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2 Ayli olouring of 1-planar graphs(Gr�unbaum [9℄) and the oriented hromati number at most a2a�1 (Raspaud and Sopena [13℄); everym-oloring of the edges of G an be homomorphially mapped on that of a graph with at most ama�1verties (Alon and Marshall [2℄); every m-oloring of the edges of mixed graph G ombined with itsn-oloring an be homomorphially mapped on a graph with at most a(2n+m)a�1 verties (Ne�set�riland Raspaud [12℄).Also, Hakimi, Mithem and Shmeihel [10, p.38-39℄ proved that E(G) an be partitioned intoa(G) star forests (whose every omponent is a star). Using [5℄, this on�rms the onjeture of Algorand Alon [1℄ that the edges of every planar graph an be partitioned into �ve star forests.In this paper we study the ayli oloring of 1-planar graphs. Our main result is the following:Theorem 1 Every 1-planar graph is aylially 20-olorable.The best lower bound known to us is 7: the 3-dimensional ube with all the diagonals added annotbe olored aylially with fewer than 7 olors.Theorem 1 has a number of appliations to other oloring problems, listed below. For the preisede�nitions of the notions used see [2, 9, 10, 12, 13℄.Corollary 2 Every plane graph has an ayli simultaneous oloring of verties and faes with atmost 20 olors.Corollary 3 Every 1-planar graph has star hromati number at most 20 � 219.Corollary 4 Every 1-planar graph has oriented hromati number at most 20 � 219.Corollary 5 Every plane graph has oriented simultaneous oloring of verties and faes with at most20 � 219 olors.Corollary 6 The edges of eah 1-planar graph an be partitioned into 20 star forests.Note that a loop yields a uniolored edge and two multiple edges yield a biolored yle. Insteadof Theorem 7, it is easier to prove a bit more:Theorem 7 Every 1-plane pseudograph an be 20-olored so that no ends of an edge e are olored thesame unless e is a loop, and no bihromati yles of length > 2 exists.Note also that the proof below is valid for pseudographs 1-embedded into the projetive plane.The only di�erene is that Euler's formula for it says jV j � jEj+ jF j � 1. Aordingly, the extensionsof Theorem 1 and Corrolaries 2-6 to the projetive plane also take plae.Alon, Mohar and Sanders [3℄ showed that the ayli 5-olorability of the plane graphs easilyimplies the ayli 7-olorability of the projetive plane graphs.2 Proof of Theorem 7Let P0 be a ounterexample with the fewest verties. Clearly, jV (P0)j � 21. Observe that P0 has noseparating liques, hene is 2-onneted. In partiular, P0 has no verties of degree less than 3. Reallthat the degree of a vertex and the size of a fae in a plane pseudograph (a map) is the number ofinident edges.We �x a 1-plane representation of P0 with the minimum number of rossings. Then for eah pairof edges ab, d that ross eah other at point s, their end verties are paiwise distint: jfa; b; ; dgj = 4.For eah suh a pair, we add edges a, b, bd and da `lose to s' i.e. so that they form trianglesas, sb, bsd and dsa with empty interior, respetively. The so obtained 1-plane graph P1 is also aounterexample to Theorem 7, beause any ayli 20-oloring of P1 is valid for P0.Denote by M1 the plane map obtained from P1 by removing all the rossed edges. Apply to M)as many as possible of the following operations, in any order:



O.V. Borodin, A.V. Kostohka, A. Raspaud and E. Sopena 3� Delete a loop that forms a fae of size 1.� Delete one of two edges that form a fae of size 2.� Delete a ommon edge of two adjaent faes of siz 3.� Triangulate eah fae of size at least 5 by adding diagonals.The resulting map is denoted by M .Observation 8 M is onneted, has no faes of size other than 3 or 4, and has no triangles with anedge in ommon. 2Let P be obtained from M by inserting two rossed diagonals inside eah 4-fae. Then P is aounterexample to Theorem 7 with the fewest verties. This is beause adding an edge does notderease the ayli hromati number, while adding loops or repeated edges annot hange it. (Inother words: if the underlying graphs of pseudographs G and H oinide, then a(G) = a(H).) Theproof of Theorem 7 onsists in establishing a set of strutural properties of P that will be shown toontradit eah other.We shall mainly work with M . The degree of a vertex v in M , i.e., the number of inident edges(loops are ounted twie), is denoted by d(v). The size of a fae f , i.e., the number of inident edges,ounting multipliities, is denoted by s(v). By a � k-vertex we mean that of degree at least k, et.Denote byD(v) the degree of v in P . Clearly, D(v) = 2q(v)+t(v), where q(v) and t(v), respetively,stand for the number of quadrangles and triangles inident with v. It is easy to see that d(v) =q(v) + t(v). D(v) will be referred to as the yli degree of v in M . A vertex v will be alled a minorvertex if D(v) � 7.Lemma 9 M has no separating yle of length at most four.Proof. Otherwise, we split M along suh a yle S into two smaller maps, transform them into 1-planar pseudographs P 0 and P 00 by adding all the diagonals, and ombine their ayli 20-olorings toobtain an ayli 20-oloring for P . (The verties of S are olored pairwise di�erently in the oloringsboth of P 0 and of P 00 .) 2Corollary 10 If v 2 V (P ) then D(v) � 5 and d(v) � 3.Euler's formula jV (M)j � jE(M)j + jF (M)j = 2 may be rewritten asXv2V (M)(d(v) � 4) + Xf2F (M)(s(f)� 4) = �8; (1)where F (M) is the set of faes in M .We set the initial harge of every vertex v of M as h(v) = d(v) � 4 and of every fae f of M ash(f) = s(f) � 4. We then use the disharging proedure, leading to a �nal harge h�, de�ned byapplying the following (ordered) rules:R0. Every vertex gives to every triangle ontaining it the harge 13 .R1. Every vertex v with D(v) = D � 8 sends aross every inident 4-fae the harge 1 � 8=D andalong every triangle edge the harge 112 + 14(1� 8=D). In partiular, every 8-vertex ontained ina triangle sends along every triangle edge the harge 112 .R2. If a vertex v with D(v) = D � 8 gets something aross some inident 4-fae f , then v gives itbak to f and this harge is evenly distributed among the minor verties belonging to this fae(if suh verties exist).If a vertex v with D(v) = D � 8 gets something along a triangle edge, then v sends it along theother edge of the same triangle.



4 Ayli olouring of 1-planar graphs
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�2 3 41(b)Figure 1: Con�gurations for Lemma 3R3. If after ful�lling R1 and R2 some vertex v with 6 � D(v) = D � 7 have a positive harge, thenthis harge is distributed evenly among the 5-verties onneted with v by triangle edges (if suhverties exist).Sine the above proedure preserves the total harge, we have:Xv2V (M) h(v) + Xf2F (M) h(f) = Xv2V (M) h�(v) + Xf2F (M) h�(f) = �8:Observe that h�(q) = 0 for every quadrangle q, and by rule R0 h�(t) = 1 for every triangle t.We shall get a ontradition by proving that for every vertex v the inequality h�(v) � 0 holds.The proof will be delivered in a series of Lemmas.Lemma 11 If D(v) � 8 then h�(v) � 0.Proof. It is enough to prove that v has a nonnegative harge after ful�lling R0 and R1, sine at stepsR2 and R3 verties with a positive harge preserve the positivity of their harge. Let v belong to ttriangles and to q quadrangles. Then D = t+ 2q and h(v) = t + q � 4. By R0, v gives to trianglesexatly t=3. By R1, it sends q(1 � 8=D) aross quadrangles and at most 2t12 + 2t4 (1 � 8=D) along thetriangle edges. Even if it gets nothing from other verties, it is left with at leastt+ q � 4� t3 � q(1� 8D )� t6 � t2(1� 8D ) = ( t2 + q)(1� (1� 8D ))� 4 = D2 8D � 4 = 0: 2Lemma 12 Let a 5-vertex v have the yli neighbours w1; : : : ; w5 (in this yli order), where w1; w2and v form a triangle, and w4v is an edge (see Figure 1(a)). Then D(w3) � 19 and D(w5) � 19.Moreover, if D(w3) = 19 then D(w1) � 20 and if D(w5) = 19, then D(w2) � 20.Proof. First we work with w3. Delete v and add the edge w2w4. By the minimality of M , thereexists an ayli 20-oloring � of the resulting multigraph. Let �(fw4; w5; w1; w2g) = f1; 2; 3; 4g (inthis order), as depited in Figure 1(b). If �(w3) =2 f2; 3g, then we an olor v, a ontradition.CASE 1. �(w3) = 3. For every � 2 f5; : : : ; 20g, the only obstale for oloring v with � an be a(3; �)-path between w3 and w1. Thus in this ase D(w3) � 19 and D(w1) � 20.CASE 2. �(w3) = 2. For every � 2 f5; : : : ; 20g, the only obstale for oloring v with � an be a(2; �)-path between w3 and w5. Moreover, if D(w3) = 19 then we an reolor w3 with 3 and get Case1. Similarly, we work with w5. 2
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14 23 (b)Figure 3: Con�gurations for Lemma 5Lemma 13 Let a 6-vertex v have the yli neighbours w1; : : : ; w6 (in this yli order), wherew1; w2; v and w4; w5; v form triangles (see Figure 2(a)). Then h�(v) � 0.Proof. We have h(v) = 4 � 4 = 0, and by R0 v gives 2/3 to inident 3-faes. Therefore, it suÆesto prove that v reeives either at least 1/6 from w1 or at least 1/3 from w6, and then use the doublesymmetry.Delete v and add the edge w2w5. By the minimality of M , there exists an ayli 20-oloring� of the resulting multigraph. Let �(fw5; w4; w3; w2g) = f1; 2; 3; 4g (in this order), as depited inFigure 2(b). If f�(w1); �(w6)g) \ f2; 3g = ;, then we an olor v, a ontradition.CASE 1. �(w1) = 5. Then every olor � 2 f6; : : : ; 20g must be adjaent to w6. Thus D(w6) � 18,and by rule R1, v gets at least (1� 8=18) = 10=18 > 1=3 from w6.CASE 2. �(w1) 2 f2; 3g and �(w6) = 5. Now every olor � 2 f6; : : : ; 20g must be adjaent to w1.Thus D(w1) � 19, and by rule R1 v gets at least 1=12 + 1=4(1 � 8=19) = 13=57 > 1=6 from w1.CASE 3. �(w1) 2 f2; 3g and �(w6) 2 f2; 3g. Now every olor � 2 f5; : : : ; 20g must be adjaenteither to w1 or to w6. Hene (D(w1)�4)+(D(w6)�3) � 16, so that either D(w1) � 12 or D(w6) � 12.Then by rule R1, v gets either at least 1/6 from w1 or at least 1/3 from w6, respetively.Now, due to the horizontal symmetry v gets at least 1/3 from w1, w5 and w6, and due to thevertial symmetry, at least 2/3 from all its neighbours. 2Lemma 14 Let a 6-vertex v have the yli neighbours w1; : : : ; w6 (in this yli order), wherew1v; w3v and w5v are edges in M . Then h�(v) � 0.Proof. We have h(v) = 3� 4 = �1 and v has no inident 3-fae. Therefore, we have to prove that
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(b)Figure 4: Con�gurations for Lemma 6v gets at least 1 from its yli neighbours.We may assume that D(w2) � D(w4) � D(w6). Delete v and add the edges w1w3 and w3w5. Bythe minimality ofM , there exists a 20-oloring � of the resulting multigraph. Let �(fw1; w3; w5; w6g) =f1; 2; 3; 4g (in this order).CASE 1. The olor of w2 or w4 is not in f1; 2; 3; 4g (say, �(w2) = 5). Then every olor � 2f6; : : : ; 20g must be adjaent to w4. Thus D(w6) � D(w4) � 18 and v gets at least 2(1� 8=18) > 1.CASE 2. The olors of w2 and w4 are in f1; 2; 3; 4g. Now every olor � 2 f5; : : : ; 20g must beadjaent either to w2 or to w4. If D(w4) � 16 then also D(w6) � 16 and v gets at least 2(1�8=16) = 1.Otherwise, sine we annot reolor w2 or w4 with a olor � 2 f5; : : : ; 20g so to redue to Case 1(despite D(w4) � 15), not all the neighbours of eah of them have di�erent olors. We onlude that(D(w2)� 4) + (D(w4)� 4) � 16. Therefore, D(w2) +D(w4) � 24 and, sine D(w4) � 15, v gets fromw2; w4 and w6 at least2(1� 8D(w4)) + (1� 8D(w2) ) � min9�x�12f2(1� 824� x) + (1� 8x)g = 47=45 > 1: 2Lemma 15 Let a 7-vertex v have the yli neighbours w1; : : : ; w7 (in this yli order), where w1; w2and v form a triangle, and w4v and w6v are edges in M (see Figure 4(a)). Then w3, w5 and w7together give v by R1 at least 1=3. Therefore, h�(v) � 0.Proof. We have h(v) = 4� 4 = 0 and, by R0, v gives 1/3 to its inident 3-fae. Therefore, we haveto prove that v gets at least 1/3 from its yli neighbours.Observe �rst that if wi 2 fw3; w5; w7g is suh that D(wi) � 12 then wi gives v by R1 at least1 � 8=12 = 1=3 and we are done. Suppose now that D(wi) < 12, i = 3; 5; 7. Delete v and add theedges w2w4, w4w6 and w6w1. Let �(fw1; w2; w4; w6g) = f1; 2; 3; 4g (in this order), as depited inFigure 4(b). If all the olors of w1; : : : ; w7 are distint, then we an olor v. Thus, it is not the ase.CASE 1. There are u; z 2 fw3; w5; w7g overing all possible biolored yles through v (when weolor v by some or other olor). Then (D(u)� 3) + (D(z)� 3) � 14 and u and z give to v at leastmin9�x�10f1� 8x + 1� 820� xg = 1� 89 + 1� 811 = 3899 > 13 :CASE 2. No two u; z 2 fw3; w5; w7g over all possible biolored yles through v. Now we have 16free olors. Sine we annot reolor w3; w5; w7, we have (D(w3)�4)+(D(w5)�4)+(D(w7)�4) � 16.Hene, the minimum amount w3, w5 and w7 give v is(1� 88) + (1� 89) + (1� 811) = 3899 > 13 :
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(b)Figure 5: Con�gurations for Lemma 7 2Lemma 16 Let a 5-vertex v have the yli neighbours w1; : : : ; w5 (in this yli order), where w1; w2and v form a triangle, and w4v is an edge. If w1 is a 5-vertex, then h�(v) � 0.Proof. We have h(v) = 3 � 4 = �1 and, by R0, v gives 1/3 to its inident 3-fae. Therefore, wehave to prove that v gets at least 4/3 from its yli neighbours.Let w6 be the neighbour of w2 and w5 whih sees w1. By Observation 8, w6 does not oinide withw3 (otherwise w3w4w5 would be a separating yle) and is not adjaent to it (otherwise w3w4w5w6would be a separating yle). In partiular, D(w2) � 7. By Lemma 12 (applied to verties v and w1),the degree of eah of w3, w4, w5 and w6 is at least 19. Thus, if D(w2) � 8, then by R1 and R2, eahof v and w1 reeives at least 3(1� 8=19) = 33=19 > 4=3.Let D(w2) = 7. Then by Lemma 12, the degree of eah of = w3, w4, w5 and w6 is at least 20 andw2 reeives at least 2(1� 8=20) from w4 and w5. Hene it sends by R3 at least 6=5� 1=3 to v and w1,so that eah of them gets in total at least2(1� 820) + 12(65 � 13) = 65 + 12 � 1315 = 4930 > 4=3: 2Lemma 17 Let a 5-vertex v have the yli neighbours w1; : : : ; w5 (in this yli order), where w1; w2and v form a triangle, and w4v is an edge (see Figure 6(a)). If w1 is a 6-vertex, then h�(v) � 0.Proof. As before, we have to prove that v gets at least 4/3 from its yli neighbours.Suppose that the lemma is false. Let w1 have the yli neighbours w2; v; w4; w5; w6; w7 (in thisyli order), where w5; w6 and w1 form a triangle (see Figure 6(b)). If D(w2) = 5 we have theon�guration of Lemma 16 and we are done. We thus suppose that D(w2) > 5. By Lemma 12, wealso get D(w5) � 19 and D(w3) � 20.CASE 1. w6 is a 5-vertex. Then by Lemma 12, D(w2) � 19, D(w3) � 20, and by R1 v gets fromw2, w3 and w5 at least112 + 14(1� 819) + (1� 820) + (1� 81 = 9) = 112 + 14 � 1119 + 35 + 1119 = 73 � 8895 > 43 :
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�������1 234 ()Figure 6: Con�gurations for Lemma 8CASE 2. w6 is not a 5-vertex. By Lemma 12, v gets from w3 at least 1�8=20 and from w2 and w5together at least 1� 8=20. Thus, if it gets from w1 by R3 at least 2=15, it is happy. Delete v and w1and add the edge w2w5. By the minimality of M , there exists an ayli 20-oloring � of the resultingmultigraph. Let �(fw2; w3; w4; w5g) = f1; 2; 3; 4g (in this order), as depited in Figure 6(). If neitherof w6 and w7 is olored by 3, then it is easy to omplete the oloring of M by setting �(v) = 3 and�(w1) = x =2 f�(w6); �(w7)g.SUBCASE 2.1. �(w7) = 3. If there is a olor � 2 f5; : : : ; 20g � �(w6) not adjaent to w4 or notadjaent to w7, then we an olor w1 with � and then olor v with a olor not in f1; 2; 3; 4; �g, aontradition. Thus, there is no suh �. It follows that D(w4) � 20, D(w7) � 18, and w1 gets fromthem at least (1� 8=18) + (1� 8=20) = 3=5 + 5=9. Hene v gets from w1 by R3 at least35 + 59 � 23 = 2245 > 215 :SUBCASE 2.2. �(w6) = 3. Similarly to Subase 2.2, we get D(w4) � 20 and D(w6) � 19. Henew1 sends by R3 to v at least1� 820 + 112 + 14(1� 819)� 23 = 35 + 112 + 1176 � 23 > 215 : 2Lemma 18 Let a 5-vertex v have the yli neighbours w1; : : : ; w5 (in this yli order), where w1; w2and v form a triangle, and w4v is an edge. If h�(v) < 0 then both w1 and w2 are 7-verties.Proof. Suppose that the lemma is false for a 5-vertex v. Then by Lemmas 16 and 17, neither ofw1 and w2 has the yli degree 5 or 6. If 8 � D(w1);D(w2) � 19 then, by Lemma 13, we haveD(w3) � 20, D(w5) � 20, and by R1 v gets from w1, w2, w3 and w5 at least112 + 112 + 2(1� 820) = 16 + 65 = 4130 > 43 :If 8 � D(w1);D(w2) and D(w1) � 20 then v gets at least112 + 112 + 14(1� 820) + (1� 819) + (1� 820) = 16 + 54 � 1119 + 35 = 287195 > 43 :In both ases, it ontradits the assumption h�(v) < 0.
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()Figure 7: Con�gurations for Lemma 10Suppose now that D(w1) = 7 and D(w2) > 7. Then w2 sends 1=12 to v and 1=12 to w1. But byLemma 15, w1 reeives 1=3 even without this 1=12. Hene, it sends by R3 to v at least this 1=12.Together with what v gets from w3 and w5, it reeives at least112 + 112 + (1� 819)(1� 820) = 212 + 35 + 1119 = 767570 > 43 :This proves the lemma. 2Lemma 19 Let a 5-vertex v have the yli neighbours w1; : : : ; w5 (in this yli order), where w1; w2and v form a triangle, and w4v is an edge (see Figure 7(a)). If both w1 and w2 are 7-verties, thenh�(v) � 0.Proof. As in Lemmas 16 and 17, we have to prove that v gets at least 4/3 from its yli neighbours.Suppose that the lemma is false for a 5-vertex v. We may assume that the yli neigh-bours of w1 are w2; v; w4; w5; w6; w7; w8 (in this yli order), and the yli neighbours of w2 arew3; w4; v; w1; w7; w8; w9 (in this yli order), as depited in Figure 7(b). Reall that by Lemma 12, vgets from w3 and w5 at least 6=5. Therefore it still needs 2=15.Delete v; w2 and w1 and add the edges w8w3, w3w5 and w5w7. By the minimality of M , thereexists an ayli 20-oloring � of the resulting multigraph. Let �(fw8; w3; w5; w7g) = f1; 2; 3; 4g (inthis order), as depited in Figure 7(). Now we will try to olor w1 and w2 so that to get an aylioloring of G � v suh that the olors of w1; : : : ; w5 are all distint. That would be enough to �nishthe proof.CASE 1. �(w4) = 5.SUBCASE 1.1. �(w6); �(w9) =2 f1; 2; 3; 4g. If there are two olors in f6; : : : ; 20gn f�(w6); �(w9)gnot adjaent to w4 then we an olor w1 and w2 with them. Otherwise, D(w4) � 5 + 12 and it sendsat least 9=17 to eah of w1 and = w2. Hene, aording to Lemma 15, eah of w1 and w2 gives by R3to v at least 9=17 � 1=3 = 10=51 > 1=15.SUBCASE 1.2. �(w6) 2 f1; 2g; �(w9) =2 f1; 2; 3; 4g. If D(w4) � 12 and D(w9) � 10 then they giveto w2 at least 4=12 + 2=10 and, aording to Lemma 15, w2 gives to v by R3 at least 2=10 > 2=15, aontradition. Otherwise, there exists a olor � 2 f6; : : : ; 20g � �(w9) suh that oloring w2 with �does not reate biolored yles. Now, oloring w1 with a olor � 2 f6; : : : ; 20g � � an be bad onlyif �(w6) = 1 and a yle of olors 1 and � arises. It follows that D(w6) � 14 + 3 and D(w8) � 14 + 5,and they give to w1 at least (1� 8=17) + (1� 8=19) = 9=17 + 11=19. Hene, aording to Lemma 15,w1 gives by R3 to v at least 9=17 + 11=19 � 2=3 = 428=969 > 2=15.



10 Ayli olouring of 1-planar graphsSUBCASE 1.3. �(w6) 2 f1; 2g; �(w9) 2 f3; 4g. An argument similar to that of Subase 1.2 works.CASE 2. �(w4) = 1. The worst subase here is learly when �(w6) = 1 and �(w9) = 4.SUBCASE 2.1. There exists a olor � 2 f5; : : : ; 20g suh that oloring w1 with � does not reatebiolored yles. If we annot olor w2, then every � 2 f5; : : : ; 20g � � must be adjaent either tow7 and w9 or to w4 and w8. If at least 8 olors in f5; : : : ; 20g � � are adjaent to w7 and w9 thenD(w7) � 13, D(w9) � 11, and they give to w2 at least 5=13 + 3=11, so that w2 gives by R3 to v atleast 5=13 + 3=11� 1=3 > 2=15. Otherwise, at least 8 olors in f5; : : : ; 20g �� are adjaent to w4 andw8: In this ase, D(w4) � 13, D(w8) � 13, and they together give to w1 at least 2(1� 8=13) = 10=13,so that w1 gives by R3 to v at least 10=13 � 1=3 = 17=39 > 2=15.SUBCASE 2.2. There exists no olor � 2 f5; : : : ; 20g suh that oloring w1 with � does not reatebiolored yles. This means that every olor in f5; : : : ; 20g is adjaent to at least two of w4, w6 andw8. It follows that (D(w4)� 5)+ (D(w6)� 3)+ (D(w8)� 4) � 32, and hene together they give to w1at least 1� 8=28 > 2=3. Thus, v gets from w1 by R3 at least 1=3. 2The lemmas above imply together that h�(v) � 0 for every v 2 V (M). This ontradition withEuler formula �nishes the proof.Referenes[1℄ I.Algor and N.Alon, The star arboriity of graphs, Disrete Math. 75 (1989), 11-22.[2℄ N.Alon, T.H.Marshall, Homomorphisms of edge-olored graphs and Coxeter groups J. AlgebraiCombinatoris 2 (1991), 277-289[3℄ N.Alon, B.Mohar, D.P.Sanders, On ayli olorings of graphs on surfaes. Isr. J. Math. 94 (1996),273-283.[4℄ D.Arhdeaon, Coupled oloring of planar maps, Congressus Numerantium. 1986. V. 39. P. 89-94.[5℄ O.V. Borodin. On ayli olorings of planar graphs, Disrete Math. 25 (1979), 211{236.[6℄ O.V.Borodin, Solution of Ringel's problems on the vertex-fae oloring of plane graphs and onthe oloring of 1-planar graphs. Diskret. Analiz, Novosibirsk, 41 (1984) 12-26 (in Russian)[7℄ O.V.Borodin, A new proof of six olor theorem, J. Graph Theory, 19 (1995), 507-521[8℄ O.V.Borodin, A.V.Kostohka and D.R.Woodall, Ayli olorings of planar graphs with largegirth, J. of the London Math. So. (aepted)[9℄ B.Gr�unbaum, Ayli olorings of planar graphs Israel J. Math. 1973. V. 14, N. 3. P. 390-408.[10℄ T. R. Jensen and B. Toft, Graph oloring problems, Wiley Intersiene (1995).[11℄ A.V.Kostohka and L. S. Mel'nikov, Note to the paper of Gr�unbaum on ayli olorings, DisreteMath., 14 (1976), 403-406.[12℄ J. Ne�set�ril, A. Raspaud, Colored Homomorphisms of Colored Mixed Graphs. KAM Series N0.98-376, Dept. of Applied Math. Charles University, Prague (Czeh Republi); to appear in J.Combinatorial Theory, Ser. B.[13℄ A. Raspaud and E. Sopena, Good and semi-strong olorings of oriented planar graphs, Inform.Proessing Letters 51 (1994), 171{174.[14℄ G.Ringel, Ein Sehsfarbenproblem auf der Kugel // Abh. Math. Sem. Univ. Hamburg. 1965.V. 29. P. 107-117.[15℄ G.Ringel, A Six Color Problem on the sphere, Theory of Graphs, Pro. Colloq. Tihany, (1966),New York, 1968.


