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2 Nilpotent families of endomorphisms of (P(V )+;[)In this paper we show that \nieness" of graphs is a speial ase of a more general and naturalnotion of nilpoteny of semigroups of endomorphisms of the upper semilattie (P(V )+;[) of all non-empty subsets of a �nite set V of size n. In fat, this notion orresponds to nie edge-oloured oriented(multi)graphs.In Setion 3 we establish some bounds for the nilpoteny lass of suh semigroups in terms of theirgenerators, and the size n of the ground set. We show that the nilpoteny lass an be exponentiallylarge if the number of generators is n, and give a polynomial in n upper bound on the nilpotenylass when the generators have a speial form related to the original graph-theoretial formulation:given a nie (oriented or simple multioloured) graph on n verties, what is the smallest k for whihit is k-nie? As a orollary we get polynomial polynomial in n upper bounds on k for non-olouredoriented nie graphs and 2-edge-oloured non-oriented (multi)graphs.In Setion 4 we study the struture of shortest words in generators of a non-nilpotent semigroup,whih demonstrate its non-nilpoteny; that is, whih have a blak hole. We prove that there are norestritions on these words; exept that suh a word annot be a omposite power.Finally we pose some problems and onjetures.2 Nilpotent familiesLet V be a �nite set, jV j = n. By P(V )+ we denote the set of all non-empty subsets of V . We onsiderendomorphisms of the semi-lattie (P(V )+;[), that is, mappings ' : P(V )+ ! P(V )+ satisfying theidentity '(X [ Y ) = '(X) [ '(Y ):Every suh mapping ' is uniquely determined by the values it takes on one-element subsets:'(X) = [x2X'(fxg):It is often onvenient to view suh mappings as oriented graphs on the vertex set V in whih (x; y) isan ar if and only if y 2 '(fxg). Oasionally we shall abuse the notation by writing '(x) instead of'(fxg).The set M(V ) of all suh endomorphisms is a semigroup. It has a right zero element 
, 
(X) = Vfor all X 2 P(V )+. Let M
(V ) � M(V ) be the sub-semigroup of those elements ' for whih'(V ) = V . 
 is the unique two-sided zero of M
(V ).Let � = f'1; : : : ; 'rg �M
(V ) be any olletion of endomorphisms. By �k we denote the set of allproduts x1 : : : xk of k elements from �. The olletion � is alled nilpotent of lass k, or k-nilpotent,if �k = f
g for some k > 0. This terminology is in aordane with traditional usage of the word\nilpotent". Obviously, if � is k-nilpotent then it is m-nilpotent for every m > k.We say that ; 6= X � V is a blak hole for ' if '(X) = X; if X 6= V then the blak hole is allednon-trivial. Note that if for some X we have '(X) � X then some non-empty subset of '(X) is ablak hole. In partiular, if '(V ) 6= V then ' has a non-trivial blak hole.It is easy to see that � is nilpotent if and only if no omposition of mappings from � has a blakhole. If � is nilpotent then, starting from any non-empty subset X � V and applying mappings from� in any sequene, we eventually shall reah the whole set V , and in not more than 2n � 2 steps(beause eah proper subset of V an appear at most one; otherwise it would be a blak hole forsome omposition of mappings from �). Thus, every nilpotent family is 2n � 2-nilpotent.For some nilpotent olletions 2n�2 steps may be neessary. Here is an example. LetX1; : : : ;X2n�1be any linear extension of P(V )+ ordered by inlusion. For i = 1; : : : ; 2n�2 the mapping 'i is de�nedby 'i(x) = Xi+1 if x 2 Xi, 'i(x) = V if x =2 Xi. Then the system � = f'1; : : : ; '2n�2g is nilpotent,and it takes exatly 2n � 2 steps to transform X1 into X2n�1 = V if we take the mappings in theirorder. Later, in Example 3, we shall see that by being more areful we an obtain the same numberof steps for a nilpotent family of only n di�erent mappings.



D. Fon-Der-Flaass, A.V. Kostohka, J. Ne�set�ril, A. Raspaud and E. Sopena 33 Bounds for nilpoteny lassIn this setion we shall try to obtain better upper bounds for the nilpoteny lass when the olletion� is small and/or satis�es some additional properties.We say that a mapping  is opposite to ' if y 2 '(fxg) exatly when x 2  (fyg); and that 'is symmetri if it is opposite to itself. These notions naturally arise in the graph-theoretial setting:taking the opposite of a mapping orresponds to inverting all ars of an oriented graph; and symmetrimappings orrespond to simple (non-oriented) graphs.A mapping ' is alled inreasing if X � '(X) for every X � V . Note that if ' is inreasing andnilpotent then it is stritly inreasing; i.e. X is a proper subset of '(X). Also, if '+, '� are oppositethen '+'� is inreasing.Proposition 1 Let � = f'g. If � is nilpotent then it is n(n � 1)-nilpotent. If, moreover, ' issymmetri then � is (2n� 2)-nilpotent.Proof. Take a longest sequene X0;X1; : : : ;Xm suh that Xi+1 = '(Xi) and Xm 6= V , and suppose,by way of ontradition, that m � n(n � 1). We an assume that X0 = fxg is a one-element set.In the oriented graph orresponding to ' the vertex x lies in some oriented yle (otherwise the set[1i=1'i(x) would be a non-trivial blak hole). So, for some k � n we have x 2 Xk, or X0 � Xk. Themapping ' preserves the relation of one set being a subset of another; therefore, applying it severaltimes, we obtain that Xj � Xj+k for every j. In partiular,X0 � Xk � X2k � : : : � X(n�1)k:All inlusions in this hain are strit (otherwise we would have a blak hole); and so jX(n�1)kj � n.Thus, X(n�1)k = V , ontrary to our assumption about m. The �rst part is proved.If ' is symmetri then '2 is an inreasing mapping; so the above argument holds with the valuek = 2, whih proves the seond laim. 2After submitting this present paper, the authors have learned that both bounds of this propositionhave been previously obtained by other people in a di�erent language. The general ase was �rststudied by Wielandt in the paper [6℄. There, the exat upper bound of n(n � 2) on the nilpotenylass was obtained. The (exat) bound 2n� 2 for the symmetri ase was obtained in the paper [4℄.Proposition 2 Let � = fa; b; 1; : : : ; kg be a nilpotent olletion suh that the mappings ab, ba, andall i are inreasing. Then � is n3-nilpotent.Proof. Take an arbitrary sequene (f1; f2; : : : ; fm) of mappings from �, an arbitrary non-emptyX0 � V , and let Xi = fi(Xi�1) for i = 1; 2; : : : ;m. To eah set Xi we assign a level, an integervalue li, de�ned as follows:l0 = 0;if fi = a then li = li�1 + 1;if fi = b then li = li�1 � 1;if fi = j then li = li�1.Now we shall prove two laims, from whih the proposition will immediately follow. Let 0 � p <q � m.Claim 1. If lq = lp and Xp 6= V then Xp is a proper subset of Xq.We shall prove this laim by indution on q�p. If q�p = 1 then fq = j is inreasing, as required.If lp+1 6= lq�1 then there is an r suh that p < r < q and lr = lp, and we apply the indution hypothesisto (p; r) and (r; q). Finally, let lp+1 = lq�1 6= lp. We an assume that fp+1 = a, fq = b (the other aseis similar). By indution, we have Xp+1 � Xq�1. So,Xp � b(a(Xp)) = b(Xp+1) � b(Xq�1) = Xq;



4 Nilpotent families of endomorphisms of (P(V )+;[)and the laim is proved. (Here the �rst inlusion is proper sine Xp is not a blak hole.)Claim 2. If jlq � lpj � n(n� 1) then Xq = V .Let lq = lp+n(n�1); the other ase is treated similarly. For i = 0; : : : ; n(n�1) let pi be the smallestindex suh that p � pi � q and lpi = lp+ i. In partiular, p0 = p. For every i = 1; : : : ; n(n�1) we havelpi�1 = lp + i � 1 = lpi�1 . So, by Claim 1, we have Xpi�1 � Xpi�1; and a(Xpi�1) � a(Xpi�1) = Xpi .All these inlusions together imply that an(n�1)(Xp) � Xpn(n�1) , and by Proposition 1, Xpn(n�1) = V .The laim is proved.Now, if some value of the level is assigned to n or more sets then Claim 1 implies that the last ofthese sets is equal to V . On the other hand, if we have more than n(n�1) di�erent values of the level,Claim 2 implies that we have reahed V . Therefore we shall reah V after at most n(n � 1)(n � 1)steps. 2Proposition 3 Let � = f'1; '2g. If � is nilpotent and either both 'i are symmetri, or they areopposite to eah other, then � is ( � n3)-nilpotent.Proof. When '1 and '2 are opposite, Proposition 2 applies immediately, and � is n3-nilpotent.When both mappings are symmetri, de�ne four new mappings: a = '1'2, b = '2'1, 1 = '1'1,and 2 = '2'2. It is easy to hek that these mappings satisfy the onditions of Proposition 2. Now,every sequene of 2N mappings 'i an be onsidered as a sequene of N mappings a; b; i. Therefore� is 2n3-nilpotent. 2The ase of '1 and '2 being opposite orresponds preisely to the original notion of nie graphs[3℄. Thus, Proposition 3 in this ase asserts that "every nie graph on n verties is n3-nie".We now give some examples. We do not have examples whih would give lower bounds omparablewith upper bounds from Propositions 2 and 3. The next two examples provide suh bounds forProposition 1. In all examples, we let V = f0; 1; : : : ; n� 1g.Example 1. Let the mapping a orrespond to the path 0�1� : : :� (n�1) with a loop at the vertexn� 1; this mapping is symmetri. The single-element olletion fag is nilpotent, and if we start withthe set X = f0g, we reah V only after 2n� 2 steps.Example 2. Now, let a orrespond to the oriented graph formed from the oriented yle 0 ! 1 !: : : ! n� 1 ! 0 and an extra ar (n � 1) ! 1. Again, fag is nilpotent, and if we start with the setX = f0g, we reah V only after n(n� 2) steps.It was proved in [6℄ that this is the only mapping whih attains this bound.Example 3. For eah v 2 V de�ne the mapping av as follows: av(fvg) = V , av(fxg) = fvg if x < v,av(fxg) = fx; vg if x > v. All these mappings are symmetri. Let X1; : : : ;X2n�1 be the lexiographiordering of P(V )+; eah Xi is the set of positions at whih the binary expansion of i has ones.To make sure that the olletion fa0; : : : ; an�1g is nilpotent, it is enough to hek that in thisordering ai(X) > X for every i and every X � V . This is straightforward.On the other hand, for 1 � i < 2n � 1, let z(i) be the position of the �rst zero in the binaryexpansion of i; or, equivalently, z(i) = minfj j j 2 V n Xig. Now it is straightforward to hek thataz(i)(Xi) = Xi+1.Thus, the olletion fa0; : : : ; an�1g is nilpotent of lass 2n � 2.4 Blak holesHere we onsider families of endomorphisms whih are not nilpotent. This means that some elementof the semigroup generated by the family has a blak hole. So, we say that the family � has a blakhole X with a pattern w if w is a word over the alphabet �, and X � V is a blak hole of theendomorphism orresponding to this word.



D. Fon-Der-Flaass, A.V. Kostohka, J. Ne�set�ril, A. Raspaud and E. Sopena 5A non-nilpotent family an have many di�erent patterns of blak holes; in partiular, every powerof a pattern is again a pattern. So, the question arises: what an be said about the shortest patternof a blak hole of a non-nilpotent family?Proposition 4 Let � be a �nite alphabet, and w an arbitrary word over it. The following statementsare equivalent:(1) w annot be represented in the form vn for a omposite number n.(2) There exists a set V and a olletion of mappings denoted by elements of � suh that w is ashortest pattern of any blak hole of this olletion.Proof.(1) ! (2). Let w = x0x1 : : : xN�1 (indies are onsidered modulo N , in order that w ould betreated as a yli word). We take V = f0; 1; : : : ; N � 1g. Elements of V are also onsidered moduloN . For any subset X � V , we shall denote by X + i the set fx+ i j x 2 Xg (addition modulo N), theyli shift of X.To de�ne the mappings, we �x a number k, to be spei�ed later. We shall de�ne the mappings insuh a way that every set of k onseutive elements of V (interval of length k) shall be a blak holehaving some yli shift of w as a pattern.For eah v 2 V , onsider the subword xv�k+1 : : : xv�1xv of the yli word w. For any x 2 �, let iand j be the �rst and the last, respetively, of the indies within this interval for whih xi = xj = x.De�ne x(fvg) = fj+1; : : : ; i+kg. If none of the letters of this interval is equal to x, we set x(fvg) = V .We always have that v + 1 2 x(fvg); therefore for every subset A � V we have jx(A)j � jAj, andif jx(A)j = jAj then x(A) = A+ 1.Let I = fv; v + 1; : : : ; v + l � 1g be an arbitrary (yli) interval of length l < N . Its image x(I)under any mapping x 2 � is again an interval, beause the image of eah element is an interval andthese intervals respetively ontain onseutive elements v + 1; : : : ; v + l. It follows that x(I) = I + 1if and only if v =2 x(I) and v + l + 1 =2 x(I). From the de�nition of x, we have:v =2 x(v) if and only if xv = x;v + l + 1 =2 x(v + l � 1) if and only if xv+l�k = x.Conversely, if these two onditions are satis�ed then x(I) = I + 1; unless there is a subinterval ofI of length k ontaining no letter x | then x(I) = V .Let A be an arbitrary subset of V . A is the union of disjoint intervals; let their initial vertiesbe v1; : : : ; vm, and their lengths l1; : : : ; lm. From the above remarks we have that jx(A)j = jAj for atmost one mapping x, and if x is suh then xvi = xvi+li�k = x for all i = 1; : : : ;m.Thus every interval of length k is a blak hole whose pattern is uniquely determined, and thispattern is a yli shift of w. On the other hand, if a blak hole ontains an interval of length l 6= k,or two disjoint intervals with initial verties v1; v2, then the word w is periodi with period jl � kj,resp. jv1 � v2j.Thus, if the word w is not periodi, we an hoose k = 1, so the only blak holes of the resultingolletion of mappings will be one-vertex subsets, and their shortest patterns will be yli shifts ofw. If w is periodi, w = wp0 for a prime p > 1 and a non-periodi word w0, then we an take k = jw0j,and the resulting olletion of mappings will satisfy the required property.(2) ! (1) Suppose the ontrary. Let w = upq for some word u and p; q > 1; suppose that w is ashortest pattern of a blak hole, and let A be a blak hole of minimum size with pattern w. Considerthe sets A0 = A; A1 = u(A); : : : ; Apq�1 = upq�1(A). These sets are all distint, and all non-empty.We laim that they are also pairwise disjoint. Indeed, if B = Ai \ Aj 6= ; then u(B) � Ai+1 \ Aj+1,et. (indies taken modulo pq), and w(B) � B | therefore, some non-empty subset of B is a blakhole with pattern w, ontrary to our hoie of A.But now we see that the sets Xi = [q�1j=0Ai+pj



6 Nilpotent families of endomorphisms of (P(V )+;[)for i = 0; : : : ; p� 1, form an orbit of length p of the mapping u, and so X0 is a blak hole with patternuq, ontrary to our assumption about w. 2Thus, there are no serious restritions on shortest patterns of non-nilpotent families, apart fromexeption of omposite powers.We onlude this note with several open questions.First, nothing is known about omputational omplexity of deiding whether a set of mappings isnilpotent or not. It is not even lear whether this problem belongs to NP and/or o-NP.Seond, Propositions 1 and 3 together with Example 3 lead to the following natural onjeture:Conjeture 5 For every natural k there exists an exponent f(k) and a onstant (k) suh that everynilpotent family of k endomorphisms of the semilattie (P(n)+;[) of all non-empty subsets of ann-element set has nilpoteny lass at most (k)nf(k).This onjeture remains open even for k = 2.Referenes[1℄ O. V. Borodin, A. V. Kostohka, J. Ne�set�ril, A. Raspaud and E. Sopena. On the maximum averagedegree and the oriented hromati number of a graph. Disrete Math., 206(1999), 77{90.[2℄ O. V. Borodin, A. V. Kostohka, J. Ne�set�ril, A. Raspaud and E. Sopena. On universal graphs forplanar oriented graphs of a given girth. Disrete Math., 188(1998), 78{85.[3℄ P. Hell, A. V. Kostohka, A. Raspaud and E. Sopena. On nie graphs, Disrete Math., to appear.[4℄ J.C.Holladay, R.S.Varga. On powers of non-negative matries. Pro. Amer. Math. So. 9(1958),631{634.[5℄ J. Ne�set�ril, A. Raspaud and E. Sopena. Colorings and girth of oriented planar graphs. DisreteMath. 165/166(1996), 519{530.[6℄ H. Wielandt. Unzerlegbare niht negative Matrizen. Math.Z., 52(1950), 642{648.


