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Abstract. An oriented graph G is nice if there exists a positive integer k such that for every two vertices
u,v (allowing u = v), and for every orientation of edges of the path of length k, there exists a walk of length
k in G beginning at u and ending at v whose orientation of edges coincides with the given one. (Such a graph
is also called k-nice.) We generalize this notion using the notion of a nilpotent semigroup of endomorphisms of
(P(V)T,U), and consider two basic problems:

(1) find bounds for the nilpotency class of such semigroups in terms of their generators (in graph—theoretical
language: provided that a graph G on n vertices is nice, find the smallest & such that G is k-nice);

(2) find a way to demonstrate non-nilpotency of such semigroups (find as simple as possible characterization of
non-nice graphs).

Keywords. Nice graphs, Nilpotent semigroup of endomorphisms.

1 Introduction

The notion of a nice graph first was implicitly used in the papers [1, 2, 5] as a useful tool for studying
oriented chromatic number of graphs. Later, in [3], nice graphs were studied for their own sake, and
some further generalizations were introduced.

An oriented graph G is called k-nice if for every two vertices u,v (allowing u = v), and for every
orientation of edges of the path of length k, there exists a walk of length k£ in G beginning at u and
ending at v whose orientation of edges coincides with the given one. An oriented graph G is nice if
it is k-nice for some positive integer k (Note that every k-nice graph is (k 4 1)-nice). Similarly, a
non-oriented (multi)graph G whose edges are coloured by ¢ colours is called k-nice if for every two
vertices u, v (allowing u = v), and for every edge colouring of the path of length k, there exists a walk
of length £ in G beginning at u and ending at v whose colouring coincides with the given one. Also,
such a (multi)graph is nice if it is k-nice for some positive integer k.

In [3], characterizations of non-nice graphs in terms of so called ‘black holes’ (see the next section)
were found. It was proved that in every non-nice graph there exist black holes of relatively simple
structure (especially simple for non-coloured oriented graphs).
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2 Nilpotent families of endomorphisms of (P(V)™,U)

In this paper we show that “niceness” of graphs is a special case of a more general and natural
notion of nilpotency of semigroups of endomorphisms of the upper semilattice (P(V)™,U) of all non-
empty subsets of a finite set V' of size n. In fact, this notion corresponds to nice edge-coloured oriented
(multi)graphs.

In Section 3 we establish some bounds for the nilpotency class of such semigroups in terms of their
generators, and the size n of the ground set. We show that the nilpotency class can be exponentially
large if the number of generators is n, and give a polynomial in n upper bound on the nilpotency
class when the generators have a special form related to the original graph-theoretical formulation:
given a nice (oriented or simple multicoloured) graph on n vertices, what is the smallest & for which
it is k-nice? As a corollary we get polynomial polynomial in n upper bounds on k for non-coloured
oriented nice graphs and 2-edge-coloured non-oriented (multi)graphs.

In Section 4 we study the structure of shortest words in generators of a non-nilpotent semigroup,
which demonstrate its non-nilpotency; that is, which have a black hole. We prove that there are no
restrictions on these words; except that such a word cannot be a composite power.

Finally we pose some problems and conjectures.

2 Nilpotent families

Let V be a finite set, |V| = n. By P(V)* we denote the set of all non-empty subsets of V. We consider
endomorphisms of the semi-lattice (P(V)*,U), that is, mappings ¢ : P(V)T — P(V)" satisfying the
identity

P(XUY) = p(X)Up(Y).

Every such mapping ¢ is uniquely determined by the values it takes on one-element subsets:

(X) = Ugexp({z}).

It is often convenient to view such mappings as oriented graphs on the vertex set V' in which (z,y) is
an arc if and only if y € p({z}). Occasionally we shall abuse the notation by writing ¢(z) instead of
e({z}).

The set M (V') of all such endomorphisms is a semigroup. It has a right zero element Q, Q(X) =V
for all X € P(V)T. Let Mq(V) C M(V) be the sub-semigroup of those elements ¢ for which
o(V) =V. Qis the unique two-sided zero of Mq (V).

Let A = {¢1,...,9,} C Mq(V) be any collection of endomorphisms. By A* we denote the set of all
products z7 ...z of k elements from A. The collection A is called nilpotent of class k, or k-nilpotent,
if A¥ = {Q} for some k > 0. This terminology is in accordance with traditional usage of the word
“nilpotent”. Obviously, if A is k-nilpotent then it is m-nilpotent for every m > k.

We say that ) # X C V is a black hole for ¢ if p(X) = X; if X # V then the black hole is called
non-trivial. Note that if for some X we have ¢(X) C X then some non-empty subset of p(X) is a
black hole. In particular, if (V') # V then ¢ has a non-trivial black hole.

It is easy to see that A is nilpotent if and only if no composition of mappings from A has a black
hole. If A is nilpotent then, starting from any non-empty subset X C V and applying mappings from
A in any sequence, we eventually shall reach the whole set V', and in not more than 2™ — 2 steps
(because each proper subset of V' can appear at most once; otherwise it would be a black hole for
some composition of mappings from A). Thus, every nilpotent family is 2" — 2-nilpotent.

For some nilpotent collections 2™ —2 steps may be necessary. Here is an example. Let Xq,..., Xon_;
be any linear extension of P(V)* ordered by inclusion. For i = 1,...,2" —2 the mapping ¢; is defined
by pi(z) = X411 if ¢ € X, ;(x) =V if z ¢ X;. Then the system A = {p1,...,pan_s} is nilpotent,
and it takes exactly 2™ — 2 steps to transform X; into Xon | = V if we take the mappings in their
order. Later, in Example 3, we shall see that by being more careful we can obtain the same number
of steps for a nilpotent family of only n different mappings.
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3 Bounds for nilpotency class

In this section we shall try to obtain better upper bounds for the nilpotency class when the collection
A is small and/or satisfies some additional properties.

We say that a mapping 1 is opposite to ¢ if y € p({z}) exactly when z € ¥({y}); and that ¢
is symmetric if it is opposite to itself. These notions naturally arise in the graph-theoretical setting:
taking the opposite of a mapping corresponds to inverting all arcs of an oriented graph; and symmetric
mappings correspond to simple (non-oriented) graphs.

A mapping ¢ is called increasing if X C ¢(X) for every X C V. Note that if ¢ is increasing and
nilpotent then it is strictly increasing; i.e. X is a proper subset of ¢(X). Also, if ¢, ¢~ are opposite
then ¢ ¢~ is increasing.

Proposition 1 Let A = {p}. If A is nilpotent then it is n(n — 1)-nilpotent. If, moreover, ¢ is
symmetric then A is (2n — 2)-nilpotent.

Proof. Take a longest sequence Xy, X1,..., X, such that X;.1 = ¢(X;) and X,,, # V, and suppose,
by way of contradiction, that m > n(n — 1). We can assume that Xy = {z} is a one-element set.
In the oriented graph corresponding to ¢ the vertex x lies in some oriented cycle (otherwise the set
U, ' (z) would be a non-trivial black hole). So, for some k < n we have z € X}, or Xg C X;. The
mapping ¢ preserves the relation of one set being a subset of another; therefore, applying it several
times, we obtain that X; C X; . for every j. In particular,

X0 C Xy C Xo C... C X1y

All inclusions in this chain are strict (otherwise we would have a black hole); and so |X(,_1);| > n.
Thus, X(,_1);, =V, contrary to our assumption about m. The first part is proved.

If ¢ is symmetric then ¢? is an increasing mapping; so the above argument holds with the value
k = 2, which proves the second claim. O

After submitting this present paper, the authors have learned that both bounds of this proposition
have been previously obtained by other people in a different language. The general case was first
studied by Wielandt in the paper [6]. There, the exact upper bound of n(n — 2) on the nilpotency
class was obtained. The (exact) bound 2n — 2 for the symmetric case was obtained in the paper [4].

Proposition 2 Let A = {a,b,c1,...,c} be a nilpotent collection such that the mappings ab, ba, and
all ¢; are increasing. Then A is n>-nilpotent.

Proof. Take an arbitrary sequence (fi, fo2,...,fm) of mappings from A, an arbitrary non-empty
Xo CV,and let X; = fi(X;—1) for i = 1,2,...,m. To each set X; we assign a level, an integer
value [;, defined as follows:

lp = 0;

if fi=athenl; =1; 1+1;

if fy=bthenl;=1;_1—1;

if f; = cj then l; =1; 4.

Now we shall prove two claims, from which the proposition will immediately follow. Let 0 < p <
qg<m.

Claim 1. Ifl, =1, and X, # V then X, is a proper subset of X,,.

We shall prove this claim by induction on ¢ —p. If ¢ —p = 1 then f,; = ¢; is increasing, as required.
If l,41 # l,—1 then there is an r such that p < r < g and I, = [, and we apply the induction hypothesis
to (p,r) and (r,q). Finally, let l,11 = l,—1 # [,. We can assume that f,411 = a, f; = b (the other case
is similar). By induction, we have X,; C X, ;. So,

Xp Cb(a(Xp)) = b(Xpi1) € b(Xg-1) = Xy,
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and the claim is proved. (Here the first inclusion is proper since X, is not a black hole.)

Claim 2. 1If |l; —1p| > n(n — 1) then X, =V.

Let I, = [,+n(n—1); the other case is treated similarly. Fori = 0,...,n(n—1) let p; be the smallest
index such that p < p; < g and [,, = [, +:. In particular, pg = p. For every i = 1,...,n(n—1) we have
lp,-1=1,+i—1=1, ,. So, by Claim 1, we have X,, , C X, _1; and a(X,, |) C a(Xp,~1) = X,,.
All these inclusions together imply that ™™= (X,) C Xp,( V.
The claim is proved.

Now, if some value of the level is assigned to n or more sets then Claim 1 implies that the last of
these sets is equal to V. On the other hand, if we have more than n(n — 1) different values of the level,
Claim 2 implies that we have reached V. Therefore we shall reach V' after at most n(n — 1)(n — 1)
steps. O

and by Proposition 1, X,

1) n(n-1) —

Proposition 3 Let A = {¢1,p2}. If A is nilpotent and either both ¢; are symmetric, or they are
opposite to each other, then A is (c- n3)-nilpotent.

Proof. When ¢; and ¢, are opposite, Proposition 2 applies immediately, and A is n3-nilpotent.
When both mappings are symmetric, define four new mappings: a = @12, b = Yap1, €1 = Y11,
and ¢y = @apo. It is easy to check that these mappings satisfy the conditions of Proposition 2. Now,
every sequence of 2N mappings ¢; can be considered as a sequence of N mappings a, b, ¢;. Therefore
A is 2n3-nilpotent. a

The case of p; and o being opposite corresponds precisely to the original notion of nice graphs
[3]. Thus, Proposition 3 in this case asserts that "every nice graph on n vertices is n-nice”.

We now give some examples. We do not have examples which would give lower bounds comparable
with upper bounds from Propositions 2 and 3. The next two examples provide such bounds for
Proposition 1. In all examples, we let V = {0,1,...,n — 1}.

Example 1. Let the mapping a correspond to the path 0—1—...—(n—1) with a loop at the vertex
n — 1; this mapping is symmetric. The single-element collection {a} is nilpotent, and if we start with
the set X = {0}, we reach V only after 2n — 2 steps.

Example 2. Now, let a correspond to the oriented graph formed from the oriented cycle 0 — 1 —
... > n—1—0and an extra arc (n —1) — 1. Again, {a} is nilpotent, and if we start with the set
X = {0}, we reach V only after n(n — 2) steps.

It was proved in [6] that this is the only mapping which attains this bound.

Example 3. For each v € V define the mapping a, as follows: a,({v}) =V, a,({z}) = {v} ifz < v,
ay({x}) = {z,v} if £ > v. All these mappings are symmetric. Let Xi,..., Xon_; be the lexicographic
ordering of P(V)™"; each X; is the set of positions at which the binary expansion of 4 has ones.

To make sure that the collection {ag,...,a,_1} is nilpotent, it is enough to check that in this
ordering a;(X) > X for every i and every X C V. This is straightforward.

On the other hand, for 1 < i < 2™ — 1, let z(i) be the position of the first zero in the binary
expansion of i; or, equivalently, z(7) = min{j | j € V'\ X;}. Now it is straightforward to check that
a,(i)(Xi) = Xiq1.

Thus, the collection {ay,...,a,—1} is nilpotent of class 2" — 2.

4 Black holes

Here we consider families of endomorphisms which are not nilpotent. This means that some element
of the semigroup generated by the family has a black hole. So, we say that the family A has a black
hole X with a pattern w if w is a word over the alphabet A, and X C V is a black hole of the
endomorphism corresponding to this word.
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A non-nilpotent family can have many different patterns of black holes; in particular, every power
of a pattern is again a pattern. So, the question arises: what can be said about the shortest pattern
of a black hole of a non-nilpotent family?

Proposition 4 Let A be a finite alphabet, and w an arbitrary word over it. The following statements
are equivalent:

(1)  w cannot be represented in the form v™ for a composite number n.

(2) There exists a set V and a collection of mappings denoted by elements of A such that w is a
shortest pattern of any black hole of this collection.

Proof.

(1) = (2). Let w = zpzy...znx—1 (indices are considered modulo N, in order that w could be
treated as a cyclic word). We take V' = {0,1,..., N — 1}. Elements of V are also considered modulo
N. For any subset X C V, we shall denote by X + i the set {x +i | x € X} (addition modulo N), the
cyclic shift of X.

To define the mappings, we fix a number &, to be specified later. We shall define the mappings in
such a way that every set of k consecutive elements of V' (interval of length k) shall be a black hole
having some cyclic shift of w as a pattern.

For each v € V, consider the subword z, g1 ...2y—12, of the cyclic word w. For any z € A, let ¢
and j be the first and the last, respectively, of the indices within this interval for which z; = z; = x.
Define z({v}) = {j+1,...,i+k}. If none of the letters of this interval is equal to z, we set z({v}) = V.

We always have that v + 1 € z({v}); therefore for every subset A C V' we have |z(A)| > |4|, and
if |z(A)| = |A| then z(A) = A+ 1.

Let I = {v,v+1,...,v4+1— 1} be an arbitrary (cyclic) interval of length [ < N. Its image z(I)
under any mapping = € A is again an interval, because the image of each element is an interval and
these intervals respectively contain consecutive elements v 4+ 1,...,v + [. It follows that z(I) =1+ 1
ifand only if v ¢ z(I) and v + 1+ 1 ¢ z(I). From the definition of z, we have:

v ¢ x(v) if and only if z, = z;

v+l+1¢z(v+1—1)ifand only if 2,1 = =.

Conversely, if these two conditions are satisfied then x(I) = I + 1; unless there is a subinterval of
I of length k containing no letter x — then z(I) = V.

Let A be an arbitrary subset of V. A is the union of disjoint intervals; let their initial vertices
be v1,..., vy, and their lengths l1,...,l,. From the above remarks we have that |z(A)| = |A| for at
most one mapping z, and if x is such then z,, = x4, =z foralli =1,...,m.

Thus every interval of length k is a black hole whose pattern is uniquely determined, and this
pattern is a cyclic shift of w. On the other hand, if a black hole contains an interval of length | # k,
or two disjoint intervals with initial vertices v1, v, then the word w is periodic with period |l — k|,
resp. |v1 — val.

Thus, if the word w is not periodic, we can choose k = 1, so the only black holes of the resulting
collection of mappings will be one-vertex subsets, and their shortest patterns will be cyclic shifts of
w. If w is periodic, w = w} for a prime p > 1 and a non-periodic word wyp, then we can take k = |wy|,
and the resulting collection of mappings will satisfy the required property.

(2) — (1) Suppose the contrary. Let w = uP? for some word u and p,q > 1; suppose that w is a
shortest pattern of a black hole, and let A be a black hole of minimum size with pattern w. Consider
the sets Ag = A, A1 = u(A),..., Ap;1 = uP?7(A). These sets are all distinct, and all non-empty.
We claim that they are also pairwise disjoint. Indeed, if B = A; N A; # 0 then u(B) C A;41 N Aji1,
etc. (indices taken modulo pq), and w(B) C B — therefore, some non-empty subset of B is a black
hole with pattern w, contrary to our choice of A.

But now we see that the sets

N T
Xi= Uj:oAerm
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fori =0,...,p— 1, form an orbit of length p of the mapping u, and so X is a black hole with pattern
ud, contrary to our assumption about w. |

Thus, there are no serious restrictions on shortest patterns of non-nilpotent families, apart from
exception of composite powers.

We conclude this note with several open questions.

First, nothing is known about computational complexity of deciding whether a set of mappings is
nilpotent or not. It is not even clear whether this problem belongs to NP and/or co-NP.

Second, Propositions 1 and 3 together with Example 3 lead to the following natural conjecture:

Conjecture 5 For every natural k there exists an exponent f(k) and a constant c(k) such that every
nilpotent family of k endomorphisms of the semilattice (P(n)*,U) of all non-empty subsets of an
n-element set has nilpotency class at most c(k)nf®).

This conjecture remains open even for k = 2.
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