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2 Ayli k-strong hypergraph oloring of maps on surfaesFor arbitrary k � 3, Ore and Plummer [7℄ proved that eah plane graph G is k-ylially 2k-olorable, and Borodin, Sanders and Zhao [8℄ improved this bound to �k(G) � 9k5 .A vertex oloring of a graph is ayli if it is admissible, i.e., the ends of eah edge are oloreddi�erently, and there is no biolored yle. Note that a loop gives a uniolored edge and two multipleedges give a biolored yle. We de�ne a vertex oloring of a map to be ayli provided that notwo ends of an edge e are oloured the same unless e is a loop, and no biolored yle of length> 2 exists. Borodin [9℄ proved that eah plane graph is aylially 5-olorable, whih bound is bestpossible. Albertson and Berman [10℄ proved that eah graph embedded on the oriented surfae SN ,where N < 0, is aylially (8�2N)-olorable. Alon, Mohar and Sanders [11℄ proved, using the ayli5-olorability of plane graphs, that eah graph on the projetive plane is aylially 7-olorable, andshowed this bound to be best possible. Also, they prove that eah graph embedded on an arbitrarysurfae SN is aylially O(N4=7)-olorable, and this bound is tight up to the fator of (logN)1=7.The ayli oloring has a number of appliations to other oloring problems, for the de�nitions see[12, 13, 14, 15, 16℄. Suppose one has proved that a(G) � a. Then G has the star hromati numberat most a2a�1 (Gr�unbaum [13℄) and the oriented hromati number at most a2a�1 (Raspaud andSopena [16℄); every m-oloring of the edges of G an be homomorphially mapped on that of a graphwith at most ama�1 verties (Alon and Marshall [12℄); every m-oloring of the edges of mixed graph Gombined with its n-oloring an be homomorphially mapped on a graph with at most a(2n+m)a�1verties (Ne�set�ril and Raspaud [15℄).Also, Hakimi, Mithem and Shmeihel [14, p.38-39℄ proved that E(G) an be partitioned intoa(G) star forests (whose every omponent is a star). Diretly using [9℄, this on�rms the onjetureof Algor and Alon [17℄ that the edges of every planar graph an be partitioned into �ve star forests.In this paper we onsider a oloring that is both ayli and k-yli. Namely, we olor ayliallythe result of replaing all faes of size at most k in a map by liques of the same sizes. So, eah faeof size at most k is assumed to have all `invisible' diagonals. For k = 3 this type of oloring oinideswith the ayli oloring.Our main result isTheorem 1 Every map on a surfae SN is aylially k-strong hypergraph olorable with Nk + dNolors whenever k � 4 and N � 0.In fat, we prove the result with N = maxf999; 117 � 471Ng and dN = 39� 156N . The argument isintentionally kept simple; more ompliated argument may be used to derease N and dN .Corollary 2 Every map on the plane (N = 2) or on the projetive plane (N = 1) is ayliallyk-strong hypergraph olorable with 0k + d0 olors whenever k � 4.Proof. Follows from the fats that eah plane or projetive plane map is also a map on the torus orKlein bottle, respetively. 2In [18℄, we prove that eah projetive plane graph (and hene eah plane graph) is aylially4-strong hypergraph 20-olorable, i.e., eah graph 1-embedded on the projetive plane is aylially20-olorable. Thus, Theorem 1 and Corollary 2 augment the results of [9℄ (N = 2, k = 3), of [11℄(N � 1, k = 3), and of [18℄ (1 � N � 2, k = 4).2 Proof of Theorem 1The size, s(f), of a fae f is the number of edges in its boundary, �(f), ounting multipliities. Forinstane, a ut edge appears twie on the boundary of a ertain fae. To simplify the argument, werestrit ourselves to the ase when �(f) is onneted whenever f 2 F . The degree of a vertex v, i.e.,the number of inident edges (loops are ounted twie), is denoted by d(v). By a � k-vertex we meanthat of degree at least k, et.



O.V. Borodin, A.V. Kostohka, A. Raspaud and E. Sopena 3Given SN and k, let P 000 be a ounterexample with the minimum number of verties. For brevity,the aylially k-strong hypergraph oloring with Nk + dN olors we are searhing for will be alledgood.Delete from P 000 the ommon edge of two ajaent 3-faes, if any. Repeat this operation until theresulting ounterexample, P 00, has no adjaent 3-faes.Triangulate all > k-faes of P 00 by adding diagonals to obtain another ounterexample, P 0, withthe minimum number of verties. (A good oloring of P 0 would be good for P 00.)Remove from P 0 eah loop e that forms a 1-fae. This dereases the size of the other fae inidentwith e by 1. Similarly, for a 2-fae f = e1e2 in P 0, remove one of the boundary edges, say e1. Thisresults in a fae of the same size as the former fae that was inident with e1 and di�erent from f .If the so obtained graph P were well olorable, then reovering loops and repeated edges would notspoil the good oloring. Thus, P is also a ounterexample with the fewest verties. We have atuallyproved the followingLemma 3 If f is a fae of P , then 3 � s(f) � k; no two 3-faes of P are adjaent.Informally speaking, only adding new nontrivial adjaenies, represented by `visible' edges or `invis-ible diagonals', an spoil the good oloring. Our onern therefore is not to loose adjaenies whiletransforming P into a smaller pseudograph, whih already admits a good oloring.The following two observations should be kept in mind during the rest of the proof.Observation 4 Contrating an edge e = vz into a vertex v � z dereases the size of eah fae f in Pby 0,1 or 2, depending on how many times e appears on �(f).The obtained map R is well olorable by the minimality of P . Transfer its oloring to P with zolored as v � z and v unolored. Then in order that to get a good oloring for P , it remains to �nd aolor for v without reating uniolored edges other than loops and biolored yles other than 2-yles.Observation 5 Suppose a vertex v is inident with edges ei = vzi, where 0 � i � d(v) � k � 1,in a yli order. (Of ourse, zi's are not all neessarily distint.) Split eah nontriangular faefi = : : : zivzi+1, where subsripts are taken modulo d(v), into a triangle zivzi+1 and a fae f 0i. Thens(f 0i) < s(fi). Remove v and all ei's, then a new fae arises of size d(v) � k, so that the obtainedpseudograph an be well olored. Hene, all distint zi's are olored di�erently. If we hoose a olor �for v not appearing on any vertex in [0�i�k�1�(fi), then the only possibility for the obtained oloringto be bad is a biolored �; �-yle (i.e., onsisting of verties alternatively olored with � and �) throughv and some vertex u suh that u is olored with � and u 2 �(fi) n fzi; zi+1g for some fi.Lemma 6 If v 2 V (P ) then d(v) � 2.Proof. If d(v) = 1, we ontrat the edge vz, transfer the good oloring of the obtained pseudographto P , and olor v di�erently from those at most k verties that belong to the same faes as v. 2Lemma 7 Eah fae in P is inident with at least three verties (not neessarily distint) of degreeat least three.Proof. If a fae f in P has only two verties u, w (not neessarily distint) of degree greater than 2in �(f), then we remove the longer of the two paths that form �(f). This reates a new fae f 0 of size� k. From a good oloring of the resulting graph, it is easy to obtain a good oloring of P , sine allverties on �(f 0) are olored pairwise di�erently.The ase that there is only one > 2-vertex in �(f) easily redues to the previous one. If all vertiesin �(f) have degree 2, then P is a yle; a ontradition. 2



4 Ayli k-strong hypergraph oloring of maps on surfaesIf every fae of P is an open 2-ell, then Euler's formula says that jV j � jEj+ jF j = N ; otherwisejV j � jEj+ jF j � N:Using obvious equalities 2jEj =Pv2V d(v) =Pf2F s(f), this may be rewritten asXv2V (d(v) � 4) +Xf2F(s(f)� 4) � �4N;or �2n2 + Xv2V3+(d(v) � 4) +Xf2F(s(f)� 4) < �4N + 1; (1)where ni is the number of i-verties in P , and Vi+ is the set of � i-verties in P .Denote by n2(f) the number of 2-verties on the boundary of fae f , ounting multipliities. Theredued size, s�(f), of a fae f is de�ned to be s(f)�n2(f). In fat, s�(f) is the number of > 2-vertiesin �(f), ounting multipliities. Then (1) may be put asXv2V +3 (d(v) � 4) +Xf2F(s�(f)� 4) < �4N + 1: (2)By Lemma 7, s�(f) � 3 whenever f 2 F . Let f�i (v) be the number of i�-faes at v, i.e., those havings�(f) = i. Then Xv2V3+(d(v) � 4� f�3 (v)3 ) + Xf2F �4+(s�(f)� 4) < �4N + 1; (3)where F �i+ is the set of � i�-faes in P , orXv2V3+(d(v) � 4� f3�(v)3 + 4N � 1n� ) + Xf2F �4+(s�(f)� 4) < 0; (4)where n� = jV3+ j = jV j � n2.Put h(v) = d(v) � 4 � f3�(v)3 + 4N�1n� whenever v 2 V3+ , h(f) = 0 if f is a 3�-fae, and h(f) =s�(f)� 4 whenever f 2 F �4+ . Then (4) beomesXv2V3+ h(v) +Xf2F h(f) < 0: (5)The rest of our proof onsists in redistributing the harge h(x) on x 2 V3+[F , preserving the sumof harges, so that the new harge, h�(x), is nonnegative whenever x 2 V3+ [ F . The ontraditionwith (5) will omplete the proof.First observe the following fat.Lemma 8 n� > 39(�4N + 1).Proof. Euler's formula (1) for the map P � obtained from P by ontrating eah path uv1 : : : vsw suhthat d(u) � 3, d(v1) = : : : = d(vs) = 2, d(w) � 3 into an edge uw, may be written asXv2V (P �)(dP �(v)� 6) + Xf2F (P �)(2sP �(f)� 6) � �6N;whih implies Xv2V (P �)(dP �(v) � 6) � �6N;



O.V. Borodin, A.V. Kostohka, A. Raspaud and E. Sopena 5or else jE(P �)j � 3n� � 3N:By Lemma 1, n � n� + kjE(P �)j:But n > Nk + dN , for otherwise P has a trivial good oloring (all verties have di�erent olors),and son�(1 + 3k) � 3kN > Nk + dN � (117 � 471N)k + 39� 156N = 39(�4N + 1)(1 + 3k) � 3kN;as desired (ompare the leftmost and the rightmost expressions). 2Lemma 9 If d(v) � 7 then h(v) � 0.Proof. Indeed,h(v) � d(v)� 4� f3�(v)3 + 4N � 1n� � d(v) � 4� d(v)3 + 4N � 1n� � 23 + 4N � 1n� ;and we are done by Lemma 8. 2If v 2 V and h(v) < 0, then v is alled poor. Put� = �4N + 1n�and " = 139 :By Lemmas 4 and 5, � � ", and eah poor vertex v satis�es 3 � d(v) � 6.Our rules of redistribution of harge are:R1. Eah � 14-vertex gives 23 + " to eah inident � 4�-fae and 13 + " to eah inident 3�-fae.R2. Eah poor vertex v reeives 23 + "� from eah inident � 4�-fae f suh that there is a � 14-vertex z in �(f) not joined to v along�(f) by a path of 2-verties, and� from eah inident � 13�-fae f .R3. If a 3�-fae f is inident with a � 14-vertex, then f gives 16 + "2 to every inident poor vertex.Lemma 10 If v is poor, then v reeives 16 + "2 by R3 from eah of every two onseutive 3�-faes at v.Proof. We �rst prove that if a 3�-fae f is inident with a 2-vertex u, then the � 3-vertex whih isopposite to u in �(f) is in fat a � 14-vertex.Let �(f) = xx1x2 : : : xk(x)yy1y2 : : : yk(y)zz1z2 : : : zk(z), where all xi's, yi's, and zi's are all 2-verties,while x, y, and z are � 3-verties. Suppose that k(x) � 1, i.e., x1 exists. Denote by fxy the faelying on the other side of path xx1x2 : : : xk(x)xy than f (perhaps fxy = f). The faes fyz and fzx arede�ned similarly.Contrat the edge xx1 transfer a good oloring of the obtained map to P �x1. If we olor x1 witha olor that does not appear on the boundaries of f and the faes inident with z, then the obtainedoloring is good. This is impossible only if d(z) � 14.To omplete the proof of our Lemma, observe that by the seond statement of Lemma 3, at leastone of every two onseutive 3�-faes, f1 and f2, at v is inident with a 2-vertex, z. If z is inident both



6 Ayli k-strong hypergraph oloring of maps on surfaeswith f1 and with f2, then we are done by R3 and the statement just proved. Otherwise, z is oppositeto the � 3-vertex, w, whih is inident both with f1 and with f2, beause by the above statement, zannot be opposite to the poor vertex v whih has degree at most six due to Lemma 5. It follows thatd(w) � 14, and we again use R3. 2Lemma 11 If d(v) = 3 then v is inident with at least two faes eah of whih gives 23 + " to v by R2.Proof. Let v be inident with paths vx1x2 : : : xk(x)x, vy1y2 : : : yk(y)y, and vz1z2 : : : zk(z)z, whereall xi's, yi, and zi's are 2-verties while x, y, and z are all > 2-verties. Let �(f1) =: : : xxk(x) : : : x2x1vy1y2 : : : yk(y)y, �(f2) = : : : yyk(y) : : : y2y1vz1z2 : : : zk(z)z,and �(f3) = : : : zzk(z) : : : z2z1vx1x2 : : : xk(x)x.Suppose the ontrary, namely, by symmetry, that neither f1 nor f2 gives 23 + " to v. Then by R2eah of f1 and f2 is a � 12�-fae, and eah vertex in �(f1) n fx; yg and in �(f2) n fy; zg has degree atmost 13.Contrat the path vy1y2 : : : yk(y)y to a vertex v�y. Transfer a good oloring of the obtained map toP . Color y1; y2; : : : ; yk(y) and v pairwise di�erently using olors that do not appear on the boundariesof the faes f1, f2, f3, and those at most 2� 9� (13 � 1) faes that are inident with > 2-verties in�(f1)nfx; yg[�(f2)nfy; zg. The number of restritions is less than 3k+2�9� (13�1)k < Nk+dN ,and no nontrivial uniolored edges or biolored yles appear. 2Lemma 12 If d(v) = 4 then v is inident with at least one fae giving 23 + " to v by R2.Proof. Let v be inident with paths vxi1xi2 : : : xik(xi)xi in a yli order, where 0 � i � 3, all xij 's are2-verties, and all xi's are > 2-verties.Let the fae f i have �(f i) = xixik(xi) : : : xi2xi1vxi+11 xi+12 : : : xi+1k(xi+1)xi+1 : : : ;where upper indies are taken modulo 4.Suppose that none of f i gives 23 + " to v. Then by R2 eah f i is a � 12�-fae, and eah vertex in�(f i) n fxi; xi+1g has degree at most 13.Add the edge xixi+1 into f i whenever 0 � i � 3, unless suh an edge already exists in �(f i).Delete v and transfer a good oloring of the obtained map to P . Color v using a olor that does notappear on the boundaries of the faes inident with verties in �(f i) n fxi; xi+1g whenever 0 � i � 3.The number of restritions is less than 4 � 9 � 13k � Nk + dN , and it is not hard to see that nonontrivial uniolored edges or biolored yles appear. 2Lemma 13 If v 2 V3+, then h�(v) � 0.Proof. First suppose v is poor, i.e., has h(v) < 0. Then, by Lemma 9, d(v) < 7. If d(v) = 3 thenh(v) = �1� �, and we are done due to Lemma 11, beause 2� (23 + ") > 1 + �.If d(v) = 4 then h(v) = ��. By Lemma 12, v gets at least 23 + " from an inident � 4�-fae. Ifv is inident with at most two 3�-faes, then h�(v) � "� � � 0. Otherwise, by Lemma 10, v gets atleast 2(16 + "2) from the three inident 3�-faes, and h�(v) � 0.If d(v) = 5 then h(v) = 1� �, and we are done if v is inident with at most two 3�-faes. If thereare r suh faes at v, where 3 � r � 5, then Lemma 10 provides v with at least 2(16 + "2) if r = 3 andat least 4(16 + "2) if r � 4, whene h�(v) � 0.If d(v) = 6 then h(v) = 2 � �, so that we are done if v is inident with at most �ve 3�-faes.Otherwise, by Lemma 10, v gets at least 3� (16 + "2 ) from the six inident 3�-faes, and h�(v) � 0.



O.V. Borodin, A.V. Kostohka, A. Raspaud and E. Sopena 7Now let v not be poor. If it does not give anything to neighbor verties by R1 or R2, thenh�(v) = h(v) � 0. Otherwise, d(v) � 14. Then v makes at most d(v) transfers by R1. It followsthat h�(v) = d(v) � 4� � � d(v)(23 + ");whene h�(v) � 0, beause � � ". 2Lemma 14 If f 2 F , then h�(f) � 0.Proof. A 3�-fae does not partiipate in disharging if all its inident verties have degree at most13. Otherwise, it reeives at least 23 +" by R1 and gives at most 2(13 + "2) to the inident poor verties.Hene h�(f) � 0 in both ases.Now suppose f 2 F �4+ . If there are at least two verties of degree � 14 inident with f , thenh�(f) � s�(f)� 4 + 2(23 + ")� (s�(f)� 2)(23 + ") = (s�(f)� 4)(13 � ") � 0:If there is only one � 14-vertex, z, at f , thenh�(f) � s�(f)� 4 + 23 + "� (s�(f)� 3)(23 + ") � 0;beause f gives 23 + " to at most s�(f)� 3 poor verties by R2: nothing is given to z itself and to itsleft and right neighbours of degree � 3 along �(f).Suppose there is no vertex of degree � 14 at f . If s�(f) � 12, then h�(f) = h(f) = s�(f)�4 � 0,beause f does not partiipate in disharging. Finally, if s�(f) � 13 then by R2,h�(f) � s�(f)� 4� s�(f)(23 + ") = s�(f)(13 � ")� 4 � 0;beause " = 139 . 2The lemmas above imply together that h�(x) � 0 for every x 2 V3+ [F . This ontradition with(5) ompletes the proof.Referenes[1℄ K.Appel, W.Haken, The solution of the four-olor-map problem. Sienti� Amerian, 237, No.4,(1977), 108-121.[2℄ P.J.Heawood, Map-olor theorem, Quart. J. Math., 24, (1890), 332-338.[3℄ O.V.Borodin, Solution of Ringel's problems on the vertex-fae oloring of plane graphs and onthe oloring of 1-planar graphs. Diskret. Analiz, Novosibirsk, 41 (1984) 12-26 (in Russian).[4℄ G.Ringel, Ein Sehsfarbenproblem auf der Kugel, Abh. Math. Sem. Univ. Hamburg. 1965. V. 29.P. 107-117.[5℄ H.Shumaher, Ein 7-Farbensatz 1-einbettbarer Graphen auf der projektiven Ebene, Abh. Math.Sem. Univ. Hamburg, 54 (1984), 5-14.[6℄ G.Ringel, A nine olor theorem for the torus and the Klein bottle, The Theory and Appliationsof Graphs (Kalamazoo, Mih., 1980). New York: Willey, (1981), 507-515.[7℄ O.Ore, M.D.Plummer, Cyli oloration of plane graphs, Reent Progress in Combinatoris. NewYork: Aademi Press, (1969), 287-293.
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