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Abstract. A graph is 1-planar if it can be drawn on the plane in such a way that every edge crosses at most
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1 Introduction

We denote by V(G) the set of vertices of a graph G and by E(G) its set of edges. A (proper) k-coloring
of G is a mapping [ : V(G) — {1,2,...,k} such that f(z) # f(y) whenever z and y are adjacent in
G.

A 1-planar graph is a graph which can be drawn on the plane so that every edge crosses at most
one other edge. One of the reasons for introducing this notion by Ringel [14] is that the graph G,
of adjacency/incidence of the vertices and faces of each plane graph G is 1-planar. (On a map, take a
capital of each country and join adjacent capitals by a railroad via a common border; also join each
capital with all the corners of the country.) Every 1-planar graph with the maximum number of edges
can be obtained from a plane graph whose faces have size 3 or 4 by adding two crossing diagonals into
each 4-face. Every G,y arises similarly from a plane quadrangulation.

In 1965, Ringel [14, 15] conjectured that each 1-planar graph is 6-colorable; this was confirmed by
Borodin [6] in 1984. (A new simplier proof was given in [7].) It follows, the vertices and faces of each
plane graph can be colored with 6 colors so that every two adjacent or incident elements have different
colors. The 3-prism needs 6 colors for such a coloring, because it has 11 elements to be colored, and
no three of them can be colored the same. Archdeacon [4] proved that the vertices and faces of each
bipartite plane graph are simultaneously 5-colorable.

A proper vertex coloring of a graph is acyclic if every cycle uses at least three colors (Griinbaum [9]).
The acyclic chromatic number of G, denoted by a(G), is the minimum & such that G admits an acyclic
k-coloring.

Borodin [5] proved Griinbaum’s conjecture that every planar graph is acyclically 5-colorable. This
bound is best possible. Moreover, there are bipartite 2-degenerate planar graphs G with a(G) = 5
(Kostochka and Mel'nikov, [11]). However, if a plane graph G has no cycles of length less than 5,
then a(G) < 4, and if it has no cycles of length less than 7, then a(G) < 3 (Borodin, Kostochka and
Woodall [8]).

Acyclic colorings turned out to be useful for obtaining results about other types of colorings.
Suppose one has proved that a(G) < a. Then G has the star chromatic number at most a2%!
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2 Acyclic colouring of 1-planar graphs

(Griinbaum [9]) and the oriented chromatic number at most a2?~! (Raspaud and Sopena [13]); every
m-coloring of the edges of G' can be homomorphically mapped on that of a graph with at most am®~!
vertices (Alon and Marshall [2]); every m-coloring of the edges of mixed graph G combined with its
n-coloring can be homomorphically mapped on a graph with at most a(2n +m)?~! vertices (Nesetiil
and Raspaud [12]).

Also, Hakimi, Mitchem and Schmeichel [10, p.38-39] proved that E(G) can be partitioned into
a(QG) star forests (whose every component is a star). Using [5], this confirms the conjecture of Algor
and Alon [1] that the edges of every planar graph can be partitioned into five star forests.

In this paper we study the acyclic coloring of 1-planar graphs. Our main result is the following:

Theorem 1 Every I-planar graph is acyclically 20-colorable.

The best lower bound known to us is 7: the 3-dimensional cube with all the diagonals added cannot
be colored acyclically with fewer than 7 colors.

Theorem 1 has a number of applications to other coloring problems, listed below. For the precise
definitions of the notions used see [2, 9, 10, 12, 13].

Corollary 2 FEwvery plane graph has an acyclic simultaneous coloring of vertices and faces with at
most 20 colors.

Corollary 3 Every 1-planar graph has star chromatic number at most 20 - 29,
Corollary 4 Every I-planar graph has oriented chromatic number at most 20 - 219,

Corollary 5 FEwvery plane graph has oriented simultaneous coloring of vertices and faces with at most
20 - 219 colors.

Corollary 6 The edges of each 1-planar graph can be partitioned into 20 star forests.

Note that a loop yields a unicolored edge and two multiple edges yield a bicolored cycle. Instead
of Theorem 7, it is easier to prove a bit more:

Theorem 7 FEvery 1-plane pseudograph can be 20-colored so that no ends of an edge e are colored the
same unless e is a loop, and no bichromatic cycles of length > 2 exists.

Note also that the proof below is valid for pseudographs 1-embedded into the projective plane.
The only difference is that Euler’s formula for it says |V| — |E| + |F| < 1. Accordingly, the extensions
of Theorem 1 and Corrolaries 2-6 to the projective plane also take place.

Alon, Mohar and Sanders [3] showed that the acyclic 5-colorability of the plane graphs easily
implies the acyclic 7-colorability of the projective plane graphs.

2 Proof of Theorem 7

Let Py be a counterexample with the fewest vertices. Clearly, |V (F)| > 21. Observe that Py has no
separating cliques, hence is 2-connected. In particular, Py has no vertices of degree less than 3. Recall
that the degree of a vertex and the size of a face in a plane pseudograph (a map) is the number of
incident edges.

We fix a 1-plane representation of Py with the minimum number of crossings. Then for each pair
of edges ab, cd that cross each other at point s, their end vertices are paiwise distinct: |{a,b,c,d}| = 4.
For each such a pair, we add edges ac, cb, bd and da ‘close to s’ i.e. so that they form triangles
asc, csb, bsd and dsa with empty interior, respectively. The so obtained 1-plane graph P; is also a
counterexample to Theorem 7, because any acyclic 20-coloring of P; is valid for FPj.

Denote by M; the plane map obtained from P, by removing all the crossed edges. Apply to M)
as many as possible of the following operations, in any order:
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Delete a loop that forms a face of size 1.

Delete one of two edges that form a face of size 2.

Delete a common edge of two adjacent faces of siz 3.
e Triangulate each face of size at least 5 by adding diagonals.
The resulting map is denoted by M.

Observation 8 M is connected, has no faces of size other than 8 or 4, and has no triangles with an
edge in common. a

Let P be obtained from M by inserting two crossed diagonals inside each 4-face. Then P is a
counterexample to Theorem 7 with the fewest vertices. This is because adding an edge does not
decrease the acyclic chromatic number, while adding loops or repeated edges cannot change it. (In
other words: if the underlying graphs of pseudographs G and H coincide, then a(G) = a(H).) The
proof of Theorem 7 consists in establishing a set of structural properties of P that will be shown to
contradict each other.

We shall mainly work with M. The degree of a vertex v in M, i.e., the number of incident edges
(loops are counted twice), is denoted by d(v). The size of a face f, i.e., the number of incident edges,
counting multiplicities, is denoted by s(v). By a > k-vertex we mean that of degree at least k, etc.

Denote by D(v) the degree of v in P. Clearly, D(v) = 2¢q(v)+t(v), where ¢(v) and t(v), respectively,
stand for the number of quadrangles and triangles incident with v. It is easy to see that d(v) =
q(v) + t(v). D(v) will be referred to as the cyclic degree of v in M. A vertex v will be called a minor
vertex if D(v) < 7.

Lemma 9 M has no separating cycle of length at most four.

Proof. Otherwise, we split M along such a cycle S into two smaller maps, transform them into 1-
planar pseudographs P’ and P” by adding all the diagonals, and combine their acyclic 20-colorings to
obtain an acyclic 20-coloring for P. (The vertices of S are colored pairwise differently in the colorings
both of P' and of P" .) O

Corollary 10 Ifv € V(P) then D(v) > 5 and d(v) > 3.

Euler’s formula |V(M)| — |E(M)| + |F(M)| = 2 may be rewritten as
Yo ) =4+ D (s(f) —4) =8, (1)
)

veV (M) feF(M
where F'(M) is the set of faces in M.
We set the initial charge of every vertex v of M as ch(v) = d(v) — 4 and of every face f of M as
ch(f) = s(f) — 4. We then use the discharging procedure, leading to a final charge ch*, defined by
applying the following (ordered) rules:

RO. Every vertex gives to every triangle containing it the charge %

R1. Every vertex v with D(v) = D > 8 sends across every incident 4-face the charge 1 — 8/D and
along every triangle edge the charge 1—12 + i(l —8/D). In particular, every 8-vertex contained in

a triangle sends along every triangle edge the charge %

R2. If a vertex v with D(v) = D > 8 gets something across some incident 4-face f, then v gives it
back to f and this charge is evenly distributed among the minor vertices belonging to this face
(if such vertices exist).
If a vertex v with D(v) = D > 8 gets something along a triangle edge, then v sends it along the
other edge of the same triangle.
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Figure 1: Configurations for Lemma, 3

R3. If after fulfilling R1 and R2 some vertex v with 6 < D(v) = D < 7 have a positive charge, then
this charge is distributed evenly among the 5-vertices connected with v by triangle edges (if such
vertices exist).

Since the above procedure preserves the total charge, we have:

Z ch(v) + Z ch(f) = Z ch*(v) + Z ch*(f) = -8.
) )

veV (M) feF(M vEV (M) fer(M

Observe that ch*(q) = 0 for every quadrangle ¢, and by rule RO ch*(t) = 1 for every triangle t.
We shall get a contradiction by proving that for every vertex v the inequality ch*(v) > 0 holds.
The proof will be delivered in a series of Lemmas.

Lemma 11 If D(v) > 8 then ch*(v) > 0.

Proof. It is enough to prove that v has a nonnegative charge after fulfilling RO and R1, since at steps
R2 and R3 vertices with a positive charge preserve the positivity of their charge. Let v belong to ¢
triangles and to ¢ quadrangles. Then D =t 4 2¢q and ch(v) =t 4+ q — 4. By RO, v gives to triangles
exactly ¢/3. By RI, it sends ¢(1 — 8/D) across quadrangles and at most 2 + (1 — 8/D) along the
triangle edges. Even if it gets nothing from other vertices, it is left with at least

t 8 t ot 8 t 8 D 8
t —4——-—ql—=)—=—= 1- =)= (= 1-1-=))—-4=—=-4=0.
bg-d-t—q(l-2) =t t(l- D)=+~ (1-3))~4=5 5 ~4=0
O
Lemma 12 Let a 5-vertez v have the cyclic neighbours wy, ..., ws (in this cyclic order), where wy, ws

and v form a triangle, and wqv is an edge (see Figure 1(a)). Then D(ws) > 19 and D(ws) > 19.
Moreover, if D(ws) =19 then D(wq) > 20 and if D(ws) = 19, then D(wy) > 20.

Proof. First we work with ws. Delete v and add the edge wowy. By the minimality of M, there
exists an acyclic 20-coloring ¢ of the resulting multigraph. Let ¢({wa4,ws, w1, w2}) = {1,2,3,4} (in
this order), as depicted in Figure 1(b). If ¢(ws) ¢ {2, 3}, then we can color v, a contradiction.

CASE 1. ¢(ws) = 3. For every a € {5,...,20}, the only obstacle for coloring v with & can be a
(3, @)-path between ws and w;. Thus in this case D(ws3) > 19 and D(w;) > 20.

CASE 2. ¢(ws) = 2. For every a € {5,...,20}, the only obstacle for coloring v with & can be a
(2, @)-path between ws and ws. Moreover, if D(w3) = 19 then we can recolor ws with 3 and get Case
1.

Similarly, we work with ws. |
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Figure 2: Configurations for Lemma 4
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Figure 3: Configurations for Lemma 5

Lemma 13 Let a 6-vertex v have the cyclic neighbours wy,...,ws (in this cyclic order), where
wy, we,v and wy,ws,v form triangles (see Figure 2(a)). Then ch*(v) > 0.

Proof. We have ch(v) = 4 —4 = 0, and by RO v gives 2/3 to incident 3-faces. Therefore, it suffices
to prove that v receives either at least 1/6 from w, or at least 1/3 from wg, and then use the double
syminetry.

Delete v and add the edge wows. By the minimality of M, there exists an acyclic 20-coloring
¢ of the resulting multigraph. Let ¢({ws,wq, w3, we}) = {1,2,3,4} (in this order), as depicted in
Figure 2(b). If {¢(w1), p(we)}) N{2,3} = 0, then we can color v, a contradiction.

CASE 1. ¢(wy1) = 5. Then every color a € {6,...,20} must be adjacent to ws. Thus D(ws) > 18,
and by rule R1, v gets at least (1 —8/18) =10/18 > 1/3 from wg.

CASE 2. ¢(wy) € {2,3} and ¢(ws) = 5. Now every color o € {6,...,20} must be adjacent to w;.
Thus D(wy) > 19, and by rule R1 v gets at least 1/12 +1/4(1 — 8/19) = 13/57 > 1/6 from w.

CASE 3. ¢(wy1) € {2,3} and ¢(wg) € {2,3}. Now every color @ € {5,...,20} must be adjacent
either to wq or to wg. Hence (D(wq)—4)+(D(wg) —3) > 16, so that either D(w;) > 12 or D(wg) > 12.
Then by rule R1, v gets either at least 1/6 from wy or at least 1/3 from wg, respectively.

Now, due to the horizontal symmetry v gets at least 1/3 from wy, ws and wg, and due to the
vertical symmetry, at least 2/3 from all its neighbours. a

Lemma 14 Let a 6-vertex v have the cyclic neighbours wy,...,wg (in this cyclic order), where
wrv, w3v and wsv are edges in M. Then ch*(v) > 0.

Proof. We have ch(v) =3 —4 = —1 and v has no incident 3-face. Therefore, we have to prove that
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Figure 4: Configurations for Lemma 6

v gets at least 1 from its cyclic neighbours.

We may assume that D(ws) < D(w4) < D(wg). Delete v and add the edges wiws and wsws. By
the minimality of M, there exists a 20-coloring ¢ of the resulting multigraph. Let ¢({wy, w3, ws, wg}) =
{1,2,3,4} (in this order).

CASE 1. The color of we or wy is not in {1,2,3,4} (say, ¢(we) = 5). Then every color a €
{6,...,20} must be adjacent to wy. Thus D(wg) > D(w4) > 18 and v gets at least 2(1 — 8/18) > 1.

CASE 2. The colors of wy and wy are in {1,2,3,4}. Now every color a € {5,...,20} must be
adjacent either to wo or to ws. If D(w4) > 16 then also D(wg) > 16 and v gets at least 2(1—8/16) = 1.
Otherwise, since we cannot recolor we or wy with a color a € {5,...,20} so to reduce to Case 1
(despite D(w4) < 15), not all the neighbours of each of them have different colors. We conclude that
(D(w2) —4) 4+ (D(w4) — 4) > 16. Therefore, D(wsy) + D(w4) > 24 and, since D(wy) < 15, v gets from
wo, w4 and wg at least

8 8 8 8
2(1 — 1- > in {2(1 — 1——=)}=47/45 > 1.
(1= D)+ (0 D) 2 i, (20— g) + (1= )} = 47/45 >
O
Lemma 15 Let a 7-vertex v have the cyclic neighbours wy, ..., wy (in this cyclic order), where wy, ws

and v form a triangle, and wqv and wev are edges in M (see Figure 4(a)). Then ws, ws and wy
together give v by R1 at least 1/3. Therefore, ch*(v) > 0.

Proof. We have ch(v) =4 —4 =0 and, by RO, v gives 1/3 to its incident 3-face. Therefore, we have
to prove that v gets at least 1/3 from its cyclic neighbours.

Observe first that if w; € {ws,ws, w7} is such that D(w;) > 12 then w; gives v by R1 at least
1 —8/12 = 1/3 and we are done. Suppose now that D(w;) < 12, i = 3,5,7. Delete v and add the
edges wowyg, wawg and wewy. Let ¢p({wi, wa, wy,wg}) = {1,2,3,4} (in this order), as depicted in
Figure 4(b). If all the colors of wq,..., w7 are distinct, then we can color v. Thus, it is not the case.

CASE 1. There are u,z € {ws3,ws, w7} covering all possible bicolored cycles through v (when we
color v by some or other color). Then (D(u) —3) 4+ (D(z) — 3) > 14 and u and z give to v at least

8 8 8 8 38 1

in {1-24+1-— S VI L
gglgnlo{ T o T T T 9973

CASE 2. No two u, z € {ws,ws, w7} cover all possible bicolored cycles through v. Now we have 16
free colors. Since we cannot recolor ws, ws, wr, we have (D(ws) —4) 4+ (D(ws) —4) + (D(w7) —4) > 16.
Hence, the minimum amount ws, ws and wy give v is

8 8 8. 38 1
-+ 1=+ (l-—)=2>=
I=P+U=g+U-7)=95>3
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Figure 5: Configurations for Lemma 7

Lemma 16 Let a 5-vertez v have the cyclic neighbours wy, ..., ws (in this cyclic order), where wq, ws
and v form a triangle, and wqv is an edge. If wy is a 5-vertex, then ch*(v) > 0.

Proof. We have ch(v) = 3 —4 = —1 and, by RO, v gives 1/3 to its incident 3-face. Therefore, we
have to prove that v gets at least 4/3 from its cyclic neighbours.

Let wg be the neighbour of ws and ws which sees wy. By Observation 8, wg does not coincide with
ws (otherwise wswyws would be a separating cycle) and is not adjacent to it (otherwise wswqwswg
would be a separating cycle). In particular, D(ws) > 7. By Lemma 12 (applied to vertices v and wy),
the degree of each of ws, wy, ws and weg is at least 19. Thus, if D(w9) > 8, then by R1 and R2, each
of v and w; receives at least 3(1 —8/19) = 33/19 > 4/3.

Let D(wg) = 7. Then by Lemma 12, the degree of each of = w3, wy, ws and wg is at least 20 and
wy receives at least 2(1 —8/20) from w4 and ws. Hence it sends by R3 at least 6/5 — 1/3 to v and wy,
so that each of them gets in total at least

8 1,6 1 6 1 13 49
2l =)+ (= =) ==-4+x==—>4/3.
=) 3G 3 =5 2 575"
O
Lemma 17 Let a 5-vertex v have the cyclic neighbours wy, ..., ws (in this cyclic order), where wy, ws

and v form a triangle, and wqv is an edge (see Figure 6(a)). If wy is a 6-vertex, then ch*(v) > 0.

Proof. As before, we have to prove that v gets at least 4/3 from its cyclic neighbours.

Suppose that the lemma is false. Let w; have the cyclic neighbours ws, v, wy, ws, we, w7 (in this
cyclic order), where ws,wg and w; form a triangle (see Figure 6(b)). If D(w2) = 5 we have the
configuration of Lemma 16 and we are done. We thus suppose that D(ws2) > 5. By Lemma 12, we
also get D(ws) > 19 and D(ws) > 20.

CASE 1. wg is a 5-vertex. Then by Lemma 12, D(w9) > 19, D(w3) > 20, and by R1 v gets from
wo, wy and ws at least

1+1(1 8)+(1 8)+(1 8 )_1+1X11+3+11_7 88 4
12 4 19 20 1=9" 12 4719 5 19 3 3
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Figure 6: Configurations for Lemma, 8

CASE 2. wg is not a 5-vertex. By Lemma 12, v gets from w3 at least 1 —8/20 and from wsy and ws
together at least 1 — 8/20. Thus, if it gets from w; by R3 at least 2/15, it is happy. Delete v and wy
and add the edge wows. By the minimality of M, there exists an acyclic 20-coloring ¢ of the resulting
multigraph. Let ¢({we, ws, ws, ws}) = {1,2,3,4} (in this order), as depicted in Figure 6(c). If neither
of wg and wy is colored by 3, then it is easy to complete the coloring of M by setting ¢(v) = 3 and
plwn) = ¢ {B(wg), $lwr)}.

SUBCASE 2.1. ¢(wy) = 3. If there is a color @ € {5,...,20} — ¢(wg) not adjacent to w4 or not
adjacent to w7, then we can color w; with a and then color v with a color not in {1,2,3,4,a}, a
contradiction. Thus, there is no such a. It follows that D(w4) > 20, D(w7) > 18, and w; gets from
them at least (1 —8/18) 4+ (1 —8/20) = 3/5+ 5/9. Hence v gets from w; by R3 at least

5.5 2 2 2
59 3 457 15
SUBCASE 2.2. ¢(ws) = 3. Similarly to Subcase 2.2, we get D(w4) > 20 and D(wg) > 19. Hence
wy sends by R3 to v at least

8+1 1( 8) 2_3+1+11 2>2
20 12 4 197 3 5 12 76 37 15
O
Lemma 18 Let a 5-vertex v have the cyclic neighbours w1, ..., ws (in this cyclic order), where wq, ws

and v form a triangle, and wqv is an edge. If ch*(v) < 0 then both wy and we are 7-vertices.

Proof. Suppose that the lemma is false for a 5-vertex v. Then by Lemmas 16 and 17, neither of
wy and we has the cyclic degree 5 or 6. If 8 < D(wy), D(ws) < 19 then, by Lemma 13, we have
D(w3) > 20, D(ws) > 20, and by R1 v gets from wy, wy, w3 and ws at least

1+1+2(1 8)_1+6_41>4
12 12 20 6 5 30 3

If 8 < D(wy), D(w2) and D(wy) > 20 then v gets at least

11 1.8 8 § 1 5 11 3 287 4
I G I UG . VRS R A U SUID. VR . AR L
13 T3 )+ )+ -5g) =6 2% 19 75 195~ 3

In both cases, it contradicts the assumption ch*(v) < 0.
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Figure 7: Configurations for Lemma, 10

Suppose now that D(w;) = 7 and D(wg) > 7. Then ws sends 1/12 to v and 1/12 to w;. But by
Lemma 15, wy receives 1/3 even without this 1/12. Hence, it sends by R3 to v at least this 1/12.
Together with what v gets from ws and ws, it receives at least

1_|_1_|_(1 8)(1 8)_2+3+11_767>4

12 12 19 207 12 5 19 570 ~ 3’
This proves the lemma. |
Lemma 19 Let a 5-vertex v have the cyclic neighbours wy, ..., ws (in this cyclic order), where wq, ws

and v form a triangle, and wqv is an edge (see Figure 7(a)). If both wy and we are T-vertices, then

ch*(v) > 0.

Proof. As in Lemmas 16 and 17, we have to prove that v gets at least 4/3 from its cyclic neighbours.

Suppose that the lemma is false for a 5-vertex v. We may assume that the cyclic neigh-
bours of w; are we, v, wy, ws, ws, w7, ws (in this cyclic order), and the cyclic neighbours of ws are
ws, Wy, v, W1, w7, W, wo (in this cyclic order), as depicted in Figure 7(b). Recall that by Lemma 12, v
gets from ws and ws at least 6/5. Therefore it still needs 2/15.

Delete v, wy and w; and add the edges wgws, wsws and wswy. By the minimality of M, there
exists an acyclic 20-coloring ¢ of the resulting multigraph. Let ¢({ws,ws, ws, wr}) = {1,2,3,4} (in
this order), as depicted in Figure 7(c). Now we will try to color w; and wy so that to get an acyclic
coloring of G — v such that the colors of wy,...,ws are all distinct. That would be enough to finish
the proof.

CASE 1. ¢(wyg) = 5.

SUBCASE 1.1. ¢(wsg), p(wg) ¢ {1,2,3,4}. If there are two colors in {6,...,20}\ {¢p(ws), p(wy)}
not adjacent to w4 then we can color wy and we with them. Otherwise, D(wy4) > 5+ 12 and it sends
at least 9/17 to each of wy and = ws. Hence, according to Lemma 15, each of wy and wsy gives by R3
to v at least 9/17 —1/3 =10/51 > 1/15.

SUBCASE 1.2. ¢(ws) € {1,2}, d(wg) ¢ {1,2,3,4}. If D(wq) > 12 and D(wg) > 10 then they give
to wo at least 4/12 4+ 2/10 and, according to Lemma 15, wo gives to v by R3 at least 2/10 > 2/15, a
contradiction. Otherwise, there exists a color @ € {6,...,20} — ¢(wyg) such that coloring wy with «
does not create bicolored cycles. Now, coloring wy with a color § € {6,...,20} — « can be bad only
if p(wg) = 1 and a cycle of colors 1 and g arises. It follows that D(wg) > 14+ 3 and D(wg) > 14+ 5,
and they give to wy at least (1 —8/17) 4+ (1 —8/19) = 9/17 4+ 11/19. Hence, according to Lemma 15,
wy gives by R3 to v at least 9/17 +11/19 — 2/3 = 428/969 > 2/15.
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SUBCASE 1.3. ¢(wg) € {1,2}, #(wg) € {3,4}. An argument similar to that of Subcase 1.2 works.

CASE 2. ¢(w4) = 1. The worst subcase here is clearly when ¢(wg) = 1 and ¢(wy) = 4.

SUBCASE 2.1. There exists a color a € {5,...,20} such that coloring w; with a does not create
bicolored cycles. If we cannot color ws, then every 5 € {5,...,20} — a must be adjacent either to
wy and wy or to wy and ws. If at least 8 colors in {5,...,20} — « are adjacent to w; and wg then
D(w7) > 13, D(wg) > 11, and they give to wy at least 5/13 + 3/11, so that wy gives by R3 to v at
least 5/13 4+ 3/11 — 1/3 > 2/15. Otherwise, at least 8 colors in {5,...,20} — « are adjacent to w4 and
ws. In this case, D(w4) > 13, D(wg) > 13, and they together give to w; at least 2(1 —8/13) = 10/13,
so that w; gives by R3 to v at least 10/13 — 1/3 = 17/39 > 2/15.

SUBCASE 2.2. There exists no color a € {5,...,20} such that coloring w; with a does not create
bicolored cycles. This means that every color in {5,...,20} is adjacent to at least two of wy, wg and
wg. It follows that (D(w4) —5) + (D(wg) — 3) + (D(ws) —4) > 32, and hence together they give to wq
at least 1 —8/28 > 2/3. Thus, v gets from w; by R3 at least 1/3. 0

The lemmas above imply together that ch*(v) > 0 for every v € V(M). This contradiction with
Euler formula finishes the proof.
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