and the theorem is proved.

4 Proof of Theorem 1(3)

Here we use as target graph the circulant Ty, = G(11;1,3,4,5,9). From Proposition 8 we have :

Observation 12 The graph Ti1 is such that for every two distinct vertices u,v in Ti1, there are are
least two distinct 2-paths linking u and v for every possible orientation of this 2-path and there is a
3-path of any possible orientation linking any two (not necessarily distinct) vertices in Ty .

We will now prove that every graph with maximum average degree less than 3 has a homomorphism
to Ti1. Assume G with an orientation L is a minimum counter-example to the Theorem. Then G
must avoid all the configurations depicted in Figure 3 :

(i) This directly follows from Observation 12.

(ii) Let f be some Ti-coloring of G\ {v}. By Observation 12, we can choose f such that f(x) # f(u3)
and thus f can be extended to a Tii-coloring of G.

(iii) Let f be some Ty;-coloring of G\ {v, z1, z2,z3}. Then uy allows five colors for v and wuy,ug, us
forbid at most three colors. Thus f can be extended to a T%1-coloring of G.

(iv) As before, let f be some Tji-coloring of G\ {v, z1,x2,z3,24}. Then us allows five colors for v
and w1, uo, u3, us forbid at most four colors. Thus f can be extended to a Ti1-coloring of G.



O.V. BORODIN, A.V. KOSTOCHKA, J. NESETRIL, A. RASPAUD AND E. SOPENA 7

ol U g

X1 X1 V)

Uz X2
.\ X v Us Uy v X2 W us

® o /O—O—. o @ o
o oxi.

) Uy X3 X
0] 4

(i) 0 U U o
(iii) (iv)

Figure 3: Forbidden configurations for Theorem 1(3).

We now use the following discharging procedure : each vertex of degree at least 4 gives 1/2 to each of
its 2-neighbours.

Let us check that the modernized degree deg® of each vertex is at least 3 which contradicts the
assumption mad(G) < 3. We consider all possible cases for old degree deg(v):

1. deg(v) = 2: by (i) and (ii), v receives exactly 1 and thus deg*(v) = 3
2. deg(v) = 3: no changes.

3. deg(v) = 4: by (iii), v gives at most 1 and thus deg*(v) > 3.

4. deg(v) = 5: by (iv), v gives at most 3/2 and thus deg*(v) > 7/2 > 3.
5. deg(v) = k > 6: v gives at most k/2 and thus deg*(v) > k/2 > 3.

Therefore, every vertex in G gets a modernized degree at least 3 and the theorem is proved.

5 Proof of Theorem 1(4)

Here we use as target graph the circulant T9 = G(19;1,4,5,6,7,9,11,16,17) on 19 vertices. From
Proposition 8 we have :

Observation 13 For each distinct u,v € V(Tig9), and for each of all four possible orientations of a
2-path, there exist at least four distinct 2-paths connecting u with v with given orientation.

By a tedious case study we also get the following :

Observation 14 For each distinct u,v,w € V(Tig), and for each of all eight possible orientations
of edges connecting u,v and w with a vertex, there exist a verter x € V(Ti9) such that the edges
connecting x with u,v and w have given orientation.

We will now prove that every graph with maximum average degree less than 10/3 has a homomorphism
to Tig. Assume G with an orientation L is a minimum counter-example to the Theorem. Then G
must avoid all the configurations depicted in Figure 4 :

(i) Let f be some Tig-coloring of G \ {vz} (that is we delete the edge vz). By Observation 13, we
have at least four choices for coloring x, so that we can choose for x a color distinct from the
colors of 1 and uy. By Observation 14, we can then find a color for v, which is a contradiction.

(ii) Let f be some Tig-coloring of G \ {z1,...,Zm—_2}. By Observation 13, we have at least four
choices for coloring v while wuq, ..., upy_o forbid at most three of them. Thus we can extend f to
a Thg-coloring of GG, a contradiction.
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Figure 4: Forbidden configurations for Theorem 1(4).

Let f be some Tjg-coloring of G \ {z1,...,zm-1}. By Observation 13, we have at least nine
choices for coloring v while uq, ..., u, 1 forbid at most eight of them. Thus we can extend f to
a Thg-coloring of G, a contradiction.

Let f be some Tig-coloring of G \ {z1}. By Observation 13, u4 and us allow at least four colors
for v while w9, us forbid at most two of them. Hence we can choose for v a color distinct from
the color of u; and extend f to a Tig-coloring of G, a contradiction.

Let f be some Tig-coloring of G \ {v,z1,22,23,24}. Then u; allows nine colors for v while
u1,...,us forbid at most four of them and us,ug at most two of them. Hence we can color v
with a color distinct from the colors of u1,...,u7. By Observation 14, we can color z5. We have
then extended f to a Tig-coloring of GG, a contradiction.

We now use the following discharging procedure : each vertex of degree at least 4 gives 2/3 to each
its 2-neighbour and 1/9 to each its 3-neighbour.

Let us check that the modernized degree deg” of each vertex is at least 10/3 which contradicts the
assumption mad(G) < 10/3. We consider the possible cases for old degree deg(v):

1.
2.
3.

NS o

deg(v) = 2: by (i), v receives exactly 4/3 and thus deg*(v) > 10/3.

deg(v) = 3: by (i), v receives exactly 3-1/9 = 1/3 and thus deg*(v) = 10/3.

deg(v) = 4: if v has no 2-neighbor then it gives at most 4 - 1/9 so that deg*(v) > 32/9 > 10/3.
Otherwise, by (ii) and (iv) it gives exactly 2/3 and thus deg*(v) = 10/3.

deg(v) = 5: by (ii), v gives at most 2-2/3+3-1/9 to its 2- and 3-neighbours so that deg*(v) > 10/3.
deg(v) = 6: by (iii) and (v), deg*(v) > 6 — max{3-2/3+3-1/9,4-2/3} =10/3.

7 <deg(v) =n < 9: by (iii), deg*(v) >n—(n—-2)-2/3—-2-1/9=n/3+10/9 > 10/3.

deg(v) = k > 10: in that case deg*(v) > n/3 > 10/3.

Therefore, every vertex in G gets a modernized degree at least 10/3 and the theorem is proved.
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6 Proof of Theorem 2

We will prove in this section that every graph G with mad(G) < 4(1—1/(m —2)), m > 15, has acyclic
chromatic number at most m. Suppose G is a minimum counter-example to the Theorem. Then G
satisfies the following properties :

(1)

(ii)

(iii)

No 2-vertex in G is adjacent to some j-vertezx for j < m. Assume that deg(v) = 2 and let z1,x9
be its neighbours, where z; has degree at most m—1. Let f be some acyclic m-coloring of G\ {v}.
If f(x1) # f(z2) we can color v with any color distinct from f(z1) and f(z2). Otherwise, we
can color v with a color distinct from f(N(z1)) and f(z2). In both cases, f can be extended to
an acyclic m-coloring of G, a contradiction.

For every 3-vertex v in G with N(v) = {x1, 22,23}, we have deg(z;) +deg(z;) > m+1 for every
1 <4 < j < 3. Assume this is not the case and let f be any acyclic m-coloring of G \ {v}. We
have three cases to consider :

1. f(z1) # f(x2) # f(x3) # f(z1). We can obviously color v with any color distinct from the
colors of its neighbours.

2. 1= f(z1) = f(z2) # f(x3) = 2. If some color ¢ € {3,...,m} is not used in N(z1) or N(z3)
then we can color v with c¢. Otherwise, deg(z1) > m — 1 and deg(z2) > m — 1. But in that
case, we get by (i) that deg(zs) > 3 and the result follows.

3. f(z1) = f(z2) = f(xz3) = 1. Suppose deg(z1) + deg(z2) < m. We can then color v with a
color ¢ # 1 which is neither used in N(z1) nor in N(z3).

Hence, in all cases f can be extended to an acyclic m-coloring of GG, a contradiction.

Let v be a vertex in G with N(v) = {u,y1,y2,Y3,T1,...,2L¢} such that z1,...,x; have degree
two and yi1,y2,ys have degree at most three. Then t > (m — 10)(m — 5) + 1. Assume on
the contrary that ¢ < (m — 10)(m — 5). For every 4, 1 < i < ¢, denote by z; the neighbour
of z; distinct from v and let f be some acyclic m-coloring of G \ {v,z1,...,2;}. Denote A =
fHu,y1,92,y3 JUN (y1)UN (y2)UN (y3)). Clearly, |A| < 10. There exists a color ¢ € {1,...,m}\ A
such that at most —5 2;’s (counted with multiplicity) are colored with ¢. We color v with ¢
and then color every x; such that f(z;) # ¢ with any color distinct from ¢ and f(z;). Finally,
we color z;’s such that f(z;) = ¢ with distinct colors in {1,...,m} \ ({¢} U f({w,y1,y2,u3}))-
Since t/(m — 10) < m — 5, we can do that and thus extend f to an acyclic m-coloring of G, a
contradiction.

We now use the following two-step discharging procedure :
Step 1 : each vertex of degree at least 8 gives 1/2 to each of its 3-neighbours,
Step 2 : each vertex of degree at least m (before discharging) leaves 4 for itself and uniformly distributes
the rest between its 2-neighbours.

Let us check that the modernized degree deg® of each vertex is at least 4(1 — 1/(m — 2)) which
contradicts the assumption of Theorem 3. We consider the possible cases for old degree deg(v) :

1.

2.

3.

4.

deg(v) > 8 : after first step of discharging, v has at least 0.5 deg(v), so it can afford to save 4
for itself and thus deg*(v) > 4.

4 < deg(v) <T7: by (i), deg*(v) = deg(v).

deg(v) = 3 : by (ii), v cannot have two neighbours with degree at most 7. Thus v receives at
least 1 and deg*(v) > 4.

deg(v) = 2 : let us check that v receives at least z—:% from each of its neighbors. Indeed, let
(v,u) be an edge in E(G). By (i), the degree d of u is at least m. If u has a neighbors of degree
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at least 4 and b neighbors of degree 3 then v receives from w :

d—4-b/2 4-b/2-a
h(d,a,0) = ———=1— ————.
(da.b) === d—a—b
Hence if a + b/2 > 4, we are done. Suppose on the contrary that a + b/2 < 3.5. Under these
conditions, h(d,a,b) increases if any of d,a,b increases and others are fixed or if a + b is fixed
and a increases. We have three cases to consider :
_ m—4
(a) a > 2. By above, h(d,a,b) > h(m,2,0) = T=.
(b) a < 1,a+ b > 5. By our previous observation concerning the behaviour of the function h
and the fact that if b =4 then a = 1, we have : h(d,a,b) > h(m,0,5) = 255 > m—4

T m m—2
(¢) a <1,a+ b < 4. Then by (iii), deg(u) > (m — 10)(m — 5) + 5 and

m2 — 15m + 51 >m—4
m2—15m+55" m—2"

h(d,a,b) > h(m? — 15m + 55,0,0) =

Thus we get that deg*(v) > 2 +2- 2=2 = 4(1 — 1/(m — 2)).

m—2

Therefore, every vertex in G gets a modernized degree at least 4(1 — 1/(m — 2)) and the theorem
is proved.

7 Proof of Theorem 3

In [13] Kriz constructed for every k, g a graph Hy, , having girth g and chromatic number k. Moreover,
this graph Hy, , is the union of (k — 1) forests, whose every component is a star.

By Nash-Williams Theorem [15] it means that for every subgraph H' of Hj , we have ey <
(k —1)(vmr —1). We now define the oriented graph Hj , obtained from Hy , by replacing every edge
by a directed 2-path. Clearly the graph H ,’;’ o has girth 2¢g and oriented chromatic number at least .

We claim that m = mad(Hj, ;) is at most 4(1 — 1/k). To see that let G’ be any subgraph of Hj |
whose average degree is exactly m. It is not difficult to see that G = H'* for some subgraph H' of
H, ) and thus eq = 2eq+ and vg = v + epr«. Hence

26G 46H/* ’UH’I*
UG UH’* -|— €H’* UH’* —I— €H’*

Since egr < (k — 1) (v — 1) we get vy + egre < kvgr — (k — 1) and thus m < 4(1 — 1/k). The

theorem is proved.
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