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2 On ni
e graphsthe property that every planar graph with suÆ
iently large girth, or every graph with suÆ
ientlysmall maximum average degree, 
ontains either a vertex with degree one or a long path whose internalverti
es have degree two. Let k be any given positive integer. Suppose that H is an oriented graphsu
h that for every verti
es u and v in V (H), not ne
essarily distin
t, and every pattern of length k,given as a sequen
e of pluses and minuses, there exists a walk of length k in H linking u to v whi
hrespe
ts this pattern (pluses 
orresponding to forward edges and minuses to ba
kward edges). Thenit 
an be dedu
ed from the property of planar graphs mentioned earlier that every oriented planargraph with suÆ
iently large girth, or every oriented graph with suÆ
iently small maximum averagedegree, 
an be homomorphi
ally mapped to H. We will say that an oriented graph H with the aboveproperty is k-ni
e.In [1℄ Alon and Marshall studied homomorphisms of edge-
oloured graphs. (Homomorphisms ofedge-
oloured graphs have also been studied in [2, 3℄.) Let p be any �xed non-negative integer; a p-edge-
oloured graph is a graph whose edges are 
oloured by a set of p 
olours. A homomorphism betweentwo edge-
oloured graphs must also preserve the 
olours of edges. One 
an make similar 
on
lusionsabout edge-
oloured planar graphs of suÆ
iently large girth, respe
tively edge-
oloured graphs withsuÆ
iently small maximum average degree, mapping homomorphi
ally to an edge-
oloured graph H,if for any verti
es u and v in V (H), not ne
essarily distin
t, and any pattern of length k, given as asequen
e of 
olours, there exists a path of length k in H linking u to v whi
h respe
ts this pattern.Thus we will also 
onsider the notion of ni
e edge-
oloured graphs or, more generally, multigraphs.A natural extension of the notion of ni
eness 
an be obtained by only requiring that for everytwo verti
es u and v and every pattern there exists a walk (or a path) with this pattern starting atu and 
ontaining v. Graphs having this property will be 
alled half-ni
e. Clearly, every ni
e graph ishalf-ni
e.The de�nitions and the main results are introdu
ed in the next se
tion. In parti
ular, we 
onsiderthe problem of the 
hara
terization of ni
e or half-ni
e graphs and edge-
oloured multigraphs andapply our results to the problem of determining the minimum number of edges in su
h graphs ormultigraphs. Se
tions 3 to 6 are devoted to the proofs of our results.2 De�nitions and main resultsA pattern Q is a (non-empty) word in f+;�g+. Let Q = q0q1 : : : qk�1 be a pattern of length k. AQ-walk in a digraph G is a walk P = x0x1 : : : xk su
h that for every i, 0 � i � k � 1, xixi+1 2 E(G)if qi = + and xi+1xi 2 E(G) otherwise. For X � V (G) we denote by NQ(X) the set of all verti
es ysu
h that there exists a Q-walk going from some vertex x 2 X to y. We then say that a digraph Gis k-ni
e if for every pattern Q of length k and every vertex x in V (G) we have NQ(fxg) = V (G). Inother words, a digraph is k-ni
e if for all pairs of verti
es x; y (allowing x = y) there is a k-walk fromx to y for ea
h of the 2k possible oriented patterns. Observe that if a digraph G is k-ni
e for some k,then it is k0-ni
e for every k0 > k. We say that a digraph is ni
e if it is k-ni
e for some k.Re
all that the 
ir
ulant digraph G = G(n; a1; a2; : : : ; a`) is the digraph de�ned by V (G) =f0; 1; : : : ; n� 1g and E(G) = fxy : y = x+ ai (mod n), 1 � i � `g. In fa
t, it has been proved in [6℄that every 
ir
ulant digraph of the form G(n; 1; 2; : : : ; d) is dn�1d�1 e-ni
e.Let G be a multigraph whose edges are p-
oloured and let ' : E(G) �! f1; 2; : : : ; pg denote the
orresponding 
olouring fun
tion. For every pattern Q = q0q1 : : : qk�1 in f1; 2; : : : ; pg+, a Q-path inG is a path P = x0x1 : : : xk su
h that for every i, 0 � i � k � 1, the edge xixi+1 has 
olour qi. Asbefore, for X � V (G) we denote by NQ(X) the set of all verti
es y su
h that there exists a Q-pathgoing from some vertex x 2 X to y. We then say that G is k-ni
e if for every pattern Q of length kand every vertex x in V (G) we have NQ(fxg) = V (G). We say that G is ni
e if it is k-ni
e for some k.First we shall 
onsider 
hara
terizations of ni
e digraphs and ni
e edge-
oloured multigraphs. Auseful notion in that 
ontext is that of a bla
k hole. Let G be a digraph or an edge-
oloured multigraph.A bla
k hole is a pair (A;Q) su
h that A is a proper subset of V (G) and Q is a pattern su
h thatNQ(A) � A. If Q has length k, and if there exists no pattern Q0 of length k0 < k su
h that (A;Q0) isa bla
k hole we say that the bla
k hole (A;Q) has depth k.



P. Hell, A.V. Kosto
hka, A. Raspaud and E. Sopena 3Note that there exists a bla
k hole (A;Q) with NQ(A) = ; in a digraph G if and only if G 
ontainsa vertex with in- or out-degree zero. Moreover, if G is not strongly 
onne
ted then G has at least onestrong 
omponent C su
h that no ar
 leaves C. The 
omponent C is thus a bla
k hole with pattern+ (similarly, there exists at least one strong 
omponent of G whi
h is a bla
k hole with pattern �).Let k � 1. A vi
ious 
ir
le with pattern Q = q0q1 : : : qk�1 is a 
y
li
 sequen
e of bla
k holesA0; A1; : : : ; Ak�1 su
h that Nqi(Ai) = Ai+1 for every i, 0 � i < k � 1, and Nqk�1(Ak�1) = A0. Thenwe have:Observation 1 Any not strongly 
onne
ted digraph G = (V;E) with E 6= ; 
ontains a vi
ious 
ir
le.To see that, 
onsider the digraph S whose verti
es are the vertex sets of strong 
omponents of Gand XY is an ar
 in S if and only if there is an ar
 xy in G su
h that x 2 X and y 2 Y . The graph Sis 
learly a
y
li
. If some sour
e or sink X in S is not a singleton then X is a vi
ious 
ir
le with thepattern � or +. Otherwise, the pair (A;B), whereA = fv 2 V j 9u 2 V : vu 2 E(G)g; B = fu 2 V j 9v 2 V : vu 2 E(G)g;is a vi
ious 
ir
le with pattern +�. Similarly, if the subgraph Hq spanned by the edges of a 
olour qin a p-edge-
oloured multigraph is not 
onne
ted and has a 
omponent A with jAj > 1, then A formsa vi
ious 
ir
le of length 1 with the pattern q.Our �rst proposition is simple:Proposition 2 The following statements are equivalent for a graph or a p-edge-
oloured multigraphG:(1) G is not ni
e;(2) G has a bla
k hole;(3) G has a vi
ious 
ir
le.Proof. We just 
onsider the 
ase of a digraph G, the proof being similar for a p-edge-
oloured multi-graph. From the de�nitions, (3) implies (2) and (2) implies (1). Suppose now that G is not ni
e.That means that for every k there exists a vertex x and a pattern Q = q0q1 : : : qk�1 of length k su
hthat NQ(fxg) 6= V (G). We denote by Qi the pattern q0q1 : : : qi�1 for every i, 0 < i � k � 1. Letk = 2jV (G)j and X0;X1; : : : ;Xk�1 be the sequen
e de�ned by X0 = fxg and Xi = NQi(fxg) for everyi, 0 < i � k � 1. If Xi is empty for some i then G is not strongly 
onne
ted and thus 
ontains avi
ious 
ir
le (Observation 1). Otherwise there exist two indi
es i and j, i < j, su
h that Xi = Xj .The sequen
e (Xi;Xi+1; : : : ;Xj) is then a vi
ious 
ir
le with pattern qiqi+1 : : : qj. 2The following theorem states that in order to 
he
k whether a digraph is ni
e or not it is enoughto 
onsider only short patterns:Theorem 3 If a digraph G is not ni
e then it has a bla
k hole with pattern either + or +�.In 
ase of p-edge-
oloured multigraphs, we have the following 
hara
terization:Theorem 4 If a p-edge-
oloured multigraph G is not ni
e then it has a vi
ious 
ir
le either withpattern qq or with a non-periodi
 
y
li
 pattern q0 : : : qk�1 su
h that qi 6= qi+1 for every i, 0 � i < k(subs
ripts are taken modulo k).We now give a se
ond 
hara
terization of ni
e digraphs by means of the existen
e of some spe
ial
y
les. A walk of length 2`+1 is a quasi-alternating walk if it has pattern (+�)`+. A vertex x is saidto be spe
ial if there exists a quasi-alternating walk going from x to x. Then we have:Theorem 5 A digraph is ni
e if and only if it is strongly 
onne
ted and all its verti
es are spe
ial.



4 On ni
e graphsTheorems 3 and 5 will be proved in Se
tion 3. Theorem 4 will be proved in Se
tion 4. Moreover,we shall show in Se
tion 4 that for every su
h non-periodi
 
y
li
 pattern one 
an 
onstru
t an edge-
oloured multigraph having only one vi
ious 
ir
le, pre
isely with this pattern.We say that a digraph G is k-half-ni
e, if for every pattern Q of length k and every verti
es xand y there is a Q-walk starting at x whi
h 
ontains y. Similarly, a p-edge-
oloured multigraph G isk-half-ni
e if for every pattern Q of length k and every verti
es x and y there is a Q-path starting at xwhi
h 
ontains y. We say that a digraph or a p-edge-
oloured multigraph is half-ni
e if it is k-half-ni
efor some k. Clearly, ea
h ni
e digraph or p-edge-
oloured multigraph is half-ni
e.Our 
hara
terization of half-ni
e digraphs and half-ni
e multigraphs is the following:Proposition 6 The following statements are equivalent, for a digraph or a p-edge-
oloured multigraphG:(1) G is not half-ni
e;(2) G has a vi
ious 
ir
le fA0; A1; : : : ; Ak�1g with pattern Q = q0q1 : : : qk�1 su
h that V (G)nSk�1i=0 Ai 6=;.Proof. We only 
onsider the 
ase of a digraph G, the proof being similar for a p-edge-
olouredmultigraph. If G satis�es 
ondition (2) then for every m � k, the pattern Q0 = Qbm=k
q0q1 : : : q`, with` = m�1 (mod k), is su
h that no Q0-walk starting at a 2 A0 goes through a vertex b 2 V (G)nSk�1i=0 Ai.Conversely, if G is not half-ni
e then for every k there exist two verti
es x and y and a patternQ = q0q1 : : : qk�1 su
h that no Q-walk starting from x goes through y. Let X0 = fxg and Xi =Nq0q1:::qi�1(X0) for every i > 0. If k � 2jV (G)j then there exist two indi
es i and j, j > i, su
h thatXi = Xj . If Xi 6= ; then the sequen
e (Xi;Xi+1; : : : ;Xj�1) is a vi
ious 
ir
le su
h that y =2 Sj�1`=i X`.If Xi = ; then G is not strongly 
onne
ted and, as observed before, 
ontains a vi
ious 
ir
le satisfyingthe 
laim. 2From Theorem 5, we dedu
e that a ni
e digraph 
annot be bipartite. Moreover, we have:Proposition 7 A digraph is ni
e if and only if it is half-ni
e and non-bipartite.Proof. Let G be a non-bipartite half-ni
e digraph, and suppose that G is not ni
e. Sin
e G is half-ni
e, it is strongly 
onne
ted. By Theorem 3 and Proposition 6 it has a vi
ious 
ir
le (A;B) withpattern +� su
h that A [ B = V (G). Moreover, sin
e G is strongly 
onne
ted, we have A n B 6= ;and B n A 6= ;. We �rst 
laim that A \ B = ;. If not, let x 2 A \ B; sin
e there is no ar
 fromx to A or from B to x, we 
on
lude that (A n B;B n A) is a vi
ious 
ir
le with pattern +� su
hthat A [B 6= V (G), in 
ontradi
tion with Proposition 6. Finally, observe that sin
e N+(A) = B andN�(B) = A, both sets A and B are independent. We thus see that G is bipartite, a 
ontradi
tion. 2Similarly, an edge-
oloured multigraph 
annot be ni
e if one of the subgraphs indu
ed by mono
hro-mati
 edges is bipartite. However, a half-ni
e edge-
oloured multigraph su
h that none of itsmono
hromati
 subgraphs is bipartite is not ne
essarily ni
e. To see that, 
onsider the 2-edge-
oloured multigraph G2n, n � 3, de�ned by V (G2n) = f0; 1; : : : ; 2n � 1g, E(G2n) = E12n [ E22nwith E12n = fij : (i = 2k + 1; j = 2k0 + 1) or (i = 2k; j = 2k + 1); 0 � k < k0 � ng andE22n = fij : (i = 2k; j = 2k0) or (i = 2k � 1; j = 2k); 0 � k < k0 � ng (verti
es are taken modulo2n). Assume that all the edges of E12n are 1-
oloured and that all the edges of E22n are 2-
oloured.Clearly, the only vi
ious 
ir
le is the sequen
e (f0g; f1g; : : : ; f2n � 1g) with pattern (12)n and thusG2n is half-ni
e but not ni
e. Moreover, ea
h mono
hromati
 subgraph 
ontains triangles and thus isnot bipartite.We now 
onsider the problem of determining the minimum number of edges in a ni
e or half-ni
edigraph. We have:
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hka, A. Raspaud and E. Sopena 5Theorem 8 The minimum number of edges in a ni
e digraph with n verti
es is 2n�1. The minimumnumber of edges in a half-ni
e digraph with n verti
es is 2n� 2.In 
ase of p-edge-
oloured multigraphs, we have:Theorem 9 The minimum number of edges in a ni
e p-edge-
oloured multigraph G with n verti
esis pn. The minimum number of edges in a half-ni
e p-edge-
oloured multigraph G with n verti
es isp(n� 1).Theorems 8 and 9 will be proved in Se
tion 5.Our initial motivation for the study of ni
e graphs was the problem of determining the oriented
hromati
 number of some 
lasses of graphs. More pre
isely, we say that a graph G is universalfor some 
lass of graphs C, or shortly C-universal, if every graph H in C has a homomorphism toG [4, 6℄. Denote by Pk (respe
tively, OPk) the 
lass of planar (respe
tively, outerplanar) orientedgraphs with girth at least k. In parti
ular, P3 (respe
tively, OP3) is the 
lass of all planar (respe
tively,outerplanar) oriented graphs. Evidently, P3 � P4 � P5. . . , whi
h yields that any Pk-universal graphis also P`-universal for every ` > k (the same is true for outerplanar graphs). The next fa
t was usedin [6℄:Proposition 10 For ea
h k � 3 any k-ni
e oriented graph is P5k�4-universal.For 
ompleteness, we shall in
lude a proof of this proposition in Se
tion 6 together with the proofof the following theorem:Theorem 11 Let g be a positive integer. If H is OPg-universal and in
lusion minimal with respe
tto this property, then H is ni
e.Using a similar proof te
hnique, we 
an also prove:Theorem 12 Let g be a positive integer. If H is Pg-universal and in
lusion minimal with respe
t tothis property, then H is ni
e.In [4℄, it has been proved that every planar Pg-universal graph must 
ontain a 
y
le of length atmost �ve. Theorems 8 and 9, together with Euler's formula, give the following improvement:Corollary 13 Every ni
e or half-ni
e oriented planar graph has a triangle.3 Chara
terizations of ni
e digraphsWe �rst make some easy observations 
on
erning bla
k holes. Let q = + if q = � and q = � if q = +.Observation 14 If (A;Q = q0q1 : : : qk�1) is a bla
k hole then so is (A;Q), where A = V (G) nA andQ = qk�1 : : : q0.Observation 15 If (A;Q = q0q1 : : : qk�1) is a bla
k hole of minimal depth k then so is(Nq0q1:::qi(A); qi+1 : : : qk�1q0 : : : qi), for every i, 0 � i < k � 1.Moreover, sin
e for every subset X of verti
es we have X � N+�(X) and X � N�+(X), we obtain:Observation 16 If (A; u+�v) or (A; u�+v) is a bla
k hole su
h that uv is nonempty then (A; uv)is a bla
k hole.



6 On ni
e graphsWe now turn to the proof of Theorem 3. Re
all that the 
ondition \G has no bla
k hole withpattern +" means that G is strongly 
onne
ted.Proof of Theorem 3. Suppose that G is not ni
e. By Proposition 2, G has a bla
k hole. Let (A;Q)be a bla
k hole of minimal depth k. If k = 1 then G is not strongly 
onne
ted and thus 
ontains astrong 
omponent whi
h is a bla
k hole with pattern +. We have two 
ases more to 
onsider:Case 1 : k = 2.By Observations 14 and 15 it suÆ
es to 
onsider the 
ases Q = ++ and Q = +�. If Q = +�,there is nothing to prove. Suppose that Q = ++, and let A+ = N+(A) n A. Note �rst that for everyx 2 V (G) n A there is no edge from A+ to x. Moreover, A+ is an independent set of verti
es. LetX = V (G) n (A [ A+). By the de�nition of A+ there is no edge from A to X and by the abovedis
ussion no edge from A+ to X. If X is not empty then G is not strongly 
onne
ted. Suppose thatX is empty. Let aa0 be an edge from A to N+(A). Sin
e A is a bla
k hole, we have d�A(a) = 0. Sin
e Gis strongly 
onne
ted, A is an independent set of verti
es. The graph G is thus bipartite and (A;+�)is a bla
k hole.Case 2 : k > 2.By Observations 14 and 16 we have to 
onsider only the 
ase Q = (+)k. We �rst prove that(A; (�)k) is also a bla
k hole. Let a 2 A and b 2 N(�)k(a). If G is strongly 
onne
ted then there existsa dire
ted path from a to b and thus a 
ir
uit C (not ne
essarily simple) passing through a and b. Let` be the length of that 
ir
uit. The vertex a is the `k-th su

essor of itself in C and b is the (`�1)k-thsu

essor of a in C. Hen
e b 2 A and we are done. We thus see that (A; (+)k(�)k) is a bla
k hole.By Observation 16 we then 
on
lude that (A;+�) is a bla
k hole. This 
ompletes the proof. 2Proof of Theorem 5. The \if" part follows dire
tly from the de�nitions. Suppose now that G isstrongly 
onne
ted and that every vertex x in G is spe
ial. We shall prove that G 
annot have a bla
khole with pattern +�. To the 
ontrary, assume that A is su
h a bla
k hole, and let B = N+(A). We�rst 
laim that for every vertex a 2 A, there exists some vertex a0 2 A su
h that a0a is an ar
 in G.Sin
e a is spe
ial, there exists a 
losed walk a = a0a1a2 : : : a2`a in G su
h that for every i, 1 � i � `,a2ia2i�1 and a2ia2i+1 belong to E(G) (subs
ripts are taken modulo 2`+1). We then get that for everyi, 1 � i � `, a2i also belongs to A and a0 = a2` is the required vertex. Hen
e we have A � B. Sin
eB is a bla
k hole with pattern �+, we 
on
lude symmetri
ally that B � A. Therefore A = B, a
ontradi
tion sin
e G is strongly 
onne
ted. This 
ompletes the proof. 2From Theorem 3 and Observation 14, we get that if a strongly 
onne
ted digraph G is not ni
ethen, starting with any 1-element subset X0 = fxg of V (G) and de�ning Xi = N+�(Xi�1) for everyi > 0, we ne
essarily �nd some j su
h that Xj is a bla
k hole with pattern +� (j is the minimal indexsu
h that Xj+1 = Xj). Moreover, sin
e in strongly 
onne
ted graphs N+�(X) � X for every set X,we get that Xi+1 = Xi [ N+�(Xi n Xi�1) for every i > 0. This proves that the algorithm given inFigure 1 de
ides whether a given digraph is ni
e or not in time O(jE(G)j � jV (G)j).4 A 
hara
terization of ni
e p-edge-
oloured multigraphsWe �rst prove Theorem 4.Proof of Theorem 4. Let G be a non-ni
e multigraph, and let (A0; A1; : : : ; Ak�1) be a vi
ious 
ir
lewith pattern Q = q0q1 : : : qk�1 of minimum length and su
h that Pk�1i=o jAij is minimum among thosewith minimum length.We �rst 
laim that either k = 2 and Q = qq or qi 6= qi+1 for every i, 0 � i < k � 1. To see that,assume to the 
ontrary that there exists some i with qi = qi+1 = q. We then have Ai � Ai+2 and thereexists a vi
ious 
ir
le with pattern q0 : : : qi�1qi+2 : : : qk�1, 
ontradi
ting our minimality assumption
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Algorithm NICEInput: A digraph GQuestion: Is G ni
e ?if G is not strongly 
onne
ted then answer NO end-ifOtherwise, pi
k any vertex x in GSet X := fxg and Y := fxgrepeatSet Y := N+�(Y ) nXif Y = ; then answer NO end-ifSet X := X [ Yif X = V (G) then answer YES end-ifend-repeatFigure 1: An algorithm for de
iding whether a digraph is ni
e or notunless the initial pattern was qq.Assume now that the pattern is periodi
 and has the form (q0q1 : : : qr�1)m, withm > 1. We denoteby Aji the set N(q0:::qr�1)jq0:::qi�1(A0), for every i; j su
h that 0 � i � r� 1, 0 � j < m. We 
laim thatAji \ Aì = ; for every j 6= `. Assume to the 
ontrary that there exists x 2 Aji \ Aì . From x we 
anrea
h all verti
es belonging to Nqi(Aji ) by using the periodi
 pattern, sin
e otherwise we 
ould �nda vi
ious 
ir
le 
ontradi
ting our minimality assumption. It follows that Nqi(Aji ) = Nqi(Aì). Thus,Aji+1 = Aì+1, and we again have a vi
ious 
ir
le whi
h 
ontradi
ts our minimality assumption.Let Bi = [j=m�1j=0 Aji . If Bi 6= V (G) for every i, 0 � i � k � 1, then the sets Bi form a shortervi
ious 
ir
le, a 
ontradi
tion. If we have Bi = V (G) for some i, then we 
laim that there is a vi
ious
ir
le with a pattern of length two having two identi
al 
olours. W.l.o.g. we assume that B0 = V ;then Nq0(A10) = A11. Observe that Nq0(A11) � A10 : if not, there exists a vertex x =2 A10 belonging toNq0(A11). Hen
e x 2 A0̀ for some `, 0 < ` � m�1. Then x 2 Nq0(Al0) but A11\A1̀ = ;, a 
ontradi
tion.It follows that A10 and A11 form a vi
ious 
ir
le for the pattern q0q0. This 
ompletes the proof. 2For every non-periodi
 
y
li
 pattern Q = q0q1 : : : qk�1 in f1; 2; : : : ; pgk with qi 6= qi+1 for every i,1 � i < k, one 
an 
onstru
t a p-edge-
oloured multigraph GQ having vi
ious 
ir
les only with thispattern. The 
onstru
tion is as follows. The graph GQ has k + 1 verti
es, denoted by fv0; v1; : : :,vk�1; wg. The vertex w has loops of every 
olour 
, 1 � 
 � p, and for every i; j, 0 � i; j < k, withji� jj > 1 (mod k), we join vi and vj by edges of every 
olor distin
t from qi and qj. Finally, for everyi, 0 � i < k, we add an edge from vi to vi+1 with 
olour qi and edges from vi to w of every 
olourex
ept qi. We will say that the vertex vi is of type qi. Clearly, the sequen
e fv0g; fv1g; : : : ; fvk�1g isa vi
ious 
ir
le with pattern Q. Assume that there exists another vi
ious 
ir
le B0; B1; : : : ; B`�1 withpattern b0b1 : : : b`�1. We have two 
ases to 
onsider:Case 1 : w 2 B0 [ : : : [B`�1.Sin
e w has all possible 
oloured loops, w belongs to every Bi. We may assume that B0 is notsmaller than every other Bi. By 
onstru
tion, B1 
ontains all verti
es of type di�erent from b0.Moreover, if a vertex vi is of type b1 and vi�1 2 B0 then vi 2 B1. It follows that jB1j � jB0j and thatall verti
es in V (GQ) nB1 are of type b0.By the maximality of B0 we 
on
lude that jB1j = jB0j. We 
an 
ontinue in the same way and wesee that all the sets Bi have the same 
ardinality and that all verti
es in V (GQ) nBi are of type bi�1.Moreover, we have vi =2 Bj if and only if vi+1 =2 Bj+1.



8 On ni
e graphsWe may thus assume that C0 = V (GQ) n B0 
ontains only verti
es of type q0 (maybe not allof them). Then, C1 = V (GQ) n B1 
ontains only verti
es of type q1 and is obtained from C0 byrotating one step around the 
ir
le (v0; v1; : : : ; vk�1). In parti
ular, we have b0 = q0. Continuing, wesee that the pattern q0q1 : : : qk�1 
ontains b0b1 : : : b`�1 and, sin
e q0q1 : : : qk�1 is aperiodi
, we haveq0q1 : : : qk�1 = b0b1 : : : b`�1.Case 2 : w =2 B0 [ : : : [B`�1.Assume that v0 2 B0. If b0 6= q0 then w 2 B1, a 
ontradi
tion. Thus b0 = q0 and hen
ev1 2 B1. Repeating this, we get b1 = q1 and hen
e v2 2 B2, and so on. Finally, we 
on
lude thatq0q1 : : : qk�1 = b0b1 : : : b`�1.The reader 
an observe that if we delete the vertex w in the above 
onstru
ted graph GQ weget a graph G0Q whi
h is half-ni
e, but not ni
e, and that the sequen
e fv0g; fv1g; : : : ; fvk�1g and its
omplement V (G0Q) n fv0g; V (G0Q) n fv1g; : : : ; V (G0Q) n fvk�1g are again the only vi
ious 
ir
les.5 Minimum number of edges in ni
e graphsWe �rst prove Theorem 8.Proof of Theorem 8. We �rst 
onsider the 
ase of a ni
e digraph G and assume that jV (G)j = n.For every vertex x 2 V (G) we denote by N�G (x) the set of prede
essors of x. Let G0 be the undire
tedgraph 
onstru
ted as follows: we set V (G0) = V (G) and, for every vertex x, we link in G0 the verti
esof N�G (x) by a path. Sin
e the digraph G is k-ni
e for some k, there exists a walk with pattern (+�)kbetween every pair of verti
es. Therefore, the graph G0 is 
onne
ted and jE(G0)j � n � 1. On theother hand, jE(G0)j = Xx2V (G)(jN�G (x)j � 1) = jE(G)j � nand the result follows.Suppose now that G is a half-ni
e digraph. By Proposition 7, ifG is not ni
e then it is bipartite. LetV (G) = A [ B be the 
orresponding bipartition. Consider the auxiliary graph G0 de�ned as above.Ea
h 
lass of the bipartition gives a 
onne
ted 
omponent of G0, denoted by G0A and G0B . Hen
e,jE(G0A)j = Px2B(jN�G (x)j � 1) � jAj � 1 and, similarly, jE(G0B)j = Px2A(jN�G (x)j � 1) � jBj � 1.From that, we obtain E(G) =Px2A jN�G (x)j + Px2B jN�G (x)j � 2n� 2.We now give examples of graphs a
hieving these bounds. Denote by G the 
ir
ulant digraphG(n; 1; 2) minus one edge. This graph has exa
tly 2n�1 edges. Moreover, it is strongly 
onne
ted andhas no bla
k hole with pattern +� sin
e the 
orresponding graph G0 above de�ned is 
learly 
onne
ted,The graph G is thus ni
e. For the se
ond 
laim, 
onsider the bipartite oriented graph G given byV (G) = X [ Y , with X = fx0; x2; : : : ; xkg and Y = fy0; y2; : : : ; xkg (k � 4), and E(G) = fx0y0g [fxiyi�1; xiyi : 1 � i � kg [ fy0xk�1g [ fyixi�1; yixi�2 : 1 � i � kg (subs
ripts are taken modulok). In fa
t, G is made of two alternating Hamiltonian walks. For every subset of X or Y , made of
onse
utive verti
es (modulo k), both N+(X) and N�(X) 
onsist of 
onse
utive verti
es. Moreover,the size of N+(X) or of N�(X) is stri
tly greater than the size of X ex
ept if X is redu
ed to onevertex from the set fx0; y0; xk; ykg. From that we dedu
e that for every suÆ
iently long walk we rea
hall the verti
es. 2We now turn to the proof of Theorem 9.Proof of Theorem 9. Let �rst G be a half-ni
e p-edge-
oloured multigraph. Then for every 
olour
, the subgraph G
 of G spanned by the edges of 
olour 
 must 
over all verti
es and be 
onne
ted. Itfollows that G
 has at least n� 1 edges and thus G has at least p(n� 1) edges.If G is ni
e, then ea
h G
 must, furthermore, be non-bipartite. It follows that G
 has at least nedges and thus G has at least pn edges.We now give examples of multigraphs a
hieving these bounds. We take the set of verti
esfy; z; x1; x2; : : : ; xn�2g and add p edges, one for ea
h 
olour, between verti
es y and z, z and x1,
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hka, A. Raspaud and E. Sopena 9y and x1, and xi and xi+1 for every i, 1 � i < n � 2. Sin
e all the edge 
olours play the samerole, we get from Theorem 4 that this multigraph is not ni
e if and only if it has a vi
ious 
ir
lewith pattern qq for some edge 
olour q. Due to the triangle yzx1, su
h a vi
ious 
ir
le 
learly 
annotexist. For half-ni
e multigraphs, it suÆ
es to 
onsider a path su
h that every two adja
ent verti
esare linked by p edges, one for ea
h 
olour. Note that it is also possible to 
onstru
t ni
e or half-ni
ep-edge-
oloured graphs (with no multiple edges) having this number of edges by arranging togetheredge disjoint Hamiltonian 
y
les or Hamiltonian paths in a more 
ompli
ate way. 26 Ni
e graphs and universal graphsThe aim of this se
tion is to prove Proposition 10 and Theorem 11.Proof of Proposition 10. Let H be k-ni
e, and let G be a graph with the smallest number ofverti
es in P5k�4 whi
h has no homomorphism to H. Then G is 
onne
ted.Case 1 : The graph G has a vertex v adja
ent only to one vertex, w. By the minimality of G,there exists an oriented homomorphism f of G � v to H. Sin
e H is ni
e, the vertex f(w) has bothin- and out-neighbours. One of them is suitable for f(v). This is a 
ontradi
tion.Case 2 : The degree of every vertex in G is at least 2. Repla
ing every path with internalverti
es of degree two and end-verti
es of a larger degree by an edge, we obtain a planar graph G0 withminimum degree at least three. By Euler's formula, it must 
ontain a 
y
le C 0 of length at most �ve.Sin
e the length of the 
orresponding 
y
le C in G is at least 5k � 4, C 
ontains a subpath v1 : : : vkwhose internal verti
es have degree two in G. Let G1 = G n fv2; : : : ; vk�1g. By the minimality ofG, there exists an oriented homomorphism f of G1 to H. Sin
e H is k-ni
e, f 
an be extended tov2; : : : ; vk�1. 2Proof of Theorem 11. We deliver the proof in a series of 
laims. The �rst two of them areimmediately implied by the minimality of H.(i) There is no homomorphism of H to any of its proper subgraphs.(ii) For every ar
 e in H, there exists a graph Ge 2 OPg su
h that every homomorphism f :Ge �! H maps some ar
 of Ge to the ar
 e.(iii) Every 
omponent of H is strongly 
onne
ted.Proof. Assume that there exists a partition of V (H) into two parts W and U su
h that some ar
 eleads from W to U but no ar
 leads from U to W . We 
onstru
t an auxiliary graph G0 as follows :take a 
opy of the graph Ge from (ii). To every ar
 e0 of Ge lying in the outerfa
e, we \glue" a 
opy ofthe 
ir
uit Cg by identifying the ar
 e0 with an ar
 of Cg. The graph G0 thus obtained is outerplanarand has girth g. Hen
e, there exists a homomorphism f : G0 �! H. Sin
e every homomorphism ofGe to H uses e, there is an ar
 e00 = wu from Ge whi
h is mapped to e. Sin
e both w and u lie onthe outer fa
e and in the same 
omponent of Ge, there exists an ar
 xy on the outer fa
e of Ge su
hthat the ar
 f(x)f(y) 
rosses the 
ut (W;U). Let G0g be the 
orresponding 
opy of Cg whi
h is gluedto xy. Sin
e Cg is a dire
ted 
y
le, some ar
 of its image must 
ross the 
ut (W;U) in the dire
tionopposite to f(x)f(y). This 
ontradi
ts the de�nition of W and U . 2(iv) For every v 2 V (H), for every outerplanar graph G with girth at least g and every x 2 V (G),there exists a homomorphism of G to H whi
h maps x to v.Proof. Let e be an ar
 in
ident to x in H. We 
onstru
t an auxiliary graph G0 as follows : take a 
opyof the graph Ge from (ii). To every vertex w in Ge we \glue" a 
opy of the graph G by identifyingthe vertex w with the vertex x of the 
orresponding 
opy of G. The graph G0 thus obtained isouterplanar and has girth at least g. Thus, there exists a homomorphism f : G0 �! H. Sin
e every
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e graphshomomorphism of Ge to H uses e, some vertex of Ge is mapped to v. Thus the 
orresponding 
opyof G is mapped as requested. 2From (iv) and the minimality of H we obtain(v) H is 
onne
ted.(vi) All verti
es of H are spe
ial.Proof. This dire
tly follows from (iv) by 
onsidering G to be a 
losed quasi-alternating walk of lengthg. 2Now, the theorem follows dire
tly from (iii), (v), (vi) and Theorem 5. 2Referen
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