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tionWe denote by V (G) the set of verti
es of a graph G and by E(G) its set of edges. A (proper) k-
oloringof G is a mapping f : V (G) �! f1; 2; : : : ; kg su
h that f(x) 6= f(y) whenever x and y are adja
ent inG. A 1-planar graph is a graph whi
h 
an be drawn on the plane so that every edge 
rosses at mostone other edge. One of the reasons for introdu
ing this notion by Ringel [14℄ is that the graph Gvfof adja
en
y/in
iden
e of the verti
es and fa
es of ea
h plane graph G is 1-planar. (On a map, take a
apital of ea
h 
ountry and join adja
ent 
apitals by a railroad via a 
ommon border; also join ea
h
apital with all the 
orners of the 
ountry.) Every 1-planar graph with the maximum number of edges
an be obtained from a plane graph whose fa
es have size 3 or 4 by adding two 
rossing diagonals intoea
h 4-fa
e. Every Gvf arises similarly from a plane quadrangulation.In 1965, Ringel [14, 15℄ 
onje
tured that ea
h 1-planar graph is 6-
olorable; this was 
on�rmed byBorodin [6℄ in 1984. (A new simplier proof was given in [7℄.) It follows, the verti
es and fa
es of ea
hplane graph 
an be 
olored with 6 
olors so that every two adja
ent or in
ident elements have di�erent
olors. The 3-prism needs 6 
olors for su
h a 
oloring, be
ause it has 11 elements to be 
olored, andno three of them 
an be 
olored the same. Ar
hdea
on [4℄ proved that the verti
es and fa
es of ea
hbipartite plane graph are simultaneously 5-
olorable.A proper vertex 
oloring of a graph is a
y
li
 if every 
y
le uses at least three 
olors (Gr�unbaum [9℄).The a
y
li
 
hromati
 number of G, denoted by a(G), is the minimum k su
h that G admits an a
y
li
k-
oloring.Borodin [5℄ proved Gr�unbaum's 
onje
ture that every planar graph is a
y
li
ally 5-
olorable. Thisbound is best possible. Moreover, there are bipartite 2-degenerate planar graphs G with a(G) = 5(Kosto
hka and Mel'nikov, [11℄). However, if a plane graph G has no 
y
les of length less than 5,then a(G) � 4, and if it has no 
y
les of length less than 7, then a(G) � 3 (Borodin, Kosto
hka andWoodall [8℄).A
y
li
 
olorings turned out to be useful for obtaining results about other types of 
olorings.Suppose one has proved that a(G) � a. Then G has the star 
hromati
 number at most a2a�11A part of this resear
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2 A
y
li
 
olouring of 1-planar graphs(Gr�unbaum [9℄) and the oriented 
hromati
 number at most a2a�1 (Raspaud and Sopena [13℄); everym-
oloring of the edges of G 
an be homomorphi
ally mapped on that of a graph with at most ama�1verti
es (Alon and Marshall [2℄); every m-
oloring of the edges of mixed graph G 
ombined with itsn-
oloring 
an be homomorphi
ally mapped on a graph with at most a(2n+m)a�1 verti
es (Ne�set�riland Raspaud [12℄).Also, Hakimi, Mit
hem and S
hmei
hel [10, p.38-39℄ proved that E(G) 
an be partitioned intoa(G) star forests (whose every 
omponent is a star). Using [5℄, this 
on�rms the 
onje
ture of Algorand Alon [1℄ that the edges of every planar graph 
an be partitioned into �ve star forests.In this paper we study the a
y
li
 
oloring of 1-planar graphs. Our main result is the following:Theorem 1 Every 1-planar graph is a
y
li
ally 20-
olorable.The best lower bound known to us is 7: the 3-dimensional 
ube with all the diagonals added 
annotbe 
olored a
y
li
ally with fewer than 7 
olors.Theorem 1 has a number of appli
ations to other 
oloring problems, listed below. For the pre
isede�nitions of the notions used see [2, 9, 10, 12, 13℄.Corollary 2 Every plane graph has an a
y
li
 simultaneous 
oloring of verti
es and fa
es with atmost 20 
olors.Corollary 3 Every 1-planar graph has star 
hromati
 number at most 20 � 219.Corollary 4 Every 1-planar graph has oriented 
hromati
 number at most 20 � 219.Corollary 5 Every plane graph has oriented simultaneous 
oloring of verti
es and fa
es with at most20 � 219 
olors.Corollary 6 The edges of ea
h 1-planar graph 
an be partitioned into 20 star forests.Note that a loop yields a uni
olored edge and two multiple edges yield a bi
olored 
y
le. Insteadof Theorem 7, it is easier to prove a bit more:Theorem 7 Every 1-plane pseudograph 
an be 20-
olored so that no ends of an edge e are 
olored thesame unless e is a loop, and no bi
hromati
 
y
les of length > 2 exists.Note also that the proof below is valid for pseudographs 1-embedded into the proje
tive plane.The only di�eren
e is that Euler's formula for it says jV j � jEj+ jF j � 1. A

ordingly, the extensionsof Theorem 1 and Corrolaries 2-6 to the proje
tive plane also take pla
e.Alon, Mohar and Sanders [3℄ showed that the a
y
li
 5-
olorability of the plane graphs easilyimplies the a
y
li
 7-
olorability of the proje
tive plane graphs.2 Proof of Theorem 7Let P0 be a 
ounterexample with the fewest verti
es. Clearly, jV (P0)j � 21. Observe that P0 has noseparating 
liques, hen
e is 2-
onne
ted. In parti
ular, P0 has no verti
es of degree less than 3. Re
allthat the degree of a vertex and the size of a fa
e in a plane pseudograph (a map) is the number ofin
ident edges.We �x a 1-plane representation of P0 with the minimum number of 
rossings. Then for ea
h pairof edges ab, 
d that 
ross ea
h other at point s, their end verti
es are paiwise distin
t: jfa; b; 
; dgj = 4.For ea
h su
h a pair, we add edges a
, 
b, bd and da `
lose to s' i.e. so that they form trianglesas
, 
sb, bsd and dsa with empty interior, respe
tively. The so obtained 1-plane graph P1 is also a
ounterexample to Theorem 7, be
ause any a
y
li
 20-
oloring of P1 is valid for P0.Denote by M1 the plane map obtained from P1 by removing all the 
rossed edges. Apply to M)as many as possible of the following operations, in any order:
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hka, A. Raspaud and E. Sopena 3� Delete a loop that forms a fa
e of size 1.� Delete one of two edges that form a fa
e of size 2.� Delete a 
ommon edge of two adja
ent fa
es of siz 3.� Triangulate ea
h fa
e of size at least 5 by adding diagonals.The resulting map is denoted by M .Observation 8 M is 
onne
ted, has no fa
es of size other than 3 or 4, and has no triangles with anedge in 
ommon. 2Let P be obtained from M by inserting two 
rossed diagonals inside ea
h 4-fa
e. Then P is a
ounterexample to Theorem 7 with the fewest verti
es. This is be
ause adding an edge does notde
rease the a
y
li
 
hromati
 number, while adding loops or repeated edges 
annot 
hange it. (Inother words: if the underlying graphs of pseudographs G and H 
oin
ide, then a(G) = a(H).) Theproof of Theorem 7 
onsists in establishing a set of stru
tural properties of P that will be shown to
ontradi
t ea
h other.We shall mainly work with M . The degree of a vertex v in M , i.e., the number of in
ident edges(loops are 
ounted twi
e), is denoted by d(v). The size of a fa
e f , i.e., the number of in
ident edges,
ounting multipli
ities, is denoted by s(v). By a � k-vertex we mean that of degree at least k, et
.Denote byD(v) the degree of v in P . Clearly, D(v) = 2q(v)+t(v), where q(v) and t(v), respe
tively,stand for the number of quadrangles and triangles in
ident with v. It is easy to see that d(v) =q(v) + t(v). D(v) will be referred to as the 
y
li
 degree of v in M . A vertex v will be 
alled a minorvertex if D(v) � 7.Lemma 9 M has no separating 
y
le of length at most four.Proof. Otherwise, we split M along su
h a 
y
le S into two smaller maps, transform them into 1-planar pseudographs P 0 and P 00 by adding all the diagonals, and 
ombine their a
y
li
 20-
olorings toobtain an a
y
li
 20-
oloring for P . (The verti
es of S are 
olored pairwise di�erently in the 
oloringsboth of P 0 and of P 00 .) 2Corollary 10 If v 2 V (P ) then D(v) � 5 and d(v) � 3.Euler's formula jV (M)j � jE(M)j + jF (M)j = 2 may be rewritten asXv2V (M)(d(v) � 4) + Xf2F (M)(s(f)� 4) = �8; (1)where F (M) is the set of fa
es in M .We set the initial 
harge of every vertex v of M as 
h(v) = d(v) � 4 and of every fa
e f of M as
h(f) = s(f) � 4. We then use the dis
harging pro
edure, leading to a �nal 
harge 
h�, de�ned byapplying the following (ordered) rules:R0. Every vertex gives to every triangle 
ontaining it the 
harge 13 .R1. Every vertex v with D(v) = D � 8 sends a
ross every in
ident 4-fa
e the 
harge 1 � 8=D andalong every triangle edge the 
harge 112 + 14(1� 8=D). In parti
ular, every 8-vertex 
ontained ina triangle sends along every triangle edge the 
harge 112 .R2. If a vertex v with D(v) = D � 8 gets something a
ross some in
ident 4-fa
e f , then v gives itba
k to f and this 
harge is evenly distributed among the minor verti
es belonging to this fa
e(if su
h verti
es exist).If a vertex v with D(v) = D � 8 gets something along a triangle edge, then v sends it along theother edge of the same triangle.
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�2 3 41(b)Figure 1: Con�gurations for Lemma 3R3. If after ful�lling R1 and R2 some vertex v with 6 � D(v) = D � 7 have a positive 
harge, thenthis 
harge is distributed evenly among the 5-verti
es 
onne
ted with v by triangle edges (if su
hverti
es exist).Sin
e the above pro
edure preserves the total 
harge, we have:Xv2V (M) 
h(v) + Xf2F (M) 
h(f) = Xv2V (M) 
h�(v) + Xf2F (M) 
h�(f) = �8:Observe that 
h�(q) = 0 for every quadrangle q, and by rule R0 
h�(t) = 1 for every triangle t.We shall get a 
ontradi
tion by proving that for every vertex v the inequality 
h�(v) � 0 holds.The proof will be delivered in a series of Lemmas.Lemma 11 If D(v) � 8 then 
h�(v) � 0.Proof. It is enough to prove that v has a nonnegative 
harge after ful�lling R0 and R1, sin
e at stepsR2 and R3 verti
es with a positive 
harge preserve the positivity of their 
harge. Let v belong to ttriangles and to q quadrangles. Then D = t+ 2q and 
h(v) = t + q � 4. By R0, v gives to trianglesexa
tly t=3. By R1, it sends q(1 � 8=D) a
ross quadrangles and at most 2t12 + 2t4 (1 � 8=D) along thetriangle edges. Even if it gets nothing from other verti
es, it is left with at leastt+ q � 4� t3 � q(1� 8D )� t6 � t2(1� 8D ) = ( t2 + q)(1� (1� 8D ))� 4 = D2 8D � 4 = 0: 2Lemma 12 Let a 5-vertex v have the 
y
li
 neighbours w1; : : : ; w5 (in this 
y
li
 order), where w1; w2and v form a triangle, and w4v is an edge (see Figure 1(a)). Then D(w3) � 19 and D(w5) � 19.Moreover, if D(w3) = 19 then D(w1) � 20 and if D(w5) = 19, then D(w2) � 20.Proof. First we work with w3. Delete v and add the edge w2w4. By the minimality of M , thereexists an a
y
li
 20-
oloring � of the resulting multigraph. Let �(fw4; w5; w1; w2g) = f1; 2; 3; 4g (inthis order), as depi
ted in Figure 1(b). If �(w3) =2 f2; 3g, then we 
an 
olor v, a 
ontradi
tion.CASE 1. �(w3) = 3. For every � 2 f5; : : : ; 20g, the only obsta
le for 
oloring v with � 
an be a(3; �)-path between w3 and w1. Thus in this 
ase D(w3) � 19 and D(w1) � 20.CASE 2. �(w3) = 2. For every � 2 f5; : : : ; 20g, the only obsta
le for 
oloring v with � 
an be a(2; �)-path between w3 and w5. Moreover, if D(w3) = 19 then we 
an re
olor w3 with 3 and get Case1. Similarly, we work with w5. 2
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14 23 (b)Figure 3: Con�gurations for Lemma 5Lemma 13 Let a 6-vertex v have the 
y
li
 neighbours w1; : : : ; w6 (in this 
y
li
 order), wherew1; w2; v and w4; w5; v form triangles (see Figure 2(a)). Then 
h�(v) � 0.Proof. We have 
h(v) = 4 � 4 = 0, and by R0 v gives 2/3 to in
ident 3-fa
es. Therefore, it suÆ
esto prove that v re
eives either at least 1/6 from w1 or at least 1/3 from w6, and then use the doublesymmetry.Delete v and add the edge w2w5. By the minimality of M , there exists an a
y
li
 20-
oloring� of the resulting multigraph. Let �(fw5; w4; w3; w2g) = f1; 2; 3; 4g (in this order), as depi
ted inFigure 2(b). If f�(w1); �(w6)g) \ f2; 3g = ;, then we 
an 
olor v, a 
ontradi
tion.CASE 1. �(w1) = 5. Then every 
olor � 2 f6; : : : ; 20g must be adja
ent to w6. Thus D(w6) � 18,and by rule R1, v gets at least (1� 8=18) = 10=18 > 1=3 from w6.CASE 2. �(w1) 2 f2; 3g and �(w6) = 5. Now every 
olor � 2 f6; : : : ; 20g must be adja
ent to w1.Thus D(w1) � 19, and by rule R1 v gets at least 1=12 + 1=4(1 � 8=19) = 13=57 > 1=6 from w1.CASE 3. �(w1) 2 f2; 3g and �(w6) 2 f2; 3g. Now every 
olor � 2 f5; : : : ; 20g must be adja
enteither to w1 or to w6. Hen
e (D(w1)�4)+(D(w6)�3) � 16, so that either D(w1) � 12 or D(w6) � 12.Then by rule R1, v gets either at least 1/6 from w1 or at least 1/3 from w6, respe
tively.Now, due to the horizontal symmetry v gets at least 1/3 from w1, w5 and w6, and due to theverti
al symmetry, at least 2/3 from all its neighbours. 2Lemma 14 Let a 6-vertex v have the 
y
li
 neighbours w1; : : : ; w6 (in this 
y
li
 order), wherew1v; w3v and w5v are edges in M . Then 
h�(v) � 0.Proof. We have 
h(v) = 3� 4 = �1 and v has no in
ident 3-fa
e. Therefore, we have to prove that
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(b)Figure 4: Con�gurations for Lemma 6v gets at least 1 from its 
y
li
 neighbours.We may assume that D(w2) � D(w4) � D(w6). Delete v and add the edges w1w3 and w3w5. Bythe minimality ofM , there exists a 20-
oloring � of the resulting multigraph. Let �(fw1; w3; w5; w6g) =f1; 2; 3; 4g (in this order).CASE 1. The 
olor of w2 or w4 is not in f1; 2; 3; 4g (say, �(w2) = 5). Then every 
olor � 2f6; : : : ; 20g must be adja
ent to w4. Thus D(w6) � D(w4) � 18 and v gets at least 2(1� 8=18) > 1.CASE 2. The 
olors of w2 and w4 are in f1; 2; 3; 4g. Now every 
olor � 2 f5; : : : ; 20g must beadja
ent either to w2 or to w4. If D(w4) � 16 then also D(w6) � 16 and v gets at least 2(1�8=16) = 1.Otherwise, sin
e we 
annot re
olor w2 or w4 with a 
olor � 2 f5; : : : ; 20g so to redu
e to Case 1(despite D(w4) � 15), not all the neighbours of ea
h of them have di�erent 
olors. We 
on
lude that(D(w2)� 4) + (D(w4)� 4) � 16. Therefore, D(w2) +D(w4) � 24 and, sin
e D(w4) � 15, v gets fromw2; w4 and w6 at least2(1� 8D(w4)) + (1� 8D(w2) ) � min9�x�12f2(1� 824� x) + (1� 8x)g = 47=45 > 1: 2Lemma 15 Let a 7-vertex v have the 
y
li
 neighbours w1; : : : ; w7 (in this 
y
li
 order), where w1; w2and v form a triangle, and w4v and w6v are edges in M (see Figure 4(a)). Then w3, w5 and w7together give v by R1 at least 1=3. Therefore, 
h�(v) � 0.Proof. We have 
h(v) = 4� 4 = 0 and, by R0, v gives 1/3 to its in
ident 3-fa
e. Therefore, we haveto prove that v gets at least 1/3 from its 
y
li
 neighbours.Observe �rst that if wi 2 fw3; w5; w7g is su
h that D(wi) � 12 then wi gives v by R1 at least1 � 8=12 = 1=3 and we are done. Suppose now that D(wi) < 12, i = 3; 5; 7. Delete v and add theedges w2w4, w4w6 and w6w1. Let �(fw1; w2; w4; w6g) = f1; 2; 3; 4g (in this order), as depi
ted inFigure 4(b). If all the 
olors of w1; : : : ; w7 are distin
t, then we 
an 
olor v. Thus, it is not the 
ase.CASE 1. There are u; z 2 fw3; w5; w7g 
overing all possible bi
olored 
y
les through v (when we
olor v by some or other 
olor). Then (D(u)� 3) + (D(z)� 3) � 14 and u and z give to v at leastmin9�x�10f1� 8x + 1� 820� xg = 1� 89 + 1� 811 = 3899 > 13 :CASE 2. No two u; z 2 fw3; w5; w7g 
over all possible bi
olored 
y
les through v. Now we have 16free 
olors. Sin
e we 
annot re
olor w3; w5; w7, we have (D(w3)�4)+(D(w5)�4)+(D(w7)�4) � 16.Hen
e, the minimum amount w3, w5 and w7 give v is(1� 88) + (1� 89) + (1� 811) = 3899 > 13 :
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(b)Figure 5: Con�gurations for Lemma 7 2Lemma 16 Let a 5-vertex v have the 
y
li
 neighbours w1; : : : ; w5 (in this 
y
li
 order), where w1; w2and v form a triangle, and w4v is an edge. If w1 is a 5-vertex, then 
h�(v) � 0.Proof. We have 
h(v) = 3 � 4 = �1 and, by R0, v gives 1/3 to its in
ident 3-fa
e. Therefore, wehave to prove that v gets at least 4/3 from its 
y
li
 neighbours.Let w6 be the neighbour of w2 and w5 whi
h sees w1. By Observation 8, w6 does not 
oin
ide withw3 (otherwise w3w4w5 would be a separating 
y
le) and is not adja
ent to it (otherwise w3w4w5w6would be a separating 
y
le). In parti
ular, D(w2) � 7. By Lemma 12 (applied to verti
es v and w1),the degree of ea
h of w3, w4, w5 and w6 is at least 19. Thus, if D(w2) � 8, then by R1 and R2, ea
hof v and w1 re
eives at least 3(1� 8=19) = 33=19 > 4=3.Let D(w2) = 7. Then by Lemma 12, the degree of ea
h of = w3, w4, w5 and w6 is at least 20 andw2 re
eives at least 2(1� 8=20) from w4 and w5. Hen
e it sends by R3 at least 6=5� 1=3 to v and w1,so that ea
h of them gets in total at least2(1� 820) + 12(65 � 13) = 65 + 12 � 1315 = 4930 > 4=3: 2Lemma 17 Let a 5-vertex v have the 
y
li
 neighbours w1; : : : ; w5 (in this 
y
li
 order), where w1; w2and v form a triangle, and w4v is an edge (see Figure 6(a)). If w1 is a 6-vertex, then 
h�(v) � 0.Proof. As before, we have to prove that v gets at least 4/3 from its 
y
li
 neighbours.Suppose that the lemma is false. Let w1 have the 
y
li
 neighbours w2; v; w4; w5; w6; w7 (in this
y
li
 order), where w5; w6 and w1 form a triangle (see Figure 6(b)). If D(w2) = 5 we have the
on�guration of Lemma 16 and we are done. We thus suppose that D(w2) > 5. By Lemma 12, wealso get D(w5) � 19 and D(w3) � 20.CASE 1. w6 is a 5-vertex. Then by Lemma 12, D(w2) � 19, D(w3) � 20, and by R1 v gets fromw2, w3 and w5 at least112 + 14(1� 819) + (1� 820) + (1� 81 = 9) = 112 + 14 � 1119 + 35 + 1119 = 73 � 8895 > 43 :
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uw6 uw7
CCCCCCC

\\\\\�����
�������1 234 (
)Figure 6: Con�gurations for Lemma 8CASE 2. w6 is not a 5-vertex. By Lemma 12, v gets from w3 at least 1�8=20 and from w2 and w5together at least 1� 8=20. Thus, if it gets from w1 by R3 at least 2=15, it is happy. Delete v and w1and add the edge w2w5. By the minimality of M , there exists an a
y
li
 20-
oloring � of the resultingmultigraph. Let �(fw2; w3; w4; w5g) = f1; 2; 3; 4g (in this order), as depi
ted in Figure 6(
). If neitherof w6 and w7 is 
olored by 3, then it is easy to 
omplete the 
oloring of M by setting �(v) = 3 and�(w1) = x =2 f�(w6); �(w7)g.SUBCASE 2.1. �(w7) = 3. If there is a 
olor � 2 f5; : : : ; 20g � �(w6) not adja
ent to w4 or notadja
ent to w7, then we 
an 
olor w1 with � and then 
olor v with a 
olor not in f1; 2; 3; 4; �g, a
ontradi
tion. Thus, there is no su
h �. It follows that D(w4) � 20, D(w7) � 18, and w1 gets fromthem at least (1� 8=18) + (1� 8=20) = 3=5 + 5=9. Hen
e v gets from w1 by R3 at least35 + 59 � 23 = 2245 > 215 :SUBCASE 2.2. �(w6) = 3. Similarly to Sub
ase 2.2, we get D(w4) � 20 and D(w6) � 19. Hen
ew1 sends by R3 to v at least1� 820 + 112 + 14(1� 819)� 23 = 35 + 112 + 1176 � 23 > 215 : 2Lemma 18 Let a 5-vertex v have the 
y
li
 neighbours w1; : : : ; w5 (in this 
y
li
 order), where w1; w2and v form a triangle, and w4v is an edge. If 
h�(v) < 0 then both w1 and w2 are 7-verti
es.Proof. Suppose that the lemma is false for a 5-vertex v. Then by Lemmas 16 and 17, neither ofw1 and w2 has the 
y
li
 degree 5 or 6. If 8 � D(w1);D(w2) � 19 then, by Lemma 13, we haveD(w3) � 20, D(w5) � 20, and by R1 v gets from w1, w2, w3 and w5 at least112 + 112 + 2(1� 820) = 16 + 65 = 4130 > 43 :If 8 � D(w1);D(w2) and D(w1) � 20 then v gets at least112 + 112 + 14(1� 820) + (1� 819) + (1� 820) = 16 + 54 � 1119 + 35 = 287195 > 43 :In both 
ases, it 
ontradi
ts the assumption 
h�(v) < 0.



O.V. Borodin, A.V. Kosto
hka, A. Raspaud and E. Sopena 9

uw4uw5 uw3uw1 uw2
#####






����� LLLLLuv����SSSSD(w1) = 7 D(w2) = 7
(a) uw4uw5 uw3uw1 uw2

#####





����� LLLLLuv����SSSSuw6 uw7

CCCCCCC
����� uw8 uw9AAAA��������

XXXXXXX�����
(b) uw4uw5 uw3

uw6 uw7 uw8 uw9�������
��

������� AAAA����
XXXXXXX

#####





�����
CCCCCCC 123 4

(
)Figure 7: Con�gurations for Lemma 10Suppose now that D(w1) = 7 and D(w2) > 7. Then w2 sends 1=12 to v and 1=12 to w1. But byLemma 15, w1 re
eives 1=3 even without this 1=12. Hen
e, it sends by R3 to v at least this 1=12.Together with what v gets from w3 and w5, it re
eives at least112 + 112 + (1� 819)(1� 820) = 212 + 35 + 1119 = 767570 > 43 :This proves the lemma. 2Lemma 19 Let a 5-vertex v have the 
y
li
 neighbours w1; : : : ; w5 (in this 
y
li
 order), where w1; w2and v form a triangle, and w4v is an edge (see Figure 7(a)). If both w1 and w2 are 7-verti
es, then
h�(v) � 0.Proof. As in Lemmas 16 and 17, we have to prove that v gets at least 4/3 from its 
y
li
 neighbours.Suppose that the lemma is false for a 5-vertex v. We may assume that the 
y
li
 neigh-bours of w1 are w2; v; w4; w5; w6; w7; w8 (in this 
y
li
 order), and the 
y
li
 neighbours of w2 arew3; w4; v; w1; w7; w8; w9 (in this 
y
li
 order), as depi
ted in Figure 7(b). Re
all that by Lemma 12, vgets from w3 and w5 at least 6=5. Therefore it still needs 2=15.Delete v; w2 and w1 and add the edges w8w3, w3w5 and w5w7. By the minimality of M , thereexists an a
y
li
 20-
oloring � of the resulting multigraph. Let �(fw8; w3; w5; w7g) = f1; 2; 3; 4g (inthis order), as depi
ted in Figure 7(
). Now we will try to 
olor w1 and w2 so that to get an a
y
li

oloring of G � v su
h that the 
olors of w1; : : : ; w5 are all distin
t. That would be enough to �nishthe proof.CASE 1. �(w4) = 5.SUBCASE 1.1. �(w6); �(w9) =2 f1; 2; 3; 4g. If there are two 
olors in f6; : : : ; 20gn f�(w6); �(w9)gnot adja
ent to w4 then we 
an 
olor w1 and w2 with them. Otherwise, D(w4) � 5 + 12 and it sendsat least 9=17 to ea
h of w1 and = w2. Hen
e, a

ording to Lemma 15, ea
h of w1 and w2 gives by R3to v at least 9=17 � 1=3 = 10=51 > 1=15.SUBCASE 1.2. �(w6) 2 f1; 2g; �(w9) =2 f1; 2; 3; 4g. If D(w4) � 12 and D(w9) � 10 then they giveto w2 at least 4=12 + 2=10 and, a

ording to Lemma 15, w2 gives to v by R3 at least 2=10 > 2=15, a
ontradi
tion. Otherwise, there exists a 
olor � 2 f6; : : : ; 20g � �(w9) su
h that 
oloring w2 with �does not 
reate bi
olored 
y
les. Now, 
oloring w1 with a 
olor � 2 f6; : : : ; 20g � � 
an be bad onlyif �(w6) = 1 and a 
y
le of 
olors 1 and � arises. It follows that D(w6) � 14 + 3 and D(w8) � 14 + 5,and they give to w1 at least (1� 8=17) + (1� 8=19) = 9=17 + 11=19. Hen
e, a

ording to Lemma 15,w1 gives by R3 to v at least 9=17 + 11=19 � 2=3 = 428=969 > 2=15.



10 A
y
li
 
olouring of 1-planar graphsSUBCASE 1.3. �(w6) 2 f1; 2g; �(w9) 2 f3; 4g. An argument similar to that of Sub
ase 1.2 works.CASE 2. �(w4) = 1. The worst sub
ase here is 
learly when �(w6) = 1 and �(w9) = 4.SUBCASE 2.1. There exists a 
olor � 2 f5; : : : ; 20g su
h that 
oloring w1 with � does not 
reatebi
olored 
y
les. If we 
annot 
olor w2, then every � 2 f5; : : : ; 20g � � must be adja
ent either tow7 and w9 or to w4 and w8. If at least 8 
olors in f5; : : : ; 20g � � are adja
ent to w7 and w9 thenD(w7) � 13, D(w9) � 11, and they give to w2 at least 5=13 + 3=11, so that w2 gives by R3 to v atleast 5=13 + 3=11� 1=3 > 2=15. Otherwise, at least 8 
olors in f5; : : : ; 20g �� are adja
ent to w4 andw8: In this 
ase, D(w4) � 13, D(w8) � 13, and they together give to w1 at least 2(1� 8=13) = 10=13,so that w1 gives by R3 to v at least 10=13 � 1=3 = 17=39 > 2=15.SUBCASE 2.2. There exists no 
olor � 2 f5; : : : ; 20g su
h that 
oloring w1 with � does not 
reatebi
olored 
y
les. This means that every 
olor in f5; : : : ; 20g is adja
ent to at least two of w4, w6 andw8. It follows that (D(w4)� 5)+ (D(w6)� 3)+ (D(w8)� 4) � 32, and hen
e together they give to w1at least 1� 8=28 > 2=3. Thus, v gets from w1 by R3 at least 1=3. 2The lemmas above imply together that 
h�(v) � 0 for every v 2 V (M). This 
ontradi
tion withEuler formula �nishes the proof.Referen
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