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Abstract

An edge-coloured graph G is said to be rainbow-connected if any two vertices
are connected by a path whose edges have different colours. The rainbow connec-
tion number of a graph is the minimum number of colours needed to make the
graph rainbow-connected. This graph parameter was introduced by G. Chartrand,
G.L. Johns, K.A. McKeon and P. Zhang in 2008. Since, the topic drew much atten-
tion, and various similar parameters were introduced, all dealing with undirected
graphs.

Here, we initiate the study of rainbow connection in oriented graphs. An early
statement is that the rainbow connection number of an oriented graph is lower
bounded by its diameter and upper bounded by its order. We first characterize
oriented graphs having rainbow connection number equal to their order. We then
consider tournaments and prove that (i) the rainbow connection number of a tour-
nament can take any value from 2 to its order minus one, and (ii) the rainbow
connection number of every tournament with diameter d is at most d + 2.

1 Introduction

We consider finite and simple graphs only, and refer to [1] for terminology and notations
not defined here.
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In an edge-coloured graph G, a path is said to be rainbow if it does not use two edges
with the same colour. Then the graph G is said to be rainbow-connected if any two vertices
are connected by a rainbow path. This concept of rainbow connection in graphs was
recently introduced by Chartrand et al. in [3]. An application of rainbow connection for
the secure transfer of classified information between agencies in communication networks
was presented in [4]. Along with it, rainbow paths are generally used in the concept of
onion routing, using layered encryption [12]. For onion routing, one enciphers a message
once by hop on the path, always with different keys (corresponding to the colors of the
edges). This layered encryption is used e.g. by the anonymous networks TOR and I2P.

In the following, we are interested in the corresponding optimization parameter. The
rainbow connection number of a connected graph G, denoted rc(G), is the smallest num-
ber of colours that are needed in order to make G rainbow connected. The computational
complexity of rainbow connectivity was studied in [2], where it is proved that the compu-
tation of rc(G) is NP-hard. In fact it is already NP-complete to decide if rc(G) = k for
any fixed k ≥ 2 or to decide whether a given edge-coloured (with any number of colours)
graph is rainbow connected.

Additionally, Chartrand et al. computed the precise rainbow connection number of
several graph classes including complete multipartite graphs [3]. The rainbow connection
number was studied for further graph classes in [5, 6, 7, 9, 10, 14] and for graphs with
fixed minimum degree in [5, 8, 13, 15]. Also, different other parameters similar to rainbow
connection were introduced such as strong rainbow connection, rainbow k-connectivity,
k-rainbow index and rainbow vertex connection. See [9] for a survey about these different
parameters.

In this paper, we extend the problem of rainbow connection to oriented graphs.
Whereas it was easily observed that a graph of order n has rainbow connection number
at most n − 1 (giving different colours to all the edges in a spanning tree), the rainbow
connection number of an oriented graph can be equal to its order. In this paper, we
characterize oriented graphs with rainbow connection number equal to their order.

We proceed as follows. We start with useful definitions in Section 2. Then, in Section 3,
we prove that the only minimally strong oriented graphs that have rainbow connection
number exactly their order are cycles. In Section 4, we propose a characterization of all
oriented graphs with rainbow connection number equal to their order. Finally, we prove
in Section 5 that the rainbow connection number of a tournament can take almost any
value in terms of its order, but is upper bounded by the tournament diameter plus 2.
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2 Definitions, notation and basic results

2.1 Definitions and notation

For a given digraph G, we denote by V (G) and A(G) respectively its sets of vertices and of
arcs. By an oriented graph we mean an antisymmetric digraph, that is where yx /∈ A(G)
whenever xy ∈ A(G). Given an arc xy in G, we say y is an out-neighbour of x while x is
an in-neighbour of y. Moreover, we call x the tail of xy and y the head of xy.

By N+
G (x) (resp. N−G (x)) we denote the set of out-neighbours (resp. in-neighbours)

of x in G. The out-degree (resp. the in-degree) of x is the order of its out-neighbourhood
d+
G(x) = |N+

G (x)| (resp. in-neighbourhood d−G(x) = |N−G (x)|), and the degree of x is simply
dG(x) = d+

G(x) + d−G(x).
For X a subset of V (G), we denote by G[X] the subgraph of G induced by X, given

by V (G[X]) = X and A(G[X]) = A(G) ∩ (X × X). A spanning subgraph H of G is a
subgraph of G with V (H) = V (G).

A path of length k ≥ 1 in an oriented graph G is a sequence x0 . . . xk of vertices
such that xixi+1 ∈ A(G) for every i, 0 ≤ i ≤ k − 1. Such a path P , going from x0

to xk, is referred to as an (x0 − xk)-path. Any vertex in V (P ) \ {x0, xk} is an internal
vertex of P . If X and Y are two subsets of V (G), an (X − Y )-path is an (x − y)-
path linking a vertex x ∈ X to a vertex y ∈ Y . A path P is elementary if no vertex
appears twice in P . An elementary path induced by a path Q is any elementary path P
obtained from Q by repeatedly deleting cycles, that is replacing a sequence of the form
u1 . . . ukxv1 . . . v`xw1 . . . wm by u1 . . . ukxw1 . . . wm as many times as necessary. Given two
paths P1 = x1 . . . xi and P2 = xi . . . xi+j, we denote by P1 ∪ P2 the path x1 . . . xi . . . xi+j.

An ear in an oriented graph G is an (x − y)-path Q such that dG(x) > 2, dG(y) > 2
and dG(z) = 2 for every internal vertex z of Q.

The distance from a vertex x to a vertex y in an oriented graph G, denoted by
distG(x, y), is the length of a shortest (x − y)-path in G (if there is no such path, we
say distG(x, y) =∞). The diameter of G, denoted by diam(G), is the maximum distance
between any pair of vertices in G. Two vertices at distance diam(G) are antipodal vertices.
The eccentricity of a vertex x in G, denoted by eccG(x), is the maximum distance from x
to any other vertex y of G.

Let G be an oriented graph. For an arc xy in A(G), we denote by G−xy the oriented
graph defined by G − xy = (V (G), A(G) \ {xy}). For a vertex u in V (G), we denote by
G − u the oriented graph G − u = (V (G) \ {u}, (A(G) \ ({u} × V (G)) \ (V (G) × {u})).
For G′ an oriented graph, we denote by G ∪ G′ the oriented graph given by G ∪ G′ =
(V (G) ∪ V (G′), A(G) ∪ A(G′)).

An oriented graph G is strongly connected (strong for short) if there exists an (x− y)-
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path in G for every two vertices x and y. The graph G is minimally strongly connected
(MSC for short) if G is strong and, for every arc xy in G, the graph G− xy is not strong.

A cycle of length k ≥ 3 in an oriented graph G is a sequence x0 . . . xk−1x0 of vertices
such that xixi+1 ∈ A(G) for every i, 0 ≤ i ≤ k − 2, and xk−1x0 ∈ A(G). For every i,
0 ≤ i ≤ k − 1, xi+1 (resp. xi−1) is the successor (resp. predecessor) of xi in C (subscripts
are taken modulo k).

2.2 Rainbow connection of oriented graphs

Let G be an oriented graph. A k-arc-colouring of G, k ≥ 1, is a mapping ϕ : A(G) →
{1, . . . , k}. Note that adjacent arcs may receive the same colour. An arc-coloured oriented
graph is then a pair (G,ϕ) where G is an oriented graph and ϕ an arc-colouring of G. A
path P in (G,ϕ) is rainbow if no two arcs of P are coloured with the same colour. An
arc-coloured oriented graph (G,ϕ) is rainbow connected (or, equivalently, ϕ is a rainbow
arc-colouring of G) if any two vertices in G are connected by a rainbow path. Note that
in order to admit a rainbow arc-colouring, an oriented graph must be strong.

The rainbow connection number of an oriented graph G, denoted by ~rc(G), is defined
as the smallest number k such that G admits a rainbow k-arc-colouring.

Note that in a rainbow connected graph, there must be a path with at least diam(G)
colours between antipodal vertices. We thus have the following proposition.

Proposition 1 If G is a strong oriented graph with diameter d, then ~rc(G) ≥ d.

Moreover, we have:

Proposition 2 If G is a strong oriented graph on n vertices, then ~rc(G) ≤ n.

Proof. Let V (G) = {x1, . . . , xn}. We define an n-arc-colouring ϕ of G by setting
ϕ(xixj) = j for every arc xixj in A(G). Obviously, every elementary path in G is rainbow
and, therefore, ϕ is a rainbow arc-colouring of G. 2

Observe that this upper bound is tight since ~rc(Cn) = n for the cycle Cn on n vertices.
Since every path in a subgraph of G is also a path in G, we have the following:

Proposition 3 If H is a strong spanning subgraph of an oriented graph G, then ~rc(G) ≤
~rc(H).
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Figure 1: Illustration of proof of Lemma 4

3 Rainbow connection number of minimally strongly

connected oriented graphs

In this section, we prove that the only MSC oriented graph on n vertices with rainbow
connection number n is the cycle (Theorem 8). We first start with a few useful lemmas.

Lemma 4 Let G be an MSC oriented graph. If G is not a cycle, then there is a strong
subgraph H of G and a vertex x ∈ V (G) \ V (H) such that N−G (x) = {y} and y ∈ V (H).

Proof. Let G be an MSC oriented graph not reduced to a cycle. We construct a sequence
of subgraphs (Hi)i≥0 such that

(i) for every i ≥ 0, Hi is a strong subgraph of G,

(ii) for every i ≥ 1, Hi contains Hi−1 as a proper subgraph,

(iii) for every i ≥ 0, V (G) \ V (Hi) is not empty.

until we find a subgraph Hk such that there exists a vertex xk ∈ V (G) \ V (Hk) with
N−G (xk) = {x′k} where x′k ∈ V (Hk), thus proving the lemma.

We first choose any elementary cycle C in G and set H0 = C. Since G is not a cycle,
we have V (G) \ V (H0) 6= ∅. Properties (i) and (iii) are thus satisfied by H0.

Suppose now that we have a graph Hk, k ≥ 0 satisfying properties (i) and (iii). If
there exists xk /∈ V (Hk) such that N−G (xk) = {y} and y ∈ V (Hk) we are done. Otherwise,
let xk be any vertex having an in-neighbour x′k in Hk. Since G is strong, there exists a
path in G from xk to Hk. Let Pk = xkz1 . . . zqyk, q ≥ 0 be any such (xk − Hk)-shortest
path (see Figure 1). We then set Hk+1 = Hk ∪ x′kxk ∪ Pk. By construction, Hk+1 is a
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strong oriented graph containing Hk, and thus satisfies (i) and (ii). Moreover, since G is
MSC, there is no arc zxk with z ∈ Hk+1, z 6= x′k (otherwise, since there is a (z− xk)-path
in G using only arcs from Hk ∪ x′kxk ∪ Pk, G − zxk would still be strong, contradicting
the fact that G is MSC). Thus d−Hk+1

(xk) = 1, and since N−G (xk) is not a single vertex,
V (G) \ V (Hk+1) 6= ∅, and (iii) is satisfied. We can then iterate the construction.

Since the graph G is finite, the process eventually ends up with a subgraph Hk for
which there exists a vertex xk with N−G (xk) = {x′k} and x′k ∈ V (Hk). This proves the
lemma. 2

Since the subgraph H in the above lemma is strong, the vertex y necessary lies on a
cycle of H. Therefore we have as a corollary:

Corollary 5 Let G be an MSC oriented graph. If G is not a cycle, then there is a cycle
C in G and a vertex x ∈ V (G) \ V (C) such that N−G (x) = {y} with y ∈ V (C).

Lemma 6 Let G be a strong oriented graph on n vertices, x′x and y′y be two arcs in G
with x 6= y, d−G(x) = 1 and d−G(y) = 1. If G contains an (x′ − y)-path P1 not containing
x′x and a (y′ − x)-path P2 not containing y′y, then ~rc(G) ≤ n− 1.

Proof. First note that by the degree condition, the paths P1 and P2 necessarily contain
the arcs y′y and x′x respectively.

Let c : V (G) → {1, 2, . . . , n − 1} be a mapping such that c(x) = c(y) = 1, c(v) 6= 1
for v ∈ V (G) \ {x, y}, and c(v) 6= c(w) for v, w ∈ V (G) \ {x, y}. Let now ϕ : A(G) →
{1, 2, . . . , n − 1} be the arc-colouring given by ϕ(uv) = c(v) for every arc uv. We claim
that ϕ is a rainbow arc-colouring of G.

To see that, observe that the two arcs x′x and y′y are the only arcs coloured 1.
Therefore, every elementary path containing at most one of these two arcs is rainbow.
Assume that there exist two vertices u and v that are not linked by a rainbow path and
let P be any elementary (u− v)-path. Without loss of generality, assume that the arc x′x
appears before the arc y′y in P . Let Q be the (u− v)-path obtained from P by replacing
the subpath from x′ to y by the path P1. Any elementary (u − v)-path induced by Q is
clearly a rainbow path, a contradiction. The arc-colouring ϕ is thus a rainbow colouring
of G. 2

By taking x′ = y′ in Lemma 6 we get the following corollary:

Corollary 7 Let G be a strong oriented graph on n vertices. If there is a vertex z in
G having two distinct out-neighbours x and y with d−G(x) = 1 and d−G(y) = 1, then
~rc(G) ≤ n− 1.

We now are ready to prove the main result of this section.
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Theorem 8 Let G be an MSC oriented graph on n vertices. If G is not a cycle then
~rc(G) ≤ n− 1.

Proof. Let G be an MSC oriented graph not reduced to a cycle. By Corollary 5 there is
a cycle C in G and a vertex x ∈ V (G) \ C such that N−G (x) = {y} and y ∈ V (C). Let z
be the successor of y in C.

We now construct a sequence of pairs {(Gi, Qi)}i≥1 such that

(i) Gi is a strong subgraph of G for every i ≥ 1,

(ii) Qi is an ear in Gi for every i ≥ 1,

(iii) Gi−1 is a proper subgraph of Gi for every i ≥ 2 (more precisely, Gi = Gi−1 ∪Qi),

(iv) denoting by yizi the first arc of Qi, there exist a (y − zi)-path in Gi not containing
the arc yx and a (yi − x)-path in Gi not containing the arc yizi for every i ≥ 1,

until we reach a pair with d−G(zi) = 1. Then the arcs yx and yizi satisfy the assumptions
of Lemma 6, which allows us to conclude.

We first construct the pair (G1, Q1). Let P be a shortest (x− C)-path and t ∈ V (C)
its last vertex. We then set G1 = C ∪ yx ∪ P and Q1 as the (y − t)-path contained in
C (thus, y1 = y and z1 = z). The subgraph G1 is clearly strong and Q1 is an ear in G1,
giving (i) and (ii). Moreover, the two arcs yz = yz1 and yx = y1x give the two required
paths of (iv).

Assume now that a pair (Gi, Qi) satisfying (i) to (iv) is constructed. If d−G(zi) = 1
then the two arcs yx and yizi satisfy the assumptions of Lemma 6 and we are done.
Otherwise, we construct the next pair (Gi+1, Qi+1) as follows. Since d−G(zi) ≥ 2, there
exists an in-neighbour vi of zi distinct from yi. Since G is MSC and the subgraph Gi

is strong, we have vi /∈ V (Gi). Let Pi+1 = yi+1zi+1 . . . vi be a shortest (Gi − vi)-path in
G (it may happen that yi+1 = zi), and set Qi+1 = Pi+1 ∪ vizi. Since G is MSC and the
subgraph Gi is strong, we have yi+1 ∈ V (Qi) (otherwise, the arc yizi could be deleted from
G since there would be a (yi − zi)-path in G going through Gi−1 and Qi+1). We then set
Gi+1 = Gi ∪Qi+1. The subgraph Gi+1 is clearly strong and items (i) to (iii) are satisfied.
Since Gi is strong, there is a (yi+1 − x)-path in Gi, and thus in Gi+1, not containing the
arc yi+1zi+1 (zi+1 /∈ V (Gi)). Since there is a (y− yi)-path in Gi not containing yx as well
as a (yi− yi+1)-path along Qi, it follows that there is a (y− zi+1)-path not containing the
arc yx. Hence, item (iv) is also satisfied, and the pair (Gi+1, Qi+1) is well constructed.

Since the graph G is finite, we eventually construct a pair (Gk, Qk) such that d−G(zk) =
1, and then the two arcs yx and ykzk satisfy the assumptions of Lemma 6, implying that
~rc(G) ≤ n− 1. 2

Using Proposition 3, we then get the following
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Corollary 9 Let G be an oriented graph on n vertices. If G has a strong spanning
subgraph that is not Hamiltonian, then ~rc(G) ≤ n− 1.

Proof. Let G′ be a strong spanning subgraph of G that is not Hamiltonian and G′′ an
MSC spanning subgraph of G′ (G′′ is thus an MSC spanning subgraph of G that is not
Hamiltonian). By Theorem 8, we have ~rc(G′′) ≤ n − 1. By Proposition 3 we then get
~rc(G) ≤ ~rc(G′′) ≤ n− 1. 2

Since every spanning subgraph of a non-Hamiltonian graph is non-Hamiltonian, we
get:

Corollary 10 Let G be a strong oriented graph on n vertices. If G is not Hamiltonian,
then ~rc(G) ≤ n− 1.

4 Oriented graphs with maximum rainbow connec-

tion number

In Theorem 8, we proved that MSC graphs with rainbow connection number exactly
their order are cycles. As a consequence, every graph (not necessarily MSC) having
rainbow connection number n must be Hamiltonian. This section is dedicated to better
characterizing these graphs, the main result being Theorem 16. We first introduce some
definitions and notation.

Let C = x0 . . . xk−1x0 be a cycle in an oriented graph G. Since cycles are denoted
similarly all along the following, it is taken for granted that when we use notations xi,
subscript are taken modulo k. By C[xi, xj] we denote the set of vertices of the (xi − xj)-
path contained in C, that is C[xi, xj] = {xi, xi+1, . . . , xj}. We also denote C(xi, xj] =
C[xi, xj]\{xi}, C[xi, xj) = C[xi, xj]\{xj}, C(xi, xj) = C[xi, xj]\{xi, xj} (hence C[xi, xj] =
V (C) \C(xj, xi)). An arc xixj, 0 ≤ i, j ≤ k− 1 is a chord of C whenever xj 6= xi+1. Note
that we necessarily have xj 6= xi−1 since G is antisymmetric.

Definition 11 (Path-property) Let C = x0 . . . xk−1x0 be a cycle in an oriented graph
G. A pair of (not necessarily distinct) arcs {xixi+1, xjxj+1} has the Path-property if there
exist an (xi − xj+1)-path in G not containing xixi+1 and an (xj − xi+1)-path in G not
containing xjxj+1.

Definition 12 (Special Hamiltonian cycle) Let G be a Hamiltonian oriented graph
and C = x0 . . . xn−1x0 be a Hamiltonian cycle in G. We say the cycle C is special if it
contains a pair of (not necessarily distinct) arcs {xixi+1, xjxj+1} having the Path-property.
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xi+1

A cycle of type (C)

xi+2
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C

xj+1
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xixi xi+1
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A cycle of type (A)

Figure 2: The three types of special Hamiltonian cycles

A special Hamiltonian cycle C thus satisfies one of the following properties (see Fig-
ure 2):

(A) there are two consecutive vertices xi and xi+1 in C joined by a path not containing
the arc xixi+1, (case i = j),

(B) there are three consecutive vertices xi, xi+1 and xi+2 in C such that there exists an
(xi − xi+2)-path in G containing neither xixi+1 nor xi+1xi+2, (case j = i+ 1),

(C) there are two disjoint arcs xixi+1 and xjxj+1 in C such that there exist an (xi−xj+1)-
path in G not containing xixi+1 and an (xj − xi+1)-path in G not containing xjxj+1.

We hereafter refer to such special Hamiltonian cycles as Hamiltonian cycles of type (A),
(B) or (C), respectively.

Definition 13 (Head-Tail-property) Let C = x0 . . . xk−1x0 be a cycle in an oriented
graph G. A vertex xi ∈ V (C) is said to satisfy the Head-Tail-property with respect to C
if, when going along the cycle C from xi to xi−1, we meet the head of each chord before
its tail (see Figure 3 for an example). In particular, if G is itself a cycle, then every vertex
of G has the Head-Tail-property with respect to G.

Definition 14 (Strong pair) Let C = x0 . . . xk−1x0 be a cycle in an oriented graph G.
A pair of distinct vertices {xi, xj} in C is a strong pair of C in G if both the induced
subgraphs G[C[xi, xj−1]] and G[C[xj, xi−1]] are strong.

As a direct consequence of the definition, we get the following observation:
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xi−1 xi

C

Figure 3: The vertex xi has the Head-Tail-property with respect to the cycle C

Observation 15 Let C = x0 . . . xk−1x0 be a cycle in an oriented graph G. If {xi, xj} is
a strong pair of C in G, then the pair {xi−1xi, xj−1xj} has the Path-property.

The remaining of this section is dedicated to the proof of its main theorem, stated
below.

Theorem 16 Let G be a strong oriented graph on n vertices. The following statements
are equivalent:

(1) ~rc(G) = n,

(2) G is Hamiltonian but has no special Hamiltonian cycle,

(3) G has a Hamiltonian cycle C = x0x1 . . . xn−1 and two distinct vertices xi and xj
having the Head-Tail-property with respect to C but not forming a strong pair of C in
G.

The proof of this theorem relies on the following series of lemmas. We first prove
that (1) ⇒ (2), by showing that the rainbow connection number of a graph is no more
than n − 1 whenever it has a cycle of type (A) (Lemma 17), of type (B) or of type (C)
(Lemma 18). Then, we show with Lemma 19 that (2) ⇒ (3), and finally that (3) ⇒ (1)
with Lemma 20.

Lemma 17 Let G be a Hamiltonian oriented graph on n vertices. If there exists a special
Hamiltonian cycle C of type (A) in G, then ~rc(G) ≤ n− 1.

Proof. Let C be a Hamiltonian cycle of type (A) in G, with say xn−1 and x0 the two
consecutive vertices of C that are joined by a path not containing the arc xn−1x0. Choose
such an (xn−1 − x0)-path P with the smallest number of chords. Let H be the subgraph
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of G formed by C[x0, xn−1] ∪ P . Clearly, H is a strong spanning subgraph of G, and by
Proposition 3, ~rc(G) ≤ ~rc(H).

Let us prove that H is MSC. By our assumption on P , for any chord xixj in H,
H − xixj contains no path from xn−1 to x0 and thus is not strong. Let xixj be a chord
in P . If i ≤ j, the arc xn−1x0 does not lay in C[xi, xj] and this chord can be replaced in
P by the path C[xi, xj] to obtain an (xn−1 − x0)-path with fewer chords, contradicting
our assumption on P . Thus, for each chord xixj in P , j < i. As a consequence, we
get that C[x0, xn−1] is the only elementary path from x0 to xn−1. Therefore, no subgraph
H−xixi+1 is strong, and H is MSC. Since H is not a cycle, Theorem 8 gives ~rc(H) ≤ n−1
and the result follows. 2

Lemma 18 Let G be a Hamiltonian oriented graph on n vertices. If C is a special
Hamiltonian cycle of type (B) or (C) in G, then ~rc(G) ≤ n− 1.

Proof. Let C be a Hamiltonian cycle of type (B) or (C) in G, with say xn−1x0 and
xjxj+1 (j 6= n− 1) the two arcs in C such that there exist an (xn−1 − xj+1)-path P1 not
containing xn−1x0 and an (xj − x0)-path P2 not containing xjxj+1 (possibly, j = 0). If P1

contains the vertex x0 (yet not the arc xn−1x0) or P2 contains the vertex xj+1 (yet not the
arc xjxj+1), then the cycle C is also of type (A) and the result follows from Lemma 17.

Otherwise, consider the arc colouring ϕ : A(G)→ {1, . . . , n−1} defined by ϕ(xkx`) = `
for all 1 ≤ ` ≤ n − 1 and ϕ(xkx0) = j + 1 for all 0 ≤ k ≤ n − 1. We claim that ϕ is
a rainbow arc-colouring of G. Consider any two vertices xk and x` in G, we now prove
that they are rainbow connected. Note that an elementary path is rainbow if and only if
it does not contain both vertices x0 and xj+1 as internal or last vertices. Thus, if k ≤ `,
then the subpath of the cycle C[xk, x`] may contain vertex x0 only as initial vertex and
is rainbow, we are fine. Suppose now that k > `. If k ≥ j + 1 > `, then C[xk, x`] may
contain xj+1 only as initial vertex and is also rainbow. Now, if k > ` ≥ j + 1, then the
path obtained by starting on C[xk, xn−1], then following P1, and finally continuing along
C on C[xj+1, x`] does not contain x0 and is rainbow. Finally, if j + 1 > k > ` then the
path obtained by starting on C[xk, xj], then following P2, and finally continuing along C
on C[x0, x`] does not contain xj+1 and is rainbow. 2

We now prove that (2)⇒(3) with the following lemma.

Lemma 19 Let G be a Hamiltonian oriented graph on n vertices having no special Hamil-
tonian cycle. There exist a Hamiltonian cycle C = {x0, x1, . . . , xn−1} in G and two vertices
xi and xj such that xi and xj have the Head-Tail-property with respect to C, and {xi, xj}
is not a strong pair of C in G.
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Figure 4: Configurations and cases for Lemma 19

Proof. Let G be a Hamiltonian graph with no special cycle. Let C = x0x1 . . . xn−1x0

be a Hamiltonian cycle of G. First remark that if C has a strong pair xi, xj, then from
Observation 15, {xi−1xi, xj−1xj} has the Path-property and therefore, C is a special cycle.
Thus, there is no strong pair of C in G.

Suppose now that the cycle C has two opposite chords, that is two chords xkx` and
xrxs, such that xs, xr ∈ C[x`, xk] and xk, x` ∈ C[xs, xr] (see Figure 4(a)). Then, the pair
{xkxk+1, xrxr+1} has the Path-property. Indeed, xrxs ∪C[xs, xk+1] is an (xr − xk+1)-path
not using the arc xrxr+1 and xkx` ∪ C[x`, xr+1] is an (xk − xr+1)-path not using the arc
xkxk+1. Thus, the cycle C is special of type (C), contradicting our initial assumption.

Assume now that the cycle C has no two opposite chords. We consider two cases,
depending on the number of vertices in G with the Head-Tail-property with respect to C.

Case 1. The cycle C has exactly one vertex satisfying the Head-Tail-property.

Say x1 is the only vertex with the Head-Tail-property with respect to C in G. We
now look for an (x0 − x1)-path that does not use the arc x0x1 to conclude that the cycle
is special of type A, a contradiction.

The vertex x2 does not satisfy the Head-Tail-property, thus going along the cycle from
x2, we meet a chord by its tail xi before meeting its head. Yet, from x1, we met its head
before its tail. Thus, the chord’s head has to be the vertex x1 and the chord is xix1

(see Figure 4(b)). Similarly, x0 does not satisfy the Head-Tail-property, and we have a
chord x0xj0 in the graph. If j0 ≤ i, the (x0 − x1)-path x0xj0 ∪ C[xj0 , xi] ∪ xix1 does not
go through x0x1, as required. Assume then that i < j0. Now the vertex xj0 does not
have the Head-Tail-property either. Thus there exists a chord xk1xj1 such that k1 ≥ j0

and 1 ≤ j1 < j0, as x1 does have the Head-Tail-property. If j1 ≤ i, then we find an
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(x0−x1)-path x0xj0 ∪C[xj0 , xk1 ]∪xk1xj1 ∪C[xj1 , xi]∪xix1 that does not use the arc x0x1

and the cycle is then special of type A. Otherwise, i < j1 < j0 and we can iterate with the
statement that xj1 does not satisfy the Head-Tail-property. Since there is a finite number
of vertices in C(xi, xj1), the process eventually ends up with an (x0−x1)-path of the form
x0xj0 ∪

⋃
1≤α≤t

(
C[xjα−1 , xkα ] ∪ xkαxjα

)
∪ C[xjt , xi] ∪ xix1.

Case 2. The cycle C has no vertices satisfying the Head-Tail-property.

Consider a chord xixj such that |C(xi, xj)| is minimum. Without loss of generality,
say xi is x0. Since xj does not have the Head-Tail-property, there exists a chord xkx`
with x` ∈ C(xk, xj). If xk ∈ C[x0, xj), then so does x`, and |C(xk, x`)| ≤ |C(xi, xj)|,
contradicting our assumption. Thus we have j ≤ k ≤ n − 1. If x` ∈ C(xk, x0], then
x0xj and xkx` are opposite chords, contradicting our initial assumption. So 0 < ` < j,
and any chord xkx` preventing xj from having the Head-Tail-property is a chord with
0 < ` < j ≤ k ≤ n− 1. Let xrxs be such a chord with s being as small as possible.

The vertex xs does not have the Head-Tail-property, so there is another chord xt0xu0
with xt0 ∈ C[xs, xu0). If xu0 is in C(xs, xr], then so does xt0 , thus xt0xu0 and xrxs are
opposite chords, a contradiction. So xu0 is in C(xr, xs). Suppose that xu0 is in C(xr, x0].
If xt0 ∈ C[xj, xu0), then the arcs x0xj and xt0xu0 are opposite chords, a contradiction.
So xt0 ∈ C(xs, xj) (see Figure 4(c)), but then x0x1 and xrxr+1 have the Path-property.
Indeed, x0xj∪C[xj, xr+1] is an (x0−xr+1)-path not containing x0x1, and xrxs∪C[xs, xt0 ]∪
xt0xu0 ∪C[xu0x1] is an (xr−x1)-path not containing xrxr+1. Thus C is a special cycle (of
type C), a contradiction with our first assumption.

Thus, xu0 is in C[x1, xs). From the minimality of s, if xu0 is in C[x1, xs), then xt0xu0
does not prevent xj from having the Head-Tail-property, so xt0 ∈ C[xs, xj). Now the
vertex xu0 does not have the Head-Tail-property either, so there is another chord xt1xu1
with xt1 ∈ C[xu0 , xu1). From the minimality of |C(x0, xj)|, we have that xu1 /∈ C(xu0 , xj].
This implies that xu1 ∈ C(xj, x0] or xu1 ∈ C(x0, xu0). In the first case we claim that C is
a special cycle. If xu1 ∈ C(xj, xr], then xrxr+1 and xt1xt1+1 have the Path-property, since
xt1xu1 ∪C[xu1 , xr+1] is an (xt1−xr+1)-path not containing xt1xtt+1, and xrxs∪C[xs, xt0 ]∪
xt0xu0 ∪C[xu0xt1+1] is an (xr−xt1+1) path not containing xrxr+1. If xu1 ∈ C(xr, x0], then
x0x1 and xrxr+1 have the Path-property, since x0xj ∪ C[xj, xr+1] is an (x0 − xr+1)-path
not containing x0x1, and xrxs ∪ C[xs, xt0 ] ∪ xt0xu0 ∪ C[xu0xt1 ] ∪ xt1xu1 ∪ C[xu1 , x1] is an
(xr − x1)-path not containing xrxr+1. Thus xu1 is in C(x0, xu0), i.e., 0 < u1 < u0 and we
can iterate with the statement that xu1 does not satisfy the Head-Tail-property. Since
there is a finite number of vertices in C(x1, xu0), the process eventually ends up with one
of the following cases:

1. The arcs x0x1 and xrxr+1have the Path-property, since xrxs ∪ C[xs, xt0 ] ∪ xt0xu0 ∪
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⋃
1≤α≤p(C[xuα−1xtα ]∪xtαxuα)∪C[xup , x1] is an (xr−x1)-path not containing xrxr+1,

and x0xj ∪ C[xj, xr+1] is an (x0 − xr+1)-path not containing x0x1.

2. The arcs xtpxtp+1 and xrxr+1 have the Path-property, since xrxs∪C[xs, xt0 ]∪xt0xu0∪⋃
1≤α≤p−1(C[xuα−1xtα ]∪xtαxuα)∪C[xup−1 , xtp+1] is an (xr−xtp+1)-path not containing

xrxr+1, and xtpxup ∪ C[xup , xr+1] is an (xtp − xr+1)-path not containing xtpxtp+1.

Therefore, the cycle C has at least two vertices satisfying the Head-Tail-property, and
this concludes the proof. 2

It remains to prove that (3)⇒(1), what we do with the following lemma.

Lemma 20 Let G be an oriented graph on n vertices with a Hamiltonian cycle C =
{x0, x1, . . . , xn−1}. If G contains two distinct vertices xi and xj having the Head-Tail-
property with respect to C such that {xi, xj} is not a strong pair of C in G, then ~rc(G) = n.

Proof. Let G,C, xi and xj satisfy the lemma conditions. Assume by way of contradiction
that ~rc(G) ≤ n − 1 and let ϕ be a rainbow (n − 1)-arc-colouring of G. Since xi has the
Head-Tail-property with respect to C, there is exactly one elementary (xi− xi−1)-path in
G, and this path goes along the cycle C. Thus all the arcs of C−xi−1xi must be coloured
with distinct colours so that ~rc(G) ≥ n− 1. Similarly, all the arcs of C − xj−1xj must be
coloured with distinct colours and, therefore, we must have ϕ(xj−1xj) = ϕ(xi−1xi).

Moreover, since xi satisfies the Head-Tail-property, there are no chords of C having
their tail in C[xi, xj−1] and their head in C[xj, xi−1]. Similarly, there are no chords of
C having their tail in C[xj, xi−1] and their head in C[xi, xj−1]. Thus, the only arcs
joining a vertex in C[xj, xi−1] and a vertex in C[xi, xj−1] are xi−1xi and xj−1xj. However,
there exists a rainbow (xj−1 − xi)-path in G, that necessarily avoids one of the arcs
xi−1xi and xj−1xj. So that rainbow path may not contain any vertex in C[xj, xi−1].
Therefore, G[C[xi, xj−1]] contains an (xj−1−xi)-path as well as the path C[xi, xj−1] which
is Hamiltonian, so G[C[xi, xj−1]] is strong. We get similarly that G[C[xj, xi−1]] is strong,
and thus that {xi, xj} is a strong pair, contradicting our initial assumption. 2

This concludes the proof of Theorem 16. Note that even though this result gives a nice
characterization of the oriented graphs having rainbow connection number their order, no
obvious polynomial time algorithm for the associate decision problem can be deduced
from it.

5 The rainbow connection number of tournaments

In this section, we consider the case of (strong) tournaments. We first show that the
rainbow connection number of tournaments on n ≥ 4 vertices is between 2 and n − 1,
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Figure 5: a strong spanning subgraph of T in Theorem 21

then that it can achieve any value from 3 to n − 1, and propose some construction for
tournaments with rainbow connection number 2. We finally propose a better bound
considering the diameter of T . Let us start by the general bounds for strong tournaments.

Theorem 21 If T is a strong tournament with n ≥ 5 vertices, then 2 ≤ ~rc(T ) ≤ n− 1.

Proof. Let T be a strong tournament on n ≥ 5 vertices. The diameter of T is at least two,
implying the lower bound. Recall that by Moon’s Theorem [11], every strong tournament
is Hamiltonian. Let C = x0 . . . xn−1x0 be any Hamiltonian cycle in T . If C contains
three consecutive vertices xi, xi+1 and xi+2 such that xixi+2 ∈ A(T ) then C is a special
Hamiltonian cycle of type (B) and the result follows from Theorem 16.

Otherwise, T contains all the arcs xi+2xi (that are distinct since n ≥ 5). Consider the
spanning subgraph T ′ of T given by T = C ∪ {xi+2xi, 0 ≤ i ≤ n− 1} \ {x1x2, x3x1, x2x0}
(see Figure 5). The subgraph T ′ is clearly strong but not Hamiltonian so the upper bound
follows from Corollary 9. 2

We now construct tournaments on n vertices with rainbow connection number k for
every n and k such that 3 ≤ k ≤ n− 1.

Given two oriented graphs G and H, u ∈ V (G), we call graph obtained from G by
expanding u into H the graph G′ obtained from G by replacing the vertex u by a copy of
H, and replacing the arc xu (resp. ux) in G by all the arcs xv (resp. vx) for v ∈ V (H).
Note that the graph obtained from G by expanding every vertex into H is also known as
the lexicographic product G ◦H.

Lemma 22 Let G be a strong oriented graph, H be an oriented graph, u ∈ V (G). Let G′

be the graph obtained from G by expanding u into H. If there is a rainbow arc-colouring ϕ
of G with ~rc(G) colours such that u belongs to some rainbow cycle C, then ~rc(G′) ≤ ~rc(G).
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Proof. To prove this lemma, we just check that we can extend the colouring ϕ to G′. Let
ϕ′ be an extension of the arc-colouring ϕ to G′ such that the colour of every arcs xv or vx
with x ∈ V (G) \ {u} and v ∈ V (H) corresponds to the colour of the corresponding arcs
xu or ux in G. The colours of H’s internal edges may be chosen freely among the ~rc(G)
available colours. Observe that every rainbow path P in G (under ϕ) remains a rainbow
path P ′ in G′ (under ϕ′), and thus, every vertex of G remains rainbow connected to any
other vertices. A rainbow path between any pair of vertices v and v′ in H can be found
using the rainbow cycle C: writing C = ux1 . . . x`u in G, the path vx1 . . . x`v

′ is rainbow
in G′. Therefore, ϕ′ is a rainbow arc-colouring of G′ using at most ~rc(G) colours, and this
concludes the proof of the lemma. 2

We are now ready to prove our theorem:

Theorem 23 For every n and k such that 3 ≤ k ≤ n− 1, there exists a tournament Tn,k
on n vertices such that ~rc(Tn,k) = k.

Proof. We first define Tk+1,k, which is used later on to build the tournament for other
values of n.

For k ≥ 3, let Tk+1,k be the tournament on k + 1 vertices made of a directed path
v1v2 . . . vk+1 with all other arcs heading backward. Formally, Tk+1,k is the tournament on
vertex set {v1, . . . , vk+1} with arcs set {vivi+1, 1 ≤ i ≤ k} ∪ {vjvi, 1 ≤ i ≤ j − 2, 3 ≤ j ≤
k + 1}.

The only directed path from v1 to vk+1 is v1v2 . . . vk+1 , so diam(Tk+1,k) = k and
~rc(Tk+1,k) ≥ k by Proposition 1. Let now ϕ be the k-arc-colouring of Tk+1,k defined by
ϕ(vivi+1) = i for every i, 1 ≤ i ≤ k, and ϕ(vjvi) = 1 whenever vi 6= vj+1. Let us check
that the colouring ϕ is a rainbow arc-colouring of Tk+1,k: (i) if i < j, then vivi+1 . . . vj is
a rainbow path, (ii) vjvi is a rainbow path whenever i ≤ j − 2, and (iii) either vivi+1vi−1

or vivi−2vi−1 is a rainbow path otherwise. Therefore, ~rc(Tk+1,k) = k, as desired.
Let us now define Tn,k for larger n. Consider any family T2, . . . , Tk+1 of non-empty

tournaments such that |V (T2)| + . . . + |V (Tk+1)| = n − 1. Let Tn,k be the tournament
on n vertices obtained from Tk+1,k by expanding each vertex vi into Ti, 2 ≤ i ≤ k + 1,
and extend the colouring ϕ as in Lemma 22. Using the rainbow cycle v2v3 . . . vk+1 and
applying Lemma 22, we get that ~rc(Tn,k) ≤ k. Moreover, the diameter of Tn,k is still at
least k, so ~rc(Tn,k) ≥ k. 2

The remaining question on that topic is for which values of n there exists a tournament
on n vertices having rainbow connection number 2. By hand, it is easily checked that for
n = 4 or 5, there exist no such tournaments. However, such a tournament exist for any
n ≡ 8 mod 12. It can be constructed from the following arc-coloured circulant graphs:
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Figure 6: An oriented graph with a rainbow 2-colouring

let n = 12k + 8, V = {x0, x1, . . . , xn−1} and E = {xixi+1, xixi+3j+2 | 0 ≤ i ≤ n − 1, 0 ≤
j ≤ 4k + 1} (subscripts are taken modulo n). Set c(i) = b i

2
c (mod 2) and colour the

arcs xixi+1 with colour 1 − c(i), and any other arc xixj, j 6= i + 1 with colour c(j). The
oriented graph obtained for n = 8 is drawn in Figure 6. The reader can easily check that
this construction is well defined when n ≡ 8 mod 12 and that it is rainbow connected
(using only direct arcs or paths of type xixjxj+1 or xixjxj+2).

The previous results suggests a large range of possible values for the rainbow connec-
tion number of a tournament with a given order. However, it appears that the rainbow
connection number of a tournament is closely related to its diameter, as the following
results shows.

Theorem 24 Let T be a tournament of diameter d. We have

d ≤ ~rc(T ) ≤ d+ 2 .

Proof. Let T be a tournament of diameter d. The lower bound is a direct consequence
of Proposition 1. For establishing the upper bound, we describe a rainbow arc-colouring
of T , but we first give an appropriate decomposition of the graph.

Let a be a vertex of eccentricity d with maximum in-degree subject to that condition.
For 1 ≤ i ≤ d, denote by Ai the set of vertices at distance i from a. By the choice of a,
note that none of the Ai are empty. Moreover, any vertex in A1 has an out-neighbour
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Figure 7: The decomposition and colouring of T

in A2. Otherwise, take a vertex u in A1 with no out-neighbour in A2: it has no out-
neighbours in Ai for any i ≥ 2, so a shortest path from u to a vertex in Ad is of length at
least d, and u is of eccentricity d. Also, every in-neighbour of a is an in-neighbour of u,
as well as a itself. So u has larger in-degree than a. This contradicts our choice of a.

We now can define the colouring of the arcs with colours {1, 2, . . . d, α, β} and prove
that it does rainbow connect the tournament T (see Figure 7).

• Set colour i to all arcs uv where u ∈ Ai−1 and v ∈ Ai, for 1 ≤ i ≤ d and i 6= 2.

• Set colour 1 to all arcs uv where u and v belong to the same set Ai, 1 ≤ i ≤ d.

• Set colour β (for backward) to all arcs from Ai to Aj where j < i.

• For arcs uv from A1 to A2 :

– if v is the only out-neighbour of u in A2, set colour 2 to uv

– otherwise, make sure there is one arc from u to A2 coloured α, and colour all
other arcs from u to A2 with colour 2.

With this colouring, we show that the graph is rainbow connected. First observe that
the shortest paths from a to any other vertex are rainbow, and do not use colour β. Let
u be a vertex in Ai, i ≥ 2. There is a rainbow path from u to any other vertex v starting
by the arc ua (coloured β), followed by a shortest path from a to v (which is rainbow and
does not use colour β).
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We only have now to find rainbow paths from vertices in A1 to other vertices. Let
u ∈ A1. For a path from u to vertex a or to a vertex v ∈ A1, simply use any arc from u
to A2 (recall that there is one by our choice of a) and then the backward arc to a, plus
possibly the arc av. We get a rainbow path with colours 2 or α and β and possibly 1. Now,
let us describe a path to any other vertex v ∈ Ai, i ≥ 2. Let P be a shortest path from a
to v and z = P ∩A1. Recall that P is rainbow and does not use colour β. If u = z, then
P contains a rainbow path from u to v, and we are done. If uz is an arc, it is coloured 1
and the path starting with uz then going along P connects u to v and is rainbow. Assume
now that T contains the arc zu. If u has at least two out-neighbours in A2, then consider
the colour of the arc going out from z in P (it is either 2 or α), and take an arc of the
second colour to A2, then go backward to a, and follow the path P . This path rainbow
connects u and v. Finally, consider the case when u has only one out-neighbour in A2,
say x. Recall our assumption that zu is an arc. So the in-neighbourhood of u contains
all the in-neighbourhood of a but x (that is

⋃
2≤i≤dAi \ {x}) as well as a and z. So u has

larger in-degree than a. By our initial assumption, u is then of eccentricity at most d− 1.
Thus, there is a shortest path through u from a to any vertices in Ad, and u is rainbow
connected to any vertex in Ad. Also, u is rainbow connected to any vertex v in Ai for
2 ≤ i ≤ d−2 by going along a shortest path to some vertex in Ad and then backward to v
(using colour β that was not in the path). Finally, to get to a vertex v in Ad−1, a shortest
path is at least of length d− 2 and at most of length d− 1. If it is of length d− 2, then
it has to go along a shortest path from a to v and thus to be rainbow. Otherwise, it is of
length d − 1, and thus it uses only arcs from Ai to Ai+1, 1 ≤ i ≤ d − 2 (coloured i + 1)
except for exactly one arc that must be from Aj to Aj for some 1 ≤ j ≤ d− 2 (coloured
1), and thus this path is also rainbow. This concludes the proof. 2

Note that there exist tournaments of diameter d with rainbow connection number
d + 1. An example is the vertex transitive tournament on 5 vertices (there is only one
up to isomorphism). It has diameter 2 but its rainbow connection number is 3. However,
we don’t know if there exist tournaments that have rainbow connection number equal to
their diameter plus two.
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