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2 On nie graphsthe property that every planar graph with suÆiently large girth, or every graph with suÆientlysmall maximum average degree, ontains either a vertex with degree one or a long path whose internalverties have degree two. Let k be any given positive integer. Suppose that H is an oriented graphsuh that for every verties u and v in V (H), not neessarily distint, and every pattern of length k,given as a sequene of pluses and minuses, there exists a walk of length k in H linking u to v whihrespets this pattern (pluses orresponding to forward edges and minuses to bakward edges). Thenit an be dedued from the property of planar graphs mentioned earlier that every oriented planargraph with suÆiently large girth, or every oriented graph with suÆiently small maximum averagedegree, an be homomorphially mapped to H. We will say that an oriented graph H with the aboveproperty is k-nie.In [1℄ Alon and Marshall studied homomorphisms of edge-oloured graphs. (Homomorphisms ofedge-oloured graphs have also been studied in [2, 3℄.) Let p be any �xed non-negative integer; a p-edge-oloured graph is a graph whose edges are oloured by a set of p olours. A homomorphism betweentwo edge-oloured graphs must also preserve the olours of edges. One an make similar onlusionsabout edge-oloured planar graphs of suÆiently large girth, respetively edge-oloured graphs withsuÆiently small maximum average degree, mapping homomorphially to an edge-oloured graph H,if for any verties u and v in V (H), not neessarily distint, and any pattern of length k, given as asequene of olours, there exists a path of length k in H linking u to v whih respets this pattern.Thus we will also onsider the notion of nie edge-oloured graphs or, more generally, multigraphs.A natural extension of the notion of nieness an be obtained by only requiring that for everytwo verties u and v and every pattern there exists a walk (or a path) with this pattern starting atu and ontaining v. Graphs having this property will be alled half-nie. Clearly, every nie graph ishalf-nie.The de�nitions and the main results are introdued in the next setion. In partiular, we onsiderthe problem of the haraterization of nie or half-nie graphs and edge-oloured multigraphs andapply our results to the problem of determining the minimum number of edges in suh graphs ormultigraphs. Setions 3 to 6 are devoted to the proofs of our results.2 De�nitions and main resultsA pattern Q is a (non-empty) word in f+;�g+. Let Q = q0q1 : : : qk�1 be a pattern of length k. AQ-walk in a digraph G is a walk P = x0x1 : : : xk suh that for every i, 0 � i � k � 1, xixi+1 2 E(G)if qi = + and xi+1xi 2 E(G) otherwise. For X � V (G) we denote by NQ(X) the set of all verties ysuh that there exists a Q-walk going from some vertex x 2 X to y. We then say that a digraph Gis k-nie if for every pattern Q of length k and every vertex x in V (G) we have NQ(fxg) = V (G). Inother words, a digraph is k-nie if for all pairs of verties x; y (allowing x = y) there is a k-walk fromx to y for eah of the 2k possible oriented patterns. Observe that if a digraph G is k-nie for some k,then it is k0-nie for every k0 > k. We say that a digraph is nie if it is k-nie for some k.Reall that the irulant digraph G = G(n; a1; a2; : : : ; a`) is the digraph de�ned by V (G) =f0; 1; : : : ; n� 1g and E(G) = fxy : y = x+ ai (mod n), 1 � i � `g. In fat, it has been proved in [6℄that every irulant digraph of the form G(n; 1; 2; : : : ; d) is dn�1d�1 e-nie.Let G be a multigraph whose edges are p-oloured and let ' : E(G) �! f1; 2; : : : ; pg denote theorresponding olouring funtion. For every pattern Q = q0q1 : : : qk�1 in f1; 2; : : : ; pg+, a Q-path inG is a path P = x0x1 : : : xk suh that for every i, 0 � i � k � 1, the edge xixi+1 has olour qi. Asbefore, for X � V (G) we denote by NQ(X) the set of all verties y suh that there exists a Q-pathgoing from some vertex x 2 X to y. We then say that G is k-nie if for every pattern Q of length kand every vertex x in V (G) we have NQ(fxg) = V (G). We say that G is nie if it is k-nie for some k.First we shall onsider haraterizations of nie digraphs and nie edge-oloured multigraphs. Auseful notion in that ontext is that of a blak hole. Let G be a digraph or an edge-oloured multigraph.A blak hole is a pair (A;Q) suh that A is a proper subset of V (G) and Q is a pattern suh thatNQ(A) � A. If Q has length k, and if there exists no pattern Q0 of length k0 < k suh that (A;Q0) isa blak hole we say that the blak hole (A;Q) has depth k.



P. Hell, A.V. Kostohka, A. Raspaud and E. Sopena 3Note that there exists a blak hole (A;Q) with NQ(A) = ; in a digraph G if and only if G ontainsa vertex with in- or out-degree zero. Moreover, if G is not strongly onneted then G has at least onestrong omponent C suh that no ar leaves C. The omponent C is thus a blak hole with pattern+ (similarly, there exists at least one strong omponent of G whih is a blak hole with pattern �).Let k � 1. A viious irle with pattern Q = q0q1 : : : qk�1 is a yli sequene of blak holesA0; A1; : : : ; Ak�1 suh that Nqi(Ai) = Ai+1 for every i, 0 � i < k � 1, and Nqk�1(Ak�1) = A0. Thenwe have:Observation 1 Any not strongly onneted digraph G = (V;E) with E 6= ; ontains a viious irle.To see that, onsider the digraph S whose verties are the vertex sets of strong omponents of Gand XY is an ar in S if and only if there is an ar xy in G suh that x 2 X and y 2 Y . The graph Sis learly ayli. If some soure or sink X in S is not a singleton then X is a viious irle with thepattern � or +. Otherwise, the pair (A;B), whereA = fv 2 V j 9u 2 V : vu 2 E(G)g; B = fu 2 V j 9v 2 V : vu 2 E(G)g;is a viious irle with pattern +�. Similarly, if the subgraph Hq spanned by the edges of a olour qin a p-edge-oloured multigraph is not onneted and has a omponent A with jAj > 1, then A formsa viious irle of length 1 with the pattern q.Our �rst proposition is simple:Proposition 2 The following statements are equivalent for a graph or a p-edge-oloured multigraphG:(1) G is not nie;(2) G has a blak hole;(3) G has a viious irle.Proof. We just onsider the ase of a digraph G, the proof being similar for a p-edge-oloured multi-graph. From the de�nitions, (3) implies (2) and (2) implies (1). Suppose now that G is not nie.That means that for every k there exists a vertex x and a pattern Q = q0q1 : : : qk�1 of length k suhthat NQ(fxg) 6= V (G). We denote by Qi the pattern q0q1 : : : qi�1 for every i, 0 < i � k � 1. Letk = 2jV (G)j and X0;X1; : : : ;Xk�1 be the sequene de�ned by X0 = fxg and Xi = NQi(fxg) for everyi, 0 < i � k � 1. If Xi is empty for some i then G is not strongly onneted and thus ontains aviious irle (Observation 1). Otherwise there exist two indies i and j, i < j, suh that Xi = Xj .The sequene (Xi;Xi+1; : : : ;Xj) is then a viious irle with pattern qiqi+1 : : : qj. 2The following theorem states that in order to hek whether a digraph is nie or not it is enoughto onsider only short patterns:Theorem 3 If a digraph G is not nie then it has a blak hole with pattern either + or +�.In ase of p-edge-oloured multigraphs, we have the following haraterization:Theorem 4 If a p-edge-oloured multigraph G is not nie then it has a viious irle either withpattern qq or with a non-periodi yli pattern q0 : : : qk�1 suh that qi 6= qi+1 for every i, 0 � i < k(subsripts are taken modulo k).We now give a seond haraterization of nie digraphs by means of the existene of some speialyles. A walk of length 2`+1 is a quasi-alternating walk if it has pattern (+�)`+. A vertex x is saidto be speial if there exists a quasi-alternating walk going from x to x. Then we have:Theorem 5 A digraph is nie if and only if it is strongly onneted and all its verties are speial.



4 On nie graphsTheorems 3 and 5 will be proved in Setion 3. Theorem 4 will be proved in Setion 4. Moreover,we shall show in Setion 4 that for every suh non-periodi yli pattern one an onstrut an edge-oloured multigraph having only one viious irle, preisely with this pattern.We say that a digraph G is k-half-nie, if for every pattern Q of length k and every verties xand y there is a Q-walk starting at x whih ontains y. Similarly, a p-edge-oloured multigraph G isk-half-nie if for every pattern Q of length k and every verties x and y there is a Q-path starting at xwhih ontains y. We say that a digraph or a p-edge-oloured multigraph is half-nie if it is k-half-niefor some k. Clearly, eah nie digraph or p-edge-oloured multigraph is half-nie.Our haraterization of half-nie digraphs and half-nie multigraphs is the following:Proposition 6 The following statements are equivalent, for a digraph or a p-edge-oloured multigraphG:(1) G is not half-nie;(2) G has a viious irle fA0; A1; : : : ; Ak�1g with pattern Q = q0q1 : : : qk�1 suh that V (G)nSk�1i=0 Ai 6=;.Proof. We only onsider the ase of a digraph G, the proof being similar for a p-edge-olouredmultigraph. If G satis�es ondition (2) then for every m � k, the pattern Q0 = Qbm=kq0q1 : : : q`, with` = m�1 (mod k), is suh that no Q0-walk starting at a 2 A0 goes through a vertex b 2 V (G)nSk�1i=0 Ai.Conversely, if G is not half-nie then for every k there exist two verties x and y and a patternQ = q0q1 : : : qk�1 suh that no Q-walk starting from x goes through y. Let X0 = fxg and Xi =Nq0q1:::qi�1(X0) for every i > 0. If k � 2jV (G)j then there exist two indies i and j, j > i, suh thatXi = Xj . If Xi 6= ; then the sequene (Xi;Xi+1; : : : ;Xj�1) is a viious irle suh that y =2 Sj�1`=i X`.If Xi = ; then G is not strongly onneted and, as observed before, ontains a viious irle satisfyingthe laim. 2From Theorem 5, we dedue that a nie digraph annot be bipartite. Moreover, we have:Proposition 7 A digraph is nie if and only if it is half-nie and non-bipartite.Proof. Let G be a non-bipartite half-nie digraph, and suppose that G is not nie. Sine G is half-nie, it is strongly onneted. By Theorem 3 and Proposition 6 it has a viious irle (A;B) withpattern +� suh that A [ B = V (G). Moreover, sine G is strongly onneted, we have A n B 6= ;and B n A 6= ;. We �rst laim that A \ B = ;. If not, let x 2 A \ B; sine there is no ar fromx to A or from B to x, we onlude that (A n B;B n A) is a viious irle with pattern +� suhthat A [B 6= V (G), in ontradition with Proposition 6. Finally, observe that sine N+(A) = B andN�(B) = A, both sets A and B are independent. We thus see that G is bipartite, a ontradition. 2Similarly, an edge-oloured multigraph annot be nie if one of the subgraphs indued by monohro-mati edges is bipartite. However, a half-nie edge-oloured multigraph suh that none of itsmonohromati subgraphs is bipartite is not neessarily nie. To see that, onsider the 2-edge-oloured multigraph G2n, n � 3, de�ned by V (G2n) = f0; 1; : : : ; 2n � 1g, E(G2n) = E12n [ E22nwith E12n = fij : (i = 2k + 1; j = 2k0 + 1) or (i = 2k; j = 2k + 1); 0 � k < k0 � ng andE22n = fij : (i = 2k; j = 2k0) or (i = 2k � 1; j = 2k); 0 � k < k0 � ng (verties are taken modulo2n). Assume that all the edges of E12n are 1-oloured and that all the edges of E22n are 2-oloured.Clearly, the only viious irle is the sequene (f0g; f1g; : : : ; f2n � 1g) with pattern (12)n and thusG2n is half-nie but not nie. Moreover, eah monohromati subgraph ontains triangles and thus isnot bipartite.We now onsider the problem of determining the minimum number of edges in a nie or half-niedigraph. We have:



P. Hell, A.V. Kostohka, A. Raspaud and E. Sopena 5Theorem 8 The minimum number of edges in a nie digraph with n verties is 2n�1. The minimumnumber of edges in a half-nie digraph with n verties is 2n� 2.In ase of p-edge-oloured multigraphs, we have:Theorem 9 The minimum number of edges in a nie p-edge-oloured multigraph G with n vertiesis pn. The minimum number of edges in a half-nie p-edge-oloured multigraph G with n verties isp(n� 1).Theorems 8 and 9 will be proved in Setion 5.Our initial motivation for the study of nie graphs was the problem of determining the orientedhromati number of some lasses of graphs. More preisely, we say that a graph G is universalfor some lass of graphs C, or shortly C-universal, if every graph H in C has a homomorphism toG [4, 6℄. Denote by Pk (respetively, OPk) the lass of planar (respetively, outerplanar) orientedgraphs with girth at least k. In partiular, P3 (respetively, OP3) is the lass of all planar (respetively,outerplanar) oriented graphs. Evidently, P3 � P4 � P5. . . , whih yields that any Pk-universal graphis also P`-universal for every ` > k (the same is true for outerplanar graphs). The next fat was usedin [6℄:Proposition 10 For eah k � 3 any k-nie oriented graph is P5k�4-universal.For ompleteness, we shall inlude a proof of this proposition in Setion 6 together with the proofof the following theorem:Theorem 11 Let g be a positive integer. If H is OPg-universal and inlusion minimal with respetto this property, then H is nie.Using a similar proof tehnique, we an also prove:Theorem 12 Let g be a positive integer. If H is Pg-universal and inlusion minimal with respet tothis property, then H is nie.In [4℄, it has been proved that every planar Pg-universal graph must ontain a yle of length atmost �ve. Theorems 8 and 9, together with Euler's formula, give the following improvement:Corollary 13 Every nie or half-nie oriented planar graph has a triangle.3 Charaterizations of nie digraphsWe �rst make some easy observations onerning blak holes. Let q = + if q = � and q = � if q = +.Observation 14 If (A;Q = q0q1 : : : qk�1) is a blak hole then so is (A;Q), where A = V (G) nA andQ = qk�1 : : : q0.Observation 15 If (A;Q = q0q1 : : : qk�1) is a blak hole of minimal depth k then so is(Nq0q1:::qi(A); qi+1 : : : qk�1q0 : : : qi), for every i, 0 � i < k � 1.Moreover, sine for every subset X of verties we have X � N+�(X) and X � N�+(X), we obtain:Observation 16 If (A; u+�v) or (A; u�+v) is a blak hole suh that uv is nonempty then (A; uv)is a blak hole.



6 On nie graphsWe now turn to the proof of Theorem 3. Reall that the ondition \G has no blak hole withpattern +" means that G is strongly onneted.Proof of Theorem 3. Suppose that G is not nie. By Proposition 2, G has a blak hole. Let (A;Q)be a blak hole of minimal depth k. If k = 1 then G is not strongly onneted and thus ontains astrong omponent whih is a blak hole with pattern +. We have two ases more to onsider:Case 1 : k = 2.By Observations 14 and 15 it suÆes to onsider the ases Q = ++ and Q = +�. If Q = +�,there is nothing to prove. Suppose that Q = ++, and let A+ = N+(A) n A. Note �rst that for everyx 2 V (G) n A there is no edge from A+ to x. Moreover, A+ is an independent set of verties. LetX = V (G) n (A [ A+). By the de�nition of A+ there is no edge from A to X and by the abovedisussion no edge from A+ to X. If X is not empty then G is not strongly onneted. Suppose thatX is empty. Let aa0 be an edge from A to N+(A). Sine A is a blak hole, we have d�A(a) = 0. Sine Gis strongly onneted, A is an independent set of verties. The graph G is thus bipartite and (A;+�)is a blak hole.Case 2 : k > 2.By Observations 14 and 16 we have to onsider only the ase Q = (+)k. We �rst prove that(A; (�)k) is also a blak hole. Let a 2 A and b 2 N(�)k(a). If G is strongly onneted then there existsa direted path from a to b and thus a iruit C (not neessarily simple) passing through a and b. Let` be the length of that iruit. The vertex a is the `k-th suessor of itself in C and b is the (`�1)k-thsuessor of a in C. Hene b 2 A and we are done. We thus see that (A; (+)k(�)k) is a blak hole.By Observation 16 we then onlude that (A;+�) is a blak hole. This ompletes the proof. 2Proof of Theorem 5. The \if" part follows diretly from the de�nitions. Suppose now that G isstrongly onneted and that every vertex x in G is speial. We shall prove that G annot have a blakhole with pattern +�. To the ontrary, assume that A is suh a blak hole, and let B = N+(A). We�rst laim that for every vertex a 2 A, there exists some vertex a0 2 A suh that a0a is an ar in G.Sine a is speial, there exists a losed walk a = a0a1a2 : : : a2`a in G suh that for every i, 1 � i � `,a2ia2i�1 and a2ia2i+1 belong to E(G) (subsripts are taken modulo 2`+1). We then get that for everyi, 1 � i � `, a2i also belongs to A and a0 = a2` is the required vertex. Hene we have A � B. SineB is a blak hole with pattern �+, we onlude symmetrially that B � A. Therefore A = B, aontradition sine G is strongly onneted. This ompletes the proof. 2From Theorem 3 and Observation 14, we get that if a strongly onneted digraph G is not niethen, starting with any 1-element subset X0 = fxg of V (G) and de�ning Xi = N+�(Xi�1) for everyi > 0, we neessarily �nd some j suh that Xj is a blak hole with pattern +� (j is the minimal indexsuh that Xj+1 = Xj). Moreover, sine in strongly onneted graphs N+�(X) � X for every set X,we get that Xi+1 = Xi [ N+�(Xi n Xi�1) for every i > 0. This proves that the algorithm given inFigure 1 deides whether a given digraph is nie or not in time O(jE(G)j � jV (G)j).4 A haraterization of nie p-edge-oloured multigraphsWe �rst prove Theorem 4.Proof of Theorem 4. Let G be a non-nie multigraph, and let (A0; A1; : : : ; Ak�1) be a viious irlewith pattern Q = q0q1 : : : qk�1 of minimum length and suh that Pk�1i=o jAij is minimum among thosewith minimum length.We �rst laim that either k = 2 and Q = qq or qi 6= qi+1 for every i, 0 � i < k � 1. To see that,assume to the ontrary that there exists some i with qi = qi+1 = q. We then have Ai � Ai+2 and thereexists a viious irle with pattern q0 : : : qi�1qi+2 : : : qk�1, ontraditing our minimality assumption
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Algorithm NICEInput: A digraph GQuestion: Is G nie ?if G is not strongly onneted then answer NO end-ifOtherwise, pik any vertex x in GSet X := fxg and Y := fxgrepeatSet Y := N+�(Y ) nXif Y = ; then answer NO end-ifSet X := X [ Yif X = V (G) then answer YES end-ifend-repeatFigure 1: An algorithm for deiding whether a digraph is nie or notunless the initial pattern was qq.Assume now that the pattern is periodi and has the form (q0q1 : : : qr�1)m, withm > 1. We denoteby Aji the set N(q0:::qr�1)jq0:::qi�1(A0), for every i; j suh that 0 � i � r� 1, 0 � j < m. We laim thatAji \ Aì = ; for every j 6= `. Assume to the ontrary that there exists x 2 Aji \ Aì . From x we anreah all verties belonging to Nqi(Aji ) by using the periodi pattern, sine otherwise we ould �nda viious irle ontraditing our minimality assumption. It follows that Nqi(Aji ) = Nqi(Aì). Thus,Aji+1 = Aì+1, and we again have a viious irle whih ontradits our minimality assumption.Let Bi = [j=m�1j=0 Aji . If Bi 6= V (G) for every i, 0 � i � k � 1, then the sets Bi form a shorterviious irle, a ontradition. If we have Bi = V (G) for some i, then we laim that there is a viiousirle with a pattern of length two having two idential olours. W.l.o.g. we assume that B0 = V ;then Nq0(A10) = A11. Observe that Nq0(A11) � A10 : if not, there exists a vertex x =2 A10 belonging toNq0(A11). Hene x 2 A0̀ for some `, 0 < ` � m�1. Then x 2 Nq0(Al0) but A11\A1̀ = ;, a ontradition.It follows that A10 and A11 form a viious irle for the pattern q0q0. This ompletes the proof. 2For every non-periodi yli pattern Q = q0q1 : : : qk�1 in f1; 2; : : : ; pgk with qi 6= qi+1 for every i,1 � i < k, one an onstrut a p-edge-oloured multigraph GQ having viious irles only with thispattern. The onstrution is as follows. The graph GQ has k + 1 verties, denoted by fv0; v1; : : :,vk�1; wg. The vertex w has loops of every olour , 1 �  � p, and for every i; j, 0 � i; j < k, withji� jj > 1 (mod k), we join vi and vj by edges of every olor distint from qi and qj. Finally, for everyi, 0 � i < k, we add an edge from vi to vi+1 with olour qi and edges from vi to w of every olourexept qi. We will say that the vertex vi is of type qi. Clearly, the sequene fv0g; fv1g; : : : ; fvk�1g isa viious irle with pattern Q. Assume that there exists another viious irle B0; B1; : : : ; B`�1 withpattern b0b1 : : : b`�1. We have two ases to onsider:Case 1 : w 2 B0 [ : : : [B`�1.Sine w has all possible oloured loops, w belongs to every Bi. We may assume that B0 is notsmaller than every other Bi. By onstrution, B1 ontains all verties of type di�erent from b0.Moreover, if a vertex vi is of type b1 and vi�1 2 B0 then vi 2 B1. It follows that jB1j � jB0j and thatall verties in V (GQ) nB1 are of type b0.By the maximality of B0 we onlude that jB1j = jB0j. We an ontinue in the same way and wesee that all the sets Bi have the same ardinality and that all verties in V (GQ) nBi are of type bi�1.Moreover, we have vi =2 Bj if and only if vi+1 =2 Bj+1.



8 On nie graphsWe may thus assume that C0 = V (GQ) n B0 ontains only verties of type q0 (maybe not allof them). Then, C1 = V (GQ) n B1 ontains only verties of type q1 and is obtained from C0 byrotating one step around the irle (v0; v1; : : : ; vk�1). In partiular, we have b0 = q0. Continuing, wesee that the pattern q0q1 : : : qk�1 ontains b0b1 : : : b`�1 and, sine q0q1 : : : qk�1 is aperiodi, we haveq0q1 : : : qk�1 = b0b1 : : : b`�1.Case 2 : w =2 B0 [ : : : [B`�1.Assume that v0 2 B0. If b0 6= q0 then w 2 B1, a ontradition. Thus b0 = q0 and henev1 2 B1. Repeating this, we get b1 = q1 and hene v2 2 B2, and so on. Finally, we onlude thatq0q1 : : : qk�1 = b0b1 : : : b`�1.The reader an observe that if we delete the vertex w in the above onstruted graph GQ weget a graph G0Q whih is half-nie, but not nie, and that the sequene fv0g; fv1g; : : : ; fvk�1g and itsomplement V (G0Q) n fv0g; V (G0Q) n fv1g; : : : ; V (G0Q) n fvk�1g are again the only viious irles.5 Minimum number of edges in nie graphsWe �rst prove Theorem 8.Proof of Theorem 8. We �rst onsider the ase of a nie digraph G and assume that jV (G)j = n.For every vertex x 2 V (G) we denote by N�G (x) the set of predeessors of x. Let G0 be the undiretedgraph onstruted as follows: we set V (G0) = V (G) and, for every vertex x, we link in G0 the vertiesof N�G (x) by a path. Sine the digraph G is k-nie for some k, there exists a walk with pattern (+�)kbetween every pair of verties. Therefore, the graph G0 is onneted and jE(G0)j � n � 1. On theother hand, jE(G0)j = Xx2V (G)(jN�G (x)j � 1) = jE(G)j � nand the result follows.Suppose now that G is a half-nie digraph. By Proposition 7, ifG is not nie then it is bipartite. LetV (G) = A [ B be the orresponding bipartition. Consider the auxiliary graph G0 de�ned as above.Eah lass of the bipartition gives a onneted omponent of G0, denoted by G0A and G0B . Hene,jE(G0A)j = Px2B(jN�G (x)j � 1) � jAj � 1 and, similarly, jE(G0B)j = Px2A(jN�G (x)j � 1) � jBj � 1.From that, we obtain E(G) =Px2A jN�G (x)j + Px2B jN�G (x)j � 2n� 2.We now give examples of graphs ahieving these bounds. Denote by G the irulant digraphG(n; 1; 2) minus one edge. This graph has exatly 2n�1 edges. Moreover, it is strongly onneted andhas no blak hole with pattern +� sine the orresponding graph G0 above de�ned is learly onneted,The graph G is thus nie. For the seond laim, onsider the bipartite oriented graph G given byV (G) = X [ Y , with X = fx0; x2; : : : ; xkg and Y = fy0; y2; : : : ; xkg (k � 4), and E(G) = fx0y0g [fxiyi�1; xiyi : 1 � i � kg [ fy0xk�1g [ fyixi�1; yixi�2 : 1 � i � kg (subsripts are taken modulok). In fat, G is made of two alternating Hamiltonian walks. For every subset of X or Y , made ofonseutive verties (modulo k), both N+(X) and N�(X) onsist of onseutive verties. Moreover,the size of N+(X) or of N�(X) is stritly greater than the size of X exept if X is redued to onevertex from the set fx0; y0; xk; ykg. From that we dedue that for every suÆiently long walk we reahall the verties. 2We now turn to the proof of Theorem 9.Proof of Theorem 9. Let �rst G be a half-nie p-edge-oloured multigraph. Then for every olour, the subgraph G of G spanned by the edges of olour  must over all verties and be onneted. Itfollows that G has at least n� 1 edges and thus G has at least p(n� 1) edges.If G is nie, then eah G must, furthermore, be non-bipartite. It follows that G has at least nedges and thus G has at least pn edges.We now give examples of multigraphs ahieving these bounds. We take the set of vertiesfy; z; x1; x2; : : : ; xn�2g and add p edges, one for eah olour, between verties y and z, z and x1,



P. Hell, A.V. Kostohka, A. Raspaud and E. Sopena 9y and x1, and xi and xi+1 for every i, 1 � i < n � 2. Sine all the edge olours play the samerole, we get from Theorem 4 that this multigraph is not nie if and only if it has a viious irlewith pattern qq for some edge olour q. Due to the triangle yzx1, suh a viious irle learly annotexist. For half-nie multigraphs, it suÆes to onsider a path suh that every two adjaent vertiesare linked by p edges, one for eah olour. Note that it is also possible to onstrut nie or half-niep-edge-oloured graphs (with no multiple edges) having this number of edges by arranging togetheredge disjoint Hamiltonian yles or Hamiltonian paths in a more ompliate way. 26 Nie graphs and universal graphsThe aim of this setion is to prove Proposition 10 and Theorem 11.Proof of Proposition 10. Let H be k-nie, and let G be a graph with the smallest number ofverties in P5k�4 whih has no homomorphism to H. Then G is onneted.Case 1 : The graph G has a vertex v adjaent only to one vertex, w. By the minimality of G,there exists an oriented homomorphism f of G � v to H. Sine H is nie, the vertex f(w) has bothin- and out-neighbours. One of them is suitable for f(v). This is a ontradition.Case 2 : The degree of every vertex in G is at least 2. Replaing every path with internalverties of degree two and end-verties of a larger degree by an edge, we obtain a planar graph G0 withminimum degree at least three. By Euler's formula, it must ontain a yle C 0 of length at most �ve.Sine the length of the orresponding yle C in G is at least 5k � 4, C ontains a subpath v1 : : : vkwhose internal verties have degree two in G. Let G1 = G n fv2; : : : ; vk�1g. By the minimality ofG, there exists an oriented homomorphism f of G1 to H. Sine H is k-nie, f an be extended tov2; : : : ; vk�1. 2Proof of Theorem 11. We deliver the proof in a series of laims. The �rst two of them areimmediately implied by the minimality of H.(i) There is no homomorphism of H to any of its proper subgraphs.(ii) For every ar e in H, there exists a graph Ge 2 OPg suh that every homomorphism f :Ge �! H maps some ar of Ge to the ar e.(iii) Every omponent of H is strongly onneted.Proof. Assume that there exists a partition of V (H) into two parts W and U suh that some ar eleads from W to U but no ar leads from U to W . We onstrut an auxiliary graph G0 as follows :take a opy of the graph Ge from (ii). To every ar e0 of Ge lying in the outerfae, we \glue" a opy ofthe iruit Cg by identifying the ar e0 with an ar of Cg. The graph G0 thus obtained is outerplanarand has girth g. Hene, there exists a homomorphism f : G0 �! H. Sine every homomorphism ofGe to H uses e, there is an ar e00 = wu from Ge whih is mapped to e. Sine both w and u lie onthe outer fae and in the same omponent of Ge, there exists an ar xy on the outer fae of Ge suhthat the ar f(x)f(y) rosses the ut (W;U). Let G0g be the orresponding opy of Cg whih is gluedto xy. Sine Cg is a direted yle, some ar of its image must ross the ut (W;U) in the diretionopposite to f(x)f(y). This ontradits the de�nition of W and U . 2(iv) For every v 2 V (H), for every outerplanar graph G with girth at least g and every x 2 V (G),there exists a homomorphism of G to H whih maps x to v.Proof. Let e be an ar inident to x in H. We onstrut an auxiliary graph G0 as follows : take a opyof the graph Ge from (ii). To every vertex w in Ge we \glue" a opy of the graph G by identifyingthe vertex w with the vertex x of the orresponding opy of G. The graph G0 thus obtained isouterplanar and has girth at least g. Thus, there exists a homomorphism f : G0 �! H. Sine every



10 On nie graphshomomorphism of Ge to H uses e, some vertex of Ge is mapped to v. Thus the orresponding opyof G is mapped as requested. 2From (iv) and the minimality of H we obtain(v) H is onneted.(vi) All verties of H are speial.Proof. This diretly follows from (iv) by onsidering G to be a losed quasi-alternating walk of lengthg. 2Now, the theorem follows diretly from (iii), (v), (vi) and Theorem 5. 2Referenes[1℄ N. Alon and T.H. Marshall. Homomorphisms of edge-oloured graphs and Coxeter groups. J.Algebrai Combinatoris 8 (1998), 5{13.[2℄ R.C. Brewster. The omplexity of olouring symmetri relational systems. Disrete Applied Math-ematis 49 (1994), 95{105.[3℄ R.C. Brewster. Vertex olourings of edge-oloured graphs. Ph.D. Thesis, Simon Fraser University,April 1993.[4℄ O. V. Borodin, A. V. Kostohka, J. Ne�set�ril, A. Raspaud and E. Sopena. On universal graphs forplanar oriented graphs of a given girth. Disrete Math. 188 (1998), 73{85.[5℄ O. V. Borodin, A. V. Kostohka, J. Ne�set�ril, A. Raspaud and E. Sopena. On the maximumaverage degree and the oriented hromati number of a graph. Disrete Math. 206 (1999), 77{89.[6℄ J. Ne�set�ril, A. Raspaud and E. Sopena. Colorings and girth of oriented planar graphs. DisreteMath. 165/166 (1997), 519{530.[7℄ A. Raspaud and E. Sopena. Good and semi-strong olorings of oriented planar graphs. Inf. Pro-essing Letters 51 (1994), 171{174.[8℄ E. Sopena. The hromati number of oriented graphs. J. Graph Theory 25 (1997), 191{205.


