LaBRI Research Report No.Compiled on April 11, 2001The final version of this paper has been published in Discrete Analysis and Operations Research 6-4 (1999),20-35.

ACYCLIC COLOURING OF 1-PLANAR GRAPHS

O.V.Borodin¹, **A.V. Kostochka²** Institute of Mathematics, 630090, Novosibirsk, Russia

A. Raspaud and E. Sopena³ LaBRI, Université Bordeaux I, 33405 Talence Cedex, France

Abstract. A graph is 1-planar if it can be drawn on the plane in such a way that every edge crosses at most one other edge. We prove that the acyclic chromatic number of every 1-planar graph is at most 20.

Keywords. Acyclic colouring, planar graphs, 1-planar graphs.

1 Introduction

We denote by V(G) the set of vertices of a graph G and by E(G) its set of edges. A (proper) k-coloring of G is a mapping $f: V(G) \longrightarrow \{1, 2, ..., k\}$ such that $f(x) \neq f(y)$ whenever x and y are adjacent in G.

A 1-planar graph is a graph which can be drawn on the plane so that every edge crosses at most one other edge. One of the reasons for introducing this notion by Ringel [14] is that the graph G_{vf} of adjacency/incidence of the vertices and faces of each plane graph G is 1-planar. (On a map, take a capital of each country and join adjacent capitals by a railroad via a common border; also join each capital with all the corners of the country.) Every 1-planar graph with the maximum number of edges can be obtained from a plane graph whose faces have size 3 or 4 by adding two crossing diagonals into each 4-face. Every G_{vf} arises similarly from a plane quadrangulation.

In 1965, Ringel [14, 15] conjectured that each 1-planar graph is 6-colorable; this was confirmed by Borodin [6] in 1984. (A new simplier proof was given in [7].) It follows, the vertices and faces of each plane graph can be colored with 6 colors so that every two adjacent or incident elements have different colors. The 3-prism needs 6 colors for such a coloring, because it has 11 elements to be colored, and no three of them can be colored the same. Archdeacon [4] proved that the vertices and faces of each bipartite plane graph are simultaneously 5-colorable.

A proper vertex coloring of a graph is *acyclic* if every cycle uses at least three colors (Grünbaum [9]). The *acyclic chromatic number* of G, denoted by a(G), is the minimum k such that G admits an acyclic k-coloring.

Borodin [5] proved Grünbaum's conjecture that every planar graph is acyclically 5-colorable. This bound is best possible. Moreover, there are bipartite 2-degenerate planar graphs G with a(G) = 5 (Kostochka and Mel'nikov, [11]). However, if a plane graph G has no cycles of length less than 5, then $a(G) \leq 4$, and if it has no cycles of length less than 7, then $a(G) \leq 3$ (Borodin, Kostochka and Woodall [8]).

Acyclic colorings turned out to be useful for obtaining results about other types of colorings. Suppose one has proved that $a(G) \leq a$. Then G has the star chromatic number at most $a2^{a-1}$

¹A part of this research was done during a visit of LaBRI, supported by the NATO Collaborative Research Grant n° 97-1519. It was partially supported by the grant 97-01-01075 of the Russian Foundation for Fundamental Research.

 $^{^{2}}$ This work was partially supported by the INTAS grant 97-1001 and by the grant 96-01-01614 of the Russian Foundation for Fundamental Research.

 $^{^{3}}$ The work of these two authors was partly supported by the NATO Collaborative Research Grant n° 97-1519.

(Grünbaum [9]) and the oriented chromatic number at most $a2^{a-1}$ (Raspaud and Sopena [13]); every *m*-coloring of the edges of *G* can be homomorphically mapped on that of a graph with at most am^{a-1} vertices (Alon and Marshall [2]); every *m*-coloring of the edges of mixed graph *G* combined with its *n*-coloring can be homomorphically mapped on a graph with at most $a(2n + m)^{a-1}$ vertices (Nešetřil and Raspaud [12]).

Also, Hakimi, Mitchem and Schmeichel [10, p.38-39] proved that E(G) can be partitioned into a(G) star forests (whose every component is a star). Using [5], this confirms the conjecture of Algor and Alon [1] that the edges of every planar graph can be partitioned into five star forests.

In this paper we study the acyclic coloring of 1-planar graphs. Our main result is the following:

Theorem 1 Every 1-planar graph is acyclically 20-colorable.

The best lower bound known to us is 7: the 3-dimensional cube with all the diagonals added cannot be colored acyclically with fewer than 7 colors.

Theorem 1 has a number of applications to other coloring problems, listed below. For the precise definitions of the notions used see [2, 9, 10, 12, 13].

Corollary 2 Every plane graph has an acyclic simultaneous coloring of vertices and faces with at most 20 colors.

Corollary 3 Every 1-planar graph has star chromatic number at most $20 \cdot 2^{19}$.

Corollary 4 Every 1-planar graph has oriented chromatic number at most $20 \cdot 2^{19}$.

Corollary 5 Every plane graph has oriented simultaneous coloring of vertices and faces with at most $20 \cdot 2^{19}$ colors.

Corollary 6 The edges of each 1-planar graph can be partitioned into 20 star forests.

Note that a loop yields a unicolored edge and two multiple edges yield a bicolored cycle. Instead of Theorem 7, it is easier to prove a bit more:

Theorem 7 Every 1-plane pseudograph can be 20-colored so that no ends of an edge e are colored the same unless e is a loop, and no bichromatic cycles of length > 2 exists.

Note also that the proof below is valid for pseudographs 1-embedded into the projective plane. The only difference is that Euler's formula for it says $|V| - |E| + |F| \le 1$. Accordingly, the extensions of Theorem 1 and Corrolaries 2-6 to the projective plane also take place.

Alon, Mohar and Sanders [3] showed that the acyclic 5-colorability of the plane graphs easily implies the acyclic 7-colorability of the projective plane graphs.

2 Proof of Theorem 7

Let P_0 be a counterexample with the fewest vertices. Clearly, $|V(P_0)| \ge 21$. Observe that P_0 has no separating cliques, hence is 2-connected. In particular, P_0 has no vertices of degree less than 3. Recall that the degree of a vertex and the size of a face in a plane pseudograph (a map) is the number of incident edges.

We fix a 1-plane representation of P_0 with the minimum number of crossings. Then for each pair of edges ab, cd that cross each other at point s, their end vertices are paiwise distinct: $|\{a, b, c, d\}| = 4$. For each such a pair, we add edges ac, cb, bd and da 'close to s' i.e. so that they form triangles asc, csb, bsd and dsa with empty interior, respectively. The so obtained 1-plane graph P_1 is also a counterexample to Theorem 7, because any acyclic 20-coloring of P_1 is valid for P_0 .

Denote by M_1 the plane map obtained from P_1 by removing all the crossed edges. Apply to M_1 as many as possible of the following operations, in any order:

- Delete a loop that forms a face of size 1.
- Delete one of two edges that form a face of size 2.
- Delete a common edge of two adjacent faces of siz 3.
- Triangulate each face of size at least 5 by adding diagonals.

The resulting map is denoted by M.

Observation 8 M is connected, has no faces of size other than 3 or 4, and has no triangles with an edge in common. \Box

Let P be obtained from M by inserting two crossed diagonals inside each 4-face. Then P is a counterexample to Theorem 7 with the fewest vertices. This is because adding an edge does not decrease the acyclic chromatic number, while adding loops or repeated edges cannot change it. (In other words: if the underlying graphs of pseudographs G and H coincide, then a(G) = a(H).) The proof of Theorem 7 consists in establishing a set of structural properties of P that will be shown to contradict each other.

We shall mainly work with M. The degree of a vertex v in M, i.e., the number of incident edges (loops are counted twice), is denoted by d(v). The size of a face f, i.e., the number of incident edges, counting multiplicities, is denoted by s(v). By a $\geq k$ -vertex we mean that of degree at least k, etc.

Denote by D(v) the degree of v in P. Clearly, D(v) = 2q(v) + t(v), where q(v) and t(v), respectively, stand for the number of quadrangles and triangles incident with v. It is easy to see that d(v) = q(v) + t(v). D(v) will be referred to as the cyclic degree of v in M. A vertex v will be called a *minor* vertex if $D(v) \leq 7$.

Lemma 9 M has no separating cycle of length at most four.

Proof. Otherwise, we split M along such a cycle S into two smaller maps, transform them into 1planar pseudographs P' and P'' by adding all the diagonals, and combine their acyclic 20-colorings to obtain an acyclic 20-coloring for P. (The vertices of S are colored pairwise differently in the colorings both of P' and of P''.)

Corollary 10 If $v \in V(P)$ then $D(v) \ge 5$ and $d(v) \ge 3$.

Euler's formula |V(M)| - |E(M)| + |F(M)| = 2 may be rewritten as

$$\sum_{v \in V(M)} (d(v) - 4) + \sum_{f \in F(M)} (s(f) - 4) = -8,$$
(1)

where F(M) is the set of faces in M.

We set the *initial charge* of every vertex v of M as ch(v) = d(v) - 4 and of every face f of M as ch(f) = s(f) - 4. We then use the discharging procedure, leading to a *final charge* ch^* , defined by applying the following (ordered) rules:

R0. Every vertex gives to every triangle containing it the charge $\frac{1}{3}$.

- **R1.** Every vertex v with $D(v) = D \ge 8$ sends across every incident 4-face the charge 1 8/D and along every triangle edge the charge $\frac{1}{12} + \frac{1}{4}(1 8/D)$. In particular, every 8-vertex contained in a triangle sends along every triangle edge the charge $\frac{1}{12}$.
- **R2.** If a vertex v with $D(v) = D \ge 8$ gets something across some incident 4-face f, then v gives it back to f and this charge is evenly distributed among the minor vertices belonging to this face (if such vertices exist).

If a vertex v with $D(v) = D \ge 8$ gets something along a triangle edge, then v sends it along the other edge of the same triangle.

Figure 1: Configurations for Lemma 3

R3. If after fulfilling R1 and R2 some vertex v with $6 \le D(v) = D \le 7$ have a positive charge, then this charge is distributed evenly among the 5-vertices connected with v by triangle edges (if such vertices exist).

Since the above procedure preserves the total charge, we have:

$$\sum_{v \in V(M)} ch(v) + \sum_{f \in F(M)} ch(f) = \sum_{v \in V(M)} ch^*(v) + \sum_{f \in F(M)} ch^*(f) = -8.$$

Observe that $ch^*(q) = 0$ for every quadrangle q, and by rule R0 $ch^*(t) = 1$ for every triangle t.

We shall get a contradiction by proving that for every vertex v the inequality $ch^*(v) \ge 0$ holds. The proof will be delivered in a series of Lemmas.

Lemma 11 If $D(v) \ge 8$ then $ch^*(v) \ge 0$.

Proof. It is enough to prove that v has a nonnegative charge after fulfilling R0 and R1, since at steps R2 and R3 vertices with a positive charge preserve the positivity of their charge. Let v belong to t triangles and to q quadrangles. Then D = t + 2q and ch(v) = t + q - 4. By R0, v gives to triangles exactly t/3. By R1, it sends q(1 - 8/D) across quadrangles and at most $\frac{2t}{12} + \frac{2t}{4}(1 - 8/D)$ along the triangle edges. Even if it gets nothing from other vertices, it is left with at least

$$t + q - 4 - \frac{t}{3} - q(1 - \frac{8}{D}) - \frac{t}{6} - \frac{t}{2}(1 - \frac{8}{D}) = (\frac{t}{2} + q)(1 - (1 - \frac{8}{D})) - 4 = \frac{D}{2}\frac{8}{D} - 4 = 0.$$

Lemma 12 Let a 5-vertex v have the cyclic neighbours w_1, \ldots, w_5 (in this cyclic order), where w_1, w_2 and v form a triangle, and w_4v is an edge (see Figure 1(a)). Then $D(w_3) \ge 19$ and $D(w_5) \ge 19$. Moreover, if $D(w_3) = 19$ then $D(w_1) \ge 20$ and if $D(w_5) = 19$, then $D(w_2) \ge 20$.

Proof. First we work with w_3 . Delete v and add the edge w_2w_4 . By the minimality of M, there exists an acyclic 20-coloring ϕ of the resulting multigraph. Let $\phi(\{w_4, w_5, w_1, w_2\}) = \{1, 2, 3, 4\}$ (in this order), as depicted in Figure 1(b). If $\phi(w_3) \notin \{2, 3\}$, then we can color v, a contradiction.

CASE 1. $\phi(w_3) = 3$. For every $\alpha \in \{5, \ldots, 20\}$, the only obstacle for coloring v with α can be a $(3, \alpha)$ -path between w_3 and w_1 . Thus in this case $D(w_3) \ge 19$ and $D(w_1) \ge 20$.

CASE 2. $\phi(w_3) = 2$. For every $\alpha \in \{5, \ldots, 20\}$, the only obstacle for coloring v with α can be a $(2, \alpha)$ -path between w_3 and w_5 . Moreover, if $D(w_3) = 19$ then we can recolor w_3 with 3 and get Case 1.

Similarly, we work with w_5 .

Figure 2: Configurations for Lemma 4

Figure 3: Configurations for Lemma 5

Lemma 13 Let a 6-vertex v have the cyclic neighbours w_1, \ldots, w_6 (in this cyclic order), where w_1, w_2, v and w_4, w_5, v form triangles (see Figure 2(a)). Then $ch^*(v) \ge 0$.

Proof. We have ch(v) = 4 - 4 = 0, and by R0 v gives 2/3 to incident 3-faces. Therefore, it suffices to prove that v receives either at least 1/6 from w_1 or at least 1/3 from w_6 , and then use the double symmetry.

Delete v and add the edge w_2w_5 . By the minimality of M, there exists an acyclic 20-coloring ϕ of the resulting multigraph. Let $\phi(\{w_5, w_4, w_3, w_2\}) = \{1, 2, 3, 4\}$ (in this order), as depicted in Figure 2(b). If $\{\phi(w_1), \phi(w_6)\} \cap \{2, 3\} = \emptyset$, then we can color v, a contradiction.

CASE 1. $\phi(w_1) = 5$. Then every color $\alpha \in \{6, \ldots, 20\}$ must be adjacent to w_6 . Thus $D(w_6) \ge 18$, and by rule R1, v gets at least (1 - 8/18) = 10/18 > 1/3 from w_6 .

CASE 2. $\phi(w_1) \in \{2, 3\}$ and $\phi(w_6) = 5$. Now every color $\alpha \in \{6, ..., 20\}$ must be adjacent to w_1 . Thus $D(w_1) \ge 19$, and by rule R1 v gets at least 1/12 + 1/4(1 - 8/19) = 13/57 > 1/6 from w_1 .

CASE 3. $\phi(w_1) \in \{2,3\}$ and $\phi(w_6) \in \{2,3\}$. Now every color $\alpha \in \{5,\ldots,20\}$ must be adjacent either to w_1 or to w_6 . Hence $(D(w_1)-4)+(D(w_6)-3) \ge 16$, so that either $D(w_1) \ge 12$ or $D(w_6) \ge 12$. Then by rule R1, v gets either at least 1/6 from w_1 or at least 1/3 from w_6 , respectively.

Now, due to the horizontal symmetry v gets at least 1/3 from w_1 , w_5 and w_6 , and due to the vertical symmetry, at least 2/3 from all its neighbours.

Lemma 14 Let a 6-vertex v have the cyclic neighbours w_1, \ldots, w_6 (in this cyclic order), where w_1v, w_3v and w_5v are edges in M. Then $ch^*(v) \ge 0$.

Proof. We have ch(v) = 3 - 4 = -1 and v has no incident 3-face. Therefore, we have to prove that

Figure 4: Configurations for Lemma 6

v gets at least 1 from its cyclic neighbours.

We may assume that $D(w_2) \leq D(w_4) \leq D(w_6)$. Delete v and add the edges w_1w_3 and w_3w_5 . By the minimality of M, there exists a 20-coloring ϕ of the resulting multigraph. Let $\phi(\{w_1, w_3, w_5, w_6\}) = \{1, 2, 3, 4\}$ (in this order).

CASE 1. The color of w_2 or w_4 is not in $\{1, 2, 3, 4\}$ (say, $\phi(w_2) = 5$). Then every color $\alpha \in \{6, \ldots, 20\}$ must be adjacent to w_4 . Thus $D(w_6) \ge D(w_4) \ge 18$ and v gets at least 2(1 - 8/18) > 1.

CASE 2. The colors of w_2 and w_4 are in $\{1, 2, 3, 4\}$. Now every color $\alpha \in \{5, \ldots, 20\}$ must be adjacent either to w_2 or to w_4 . If $D(w_4) \ge 16$ then also $D(w_6) \ge 16$ and v gets at least 2(1-8/16) = 1. Otherwise, since we cannot recolor w_2 or w_4 with a color $\alpha \in \{5, \ldots, 20\}$ so to reduce to Case 1 (despite $D(w_4) \le 15$), not all the neighbours of each of them have different colors. We conclude that $(D(w_2) - 4) + (D(w_4) - 4) \ge 16$. Therefore, $D(w_2) + D(w_4) \ge 24$ and, since $D(w_4) \le 15$, v gets from w_2, w_4 and w_6 at least

$$2(1 - \frac{8}{D(w_4)}) + (1 - \frac{8}{D(w_2)}) \ge \min_{9 \le x \le 12} \{2(1 - \frac{8}{24 - x}) + (1 - \frac{8}{x})\} = 47/45 > 1.$$

Lemma 15 Let a 7-vertex v have the cyclic neighbours w_1, \ldots, w_7 (in this cyclic order), where w_1, w_2 and v form a triangle, and w_4v and w_6v are edges in M (see Figure 4(a)). Then w_3 , w_5 and w_7 together give v by R1 at least 1/3. Therefore, $ch^*(v) \ge 0$.

Proof. We have ch(v) = 4 - 4 = 0 and, by R0, v gives 1/3 to its incident 3-face. Therefore, we have to prove that v gets at least 1/3 from its cyclic neighbours.

Observe first that if $w_i \in \{w_3, w_5, w_7\}$ is such that $D(w_i) \ge 12$ then w_i gives v by R1 at least 1 - 8/12 = 1/3 and we are done. Suppose now that $D(w_i) < 12$, i = 3, 5, 7. Delete v and add the edges w_2w_4 , w_4w_6 and w_6w_1 . Let $\phi(\{w_1, w_2, w_4, w_6\}) = \{1, 2, 3, 4\}$ (in this order), as depicted in Figure 4(b). If all the colors of w_1, \ldots, w_7 are distinct, then we can color v. Thus, it is not the case.

CASE 1. There are $u, z \in \{w_3, w_5, w_7\}$ covering all possible bicolored cycles through v (when we color v by some or other color). Then $(D(u) - 3) + (D(z) - 3) \ge 14$ and u and z give to v at least

$$\min_{9 \le x \le 10} \left\{ 1 - \frac{8}{x} + 1 - \frac{8}{20 - x} \right\} = 1 - \frac{8}{9} + 1 - \frac{8}{11} = \frac{38}{99} > \frac{1}{3}.$$

CASE 2. No two $u, z \in \{w_3, w_5, w_7\}$ cover all possible bicolored cycles through v. Now we have 16 free colors. Since we cannot recolor w_3, w_5, w_7 , we have $(D(w_3) - 4) + (D(w_5) - 4) + (D(w_7) - 4) \ge 16$. Hence, the minimum amount w_3, w_5 and w_7 give v is

$$(1-\frac{8}{8}) + (1-\frac{8}{9}) + (1-\frac{8}{11}) = \frac{38}{99} > \frac{1}{3}.$$

Figure 5: Configurations for Lemma 7

Lemma 16 Let a 5-vertex v have the cyclic neighbours w_1, \ldots, w_5 (in this cyclic order), where w_1, w_2 and v form a triangle, and w_4v is an edge. If w_1 is a 5-vertex, then $ch^*(v) \ge 0$.

Proof. We have ch(v) = 3 - 4 = -1 and, by R0, v gives 1/3 to its incident 3-face. Therefore, we have to prove that v gets at least 4/3 from its cyclic neighbours.

Let w_6 be the neighbour of w_2 and w_5 which sees w_1 . By Observation 8, w_6 does not coincide with w_3 (otherwise $w_3w_4w_5$ would be a separating cycle) and is not adjacent to it (otherwise $w_3w_4w_5w_6$ would be a separating cycle). In particular, $D(w_2) \ge 7$. By Lemma 12 (applied to vertices v and w_1), the degree of each of w_3 , w_4 , w_5 and w_6 is at least 19. Thus, if $D(w_2) \ge 8$, then by R1 and R2, each of v and w_1 receives at least 3(1 - 8/19) = 33/19 > 4/3.

Let $D(w_2) = 7$. Then by Lemma 12, the degree of each of $= w_3$, w_4 , w_5 and w_6 is at least 20 and w_2 receives at least 2(1 - 8/20) from w_4 and w_5 . Hence it sends by R3 at least 6/5 - 1/3 to v and w_1 , so that each of them gets in total at least

$$2(1 - \frac{8}{20}) + \frac{1}{2}(\frac{6}{5} - \frac{1}{3}) = \frac{6}{5} + \frac{1}{2} \times \frac{13}{15} = \frac{49}{30} > 4/3.$$

Lemma 17 Let a 5-vertex v have the cyclic neighbours w_1, \ldots, w_5 (in this cyclic order), where w_1, w_2 and v form a triangle, and w_4v is an edge (see Figure 6(a)). If w_1 is a 6-vertex, then $ch^*(v) \ge 0$.

Proof. As before, we have to prove that v gets at least 4/3 from its cyclic neighbours.

Suppose that the lemma is false. Let w_1 have the cyclic neighbours $w_2, v, w_4, w_5, w_6, w_7$ (in this cyclic order), where w_5, w_6 and w_1 form a triangle (see Figure 6(b)). If $D(w_2) = 5$ we have the configuration of Lemma 16 and we are done. We thus suppose that $D(w_2) > 5$. By Lemma 12, we also get $D(w_5) \ge 19$ and $D(w_3) \ge 20$.

CASE 1. w_6 is a 5-vertex. Then by Lemma 12, $D(w_2) \ge 19$, $D(w_3) \ge 20$, and by R1 v gets from w_2 , w_3 and w_5 at least

$$\frac{1}{12} + \frac{1}{4}\left(1 - \frac{8}{19}\right) + \left(1 - \frac{8}{20}\right) + \left(1 - \frac{8}{1 = 9}\right) = \frac{1}{12} + \frac{1}{4} \times \frac{11}{19} + \frac{3}{5} + \frac{11}{19} = \frac{7}{3} - \frac{88}{95} > \frac{4}{3}.$$

Figure 6: Configurations for Lemma 8

CASE 2. w_6 is not a 5-vertex. By Lemma 12, v gets from w_3 at least 1-8/20 and from w_2 and w_5 together at least 1-8/20. Thus, if it gets from w_1 by R3 at least 2/15, it is happy. Delete v and w_1 and add the edge w_2w_5 . By the minimality of M, there exists an acyclic 20-coloring ϕ of the resulting multigraph. Let $\phi(\{w_2, w_3, w_4, w_5\}) = \{1, 2, 3, 4\}$ (in this order), as depicted in Figure 6(c). If neither of w_6 and w_7 is colored by 3, then it is easy to complete the coloring of M by setting $\phi(v) = 3$ and $\phi(w_1) = x \notin \{\phi(w_6), \phi(w_7)\}$.

SUBCASE 2.1. $\phi(w_7) = 3$. If there is a color $\alpha \in \{5, \ldots, 20\} - \phi(w_6)$ not adjacent to w_4 or not adjacent to w_7 , then we can color w_1 with α and then color v with a color not in $\{1, 2, 3, 4, \alpha\}$, a contradiction. Thus, there is no such α . It follows that $D(w_4) \ge 20$, $D(w_7) \ge 18$, and w_1 gets from them at least (1 - 8/18) + (1 - 8/20) = 3/5 + 5/9. Hence v gets from w_1 by R3 at least

$$\frac{3}{5} + \frac{5}{9} - \frac{2}{3} = \frac{22}{45} > \frac{2}{15}$$

SUBCASE 2.2. $\phi(w_6) = 3$. Similarly to Subcase 2.2, we get $D(w_4) \ge 20$ and $D(w_6) \ge 19$. Hence w_1 sends by R3 to v at least

$$1 - \frac{8}{20} + \frac{1}{12} + \frac{1}{4}\left(1 - \frac{8}{19}\right) - \frac{2}{3} = \frac{3}{5} + \frac{1}{12} + \frac{11}{76} - \frac{2}{3} > \frac{2}{15}.$$

Lemma 18 Let a 5-vertex v have the cyclic neighbours w_1, \ldots, w_5 (in this cyclic order), where w_1, w_2 and v form a triangle, and w_4v is an edge. If $ch^*(v) < 0$ then both w_1 and w_2 are 7-vertices.

Proof. Suppose that the lemma is false for a 5-vertex v. Then by Lemmas 16 and 17, neither of w_1 and w_2 has the cyclic degree 5 or 6. If $8 \leq D(w_1), D(w_2) \leq 19$ then, by Lemma 13, we have $D(w_3) \geq 20, D(w_5) \geq 20$, and by R1 v gets from w_1, w_2, w_3 and w_5 at least

$$\frac{1}{12} + \frac{1}{12} + 2(1 - \frac{8}{20}) = \frac{1}{6} + \frac{6}{5} = \frac{41}{30} > \frac{4}{3}.$$

If $8 \leq D(w_1), D(w_2)$ and $D(w_1) \geq 20$ then v gets at least

$$\frac{1}{12} + \frac{1}{12} + \frac{1}{4}\left(1 - \frac{8}{20}\right) + \left(1 - \frac{8}{19}\right) + \left(1 - \frac{8}{20}\right) = \frac{1}{6} + \frac{5}{4} \times \frac{11}{19} + \frac{3}{5} = \frac{287}{195} > \frac{4}{3}.$$

In both cases, it contradicts the assumption $ch^*(v) < 0$.

Figure 7: Configurations for Lemma 10

Suppose now that $D(w_1) = 7$ and $D(w_2) > 7$. Then w_2 sends 1/12 to v and 1/12 to w_1 . But by Lemma 15, w_1 receives 1/3 even without this 1/12. Hence, it sends by R3 to v at least this 1/12. Together with what v gets from w_3 and w_5 , it receives at least

$$\frac{1}{12} + \frac{1}{12} + (1 - \frac{8}{19})(1 - \frac{8}{20}) = \frac{2}{12} + \frac{3}{5} + \frac{11}{19} = \frac{767}{570} > \frac{4}{3}.$$

This proves the lemma.

Lemma 19 Let a 5-vertex v have the cyclic neighbours w_1, \ldots, w_5 (in this cyclic order), where w_1, w_2 and v form a triangle, and w_4v is an edge (see Figure 7(a)). If both w_1 and w_2 are 7-vertices, then $ch^*(v) \ge 0$.

Proof. As in Lemmas 16 and 17, we have to prove that v gets at least 4/3 from its cyclic neighbours. Suppose that the lemma is false for a 5-vertex v. We may assume that the cyclic neighbours of w_1 are $w_2, v, w_4, w_5, w_6, w_7, w_8$ (in this cyclic order), and the cyclic neighbours of w_2 are $w_3, w_4, v, w_1, w_7, w_8, w_9$ (in this cyclic order), as depicted in Figure 7(b). Recall that by Lemma 12, v gets from w_3 and w_5 at least 6/5. Therefore it still needs 2/15.

Delete v, w_2 and w_1 and add the edges $w_8 w_3, w_3 w_5$ and $w_5 w_7$. By the minimality of M, there exists an acyclic 20-coloring ϕ of the resulting multigraph. Let $\phi(\{w_8, w_3, w_5, w_7\}) = \{1, 2, 3, 4\}$ (in this order), as depicted in Figure 7(c). Now we will try to color w_1 and w_2 so that to get an acyclic coloring of G - v such that the colors of w_1, \ldots, w_5 are all distinct. That would be enough to finish the proof.

CASE 1. $\phi(w_4) = 5$.

SUBCASE 1.1. $\phi(w_6), \phi(w_9) \notin \{1, 2, 3, 4\}$. If there are two colors in $\{6, \ldots, 20\} \setminus \{\phi(w_6), \phi(w_9)\}$ not adjacent to w_4 then we can color w_1 and w_2 with them. Otherwise, $D(w_4) \ge 5 + 12$ and it sends at least 9/17 to each of w_1 and $= w_2$. Hence, according to Lemma 15, each of w_1 and w_2 gives by R3 to v at least 9/17 - 1/3 = 10/51 > 1/15.

SUBCASE 1.2. $\phi(w_6) \in \{1, 2\}, \phi(w_9) \notin \{1, 2, 3, 4\}$. If $D(w_4) \ge 12$ and $D(w_9) \ge 10$ then they give to w_2 at least 4/12 + 2/10 and, according to Lemma 15, w_2 gives to v by R3 at least 2/10 > 2/15, a contradiction. Otherwise, there exists a color $\alpha \in \{6, \ldots, 20\} - \phi(w_9)$ such that coloring w_2 with α does not create bicolored cycles. Now, coloring w_1 with a color $\beta \in \{6, \ldots, 20\} - \alpha$ can be bad only if $\phi(w_6) = 1$ and a cycle of colors 1 and β arises. It follows that $D(w_6) \ge 14 + 3$ and $D(w_8) \ge 14 + 5$, and they give to w_1 at least (1 - 8/17) + (1 - 8/19) = 9/17 + 11/19. Hence, according to Lemma 15, w_1 gives by R3 to v at least 9/17 + 11/19 - 2/3 = 428/969 > 2/15.

SUBCASE 1.3. $\phi(w_6) \in \{1, 2\}, \phi(w_9) \in \{3, 4\}$. An argument similar to that of Subcase 1.2 works. CASE 2. $\phi(w_4) = 1$. The worst subcase here is clearly when $\phi(w_6) = 1$ and $\phi(w_9) = 4$.

SUBCASE 2.1. There exists a color $\alpha \in \{5, \ldots, 20\}$ such that coloring w_1 with α does not create bicolored cycles. If we cannot color w_2 , then every $\beta \in \{5, \ldots, 20\} - \alpha$ must be adjacent either to w_7 and w_9 or to w_4 and w_8 . If at least 8 colors in $\{5, \ldots, 20\} - \alpha$ are adjacent to w_7 and w_9 then $D(w_7) \ge 13$, $D(w_9) \ge 11$, and they give to w_2 at least 5/13 + 3/11, so that w_2 gives by R3 to v at least 5/13 + 3/11 - 1/3 > 2/15. Otherwise, at least 8 colors in $\{5, \ldots, 20\} - \alpha$ are adjacent to w_4 and w_8 . In this case, $D(w_4) \ge 13$, $D(w_8) \ge 13$, and they together give to w_1 at least 2(1 - 8/13) = 10/13, so that w_1 gives by R3 to v at least 10/13 - 1/3 = 17/39 > 2/15.

SUBCASE 2.2. There exists no color $\alpha \in \{5, \ldots, 20\}$ such that coloring w_1 with α does not create bicolored cycles. This means that every color in $\{5, \ldots, 20\}$ is adjacent to at least two of w_4 , w_6 and w_8 . It follows that $(D(w_4) - 5) + (D(w_6) - 3) + (D(w_8) - 4) \ge 32$, and hence together they give to w_1 at least 1 - 8/28 > 2/3. Thus, v gets from w_1 by R3 at least 1/3.

The lemmas above imply together that $ch^*(v) \ge 0$ for every $v \in V(M)$. This contradiction with Euler formula finishes the proof.

References

- [1] I.Algor and N.Alon, The star arboricity of graphs, Discrete Math. 75 (1989), 11-22.
- [2] N.Alon, T.H.Marshall, Homomorphisms of edge-colored graphs and Coxeter groups J. Algebraic Combinatorics 2 (1991), 277-289
- [3] N.Alon, B.Mohar, D.P.Sanders, On acyclic colorings of graphs on surfaces. Isr. J. Math. 94 (1996), 273-283.
- [4] D.Archdeacon, Coupled coloring of planar maps, Congressus Numerantium. 1986. V. 39. P. 89-94.
- [5] O.V. Borodin. On acyclic colorings of planar graphs, Discrete Math. 25 (1979), 211–236.
- [6] O.V.Borodin, Solution of Ringel's problems on the vertex-face coloring of plane graphs and on the coloring of 1-planar graphs. *Diskret. Analiz, Novosibirsk*, 41 (1984) 12-26 (in Russian)
- [7] O.V.Borodin, A new proof of six color theorem, J. Graph Theory, 19 (1995), 507-521
- [8] O.V.Borodin, A.V.Kostochka and D.R.Woodall, Acyclic colorings of planar graphs with large girth, J. of the London Math. Soc. (accepted)
- [9] B.Grünbaum, Acyclic colorings of planar graphs Israel J. Math. 1973. V. 14, N. 3. P. 390-408.
- [10] T. R. Jensen and B. Toft, *Graph coloring problems*, Wiley Interscience (1995).
- [11] A.V.Kostochka and L. S. Mel'nikov, Note to the paper of Grünbaum on acyclic colorings, *Discrete Math.*, 14 (1976), 403-406.
- [12] J. Nešetřil, A. Raspaud, Colored Homomorphisms of Colored Mixed Graphs. KAM Series NO. 98-376, Dept. of Applied Math. Charles University, Prague (Czech Republic); to appear in J. Combinatorial Theory, Ser. B.
- [13] A. Raspaud and E. Sopena, Good and semi-strong colorings of oriented planar graphs, Inform. Processing Letters 51 (1994), 171–174.
- [14] G.Ringel, Ein Sechsfarbenproblem auf der Kugel // Abh. Math. Sem. Univ. Hamburg. 1965.
 V. 29. P. 107-117.
- [15] G.Ringel, A Six Color Problem on the sphere, *Theory of Graphs*, Proc. Colloq. Tihany, (1966), New York, 1968.