
LaBRI Researh Report No. Compiled on April 18, 2001The �nal version of this paper has been published in Dimas Series in Disrete Math. and Comput. Si. 49(1997), 179{182.ON THE MINIMUM NUMBEROF EDGES GIVING MAXIMUMORIENTED CHROMATIC NUMBER1Alexander V. KostohkaNovosibirsk State University, Novosibirsk, Russia 630090Tomasz  LuzakMikiewiz University, Pozna�n, PolandG�abor SimonyiHungarian Aademy of Sienes, P.O.B.127, Budapest H-1364, Hungary�Eri SopenaLaBRI, Universit�e Bordeaux 1, 33405 Talene Cedex, FraneAbstrat. We show that the minimum number of edges in a graph on n verties with oriented hromatinumber n is (1 + o(1))n log2 n.Keywords. Oriented hromati number.In 1995, in a onversation with the Frenh member of the set of the authors of this note, P�al Erd}osasked about the minimal number of edges a graph on n verties with oriented hromati number n anhave. During the onferene on the Future of Disrete Mathematis in the osy but fruitful atmosphereof the �Sti�r��n Castle we found an elementary answer to this question whih we present below.We onsider �rst an extremal question losely related to Erd}os's problem. A olouring of theverties of a graph G whose edges are initially oloured with k olours is admissible, if every olourlass spans an independent set and eah pair of olour lasses is joined by edges of one olour only.After Alon and Marshall [1℄, we de�ne the k-hromati number �k(G) of G as the minimal number` suh that for any olouring of the edges of G with k olours there exists an admissible `-olouringof the verties of G. Finally, by fk(n) we denote the minimum number of edges in a graph G on nverties for whih �k(G) = n. We shall show that for any �xed k the funtion fk(n) grows roughly asn logk n.Theorem 1 For a �xed k � 2 and n large enoughn(logk n� 4 logk logk n� 5) � fk(n) � dlogk ne(n� dlogk ne) :The argument we use in the proof of Theorem 1 in the ase when k = 2 an be easily employed toanswer Erd}os's original question. Reall (see [2{4℄) that the oriented hromati number of a graph Gis de�ned as the smallest number `, suh that for every orientation ~G of G there exists a tournament~T ( ~G) on ` verties suh that ~G an be homomorphially embedded into ~T ( ~G).1The �rst author was partially supported by the grant 96-01-01614 of the Russian Foundation for FundamentalResearh and by the Cooperative Grant Award RM1-181 of the US Civilian Researh and Development Foundation.The seond author aknowledges support of KBN grant 2 P03A 023 09. The researh of the third author was partiallysupported by the Hungarian National Foundation for Sienti� Researh (OTKA) Grant Nos. F023442 and T016386while the forth author was partially supported by the Barrande Grant no. 97137.1



2 On the minimum number of edges giving maximum oriented hromati numberTheorem 2 Let g(n) be the smallest number for whih there exists a graph G with n verties, g(n)edges, and oriented hromati number n. Then, for large enough n, we haven(log2 n� 4 log2 log2 n� 5) � g(n) � dlog2 ne(n� dlog2 ne) :Proof of Theorem 1. In order to see the upper bound for fk(n) observe that the omplete bipartitegraph on n verties, with bipartition (W 0;W 00), where jW 0j = dlogk ne and jW 00j = n � dlogk ne,has k-hromati number n. Indeed, label elements of W 0 by 1; : : : ; dlogk ne and elements of W 00 by0; 1; : : : ; n� dlogk ne � 1. Now olour the edge fi0; i00g, where i0 2 W 0, i00 2 W 00 , with the jth olour,j = 0; 1; : : : ; k � 1, if j appears at the i0th position in the expansion of i00 in the k-ary system. Notethat for eah pair of verties x0; y0 2W 0 there exists z00 2W 00 suh that the edges fx0; z00g and fy0; z00gare oloured with di�erent olours; it is enough to take z00 whih has di�erent digits at positions x0and y0. Similarly, for every x00; y00 2 W 00 one an �nd a position z0 at whih the digits of the k-aryexpansions of x00 and y00 di�er; then the olours of the edges fx00; z0g and fy00; z0g must di�er as well.Hene, every admissible olouring of the verties of suh a oloured graph must use di�erent oloursfor di�erent verties, i.e. the k-hromati number of the graph equals n.The proof of the lower bound for fk(n) is slightly less immediate. Let G be a graph with n vertiesand e(G) � n(logk n� 4 logk logk n� 5)edges, whih are oloured with k olours. We need to show that for eah suh olouring there existsan admissible olouring of the verties of G whih uses only n� 1 olours.Our argument will be based on the following observation (see Tuza [5℄).Claim. If the edges of the omplete graph Kn are overed by a family of k-partite graphsG1; : : : ; Gm, of r1; : : : ; rm verties, respetively, then Pi ri � n logk n.Let us partition the verties of G into two lasses W 0 and W 00, where W 0 onsists of all vertiesof G of degree at least log2k n. Then jW 0j � 2e(G)log2k n < 2nlogk n ;and so jW 00j � n(1 � 2= logk n). Now, for every vertex w0 2 W 0 we de�ne a omplete k-partite graphGw0 , hoosing as the ith set of the k-partition of Gw0 the set of all verties of W 00 whih are onnetedto w0 by edges of the ith olour. Thus, the total number of verties of Gw0 is the same as the number ofneighbours of w0 in W 00. Furthermore, let H 00 be the graph with vertex set W 00, in whih two vertiesare adjaent if they lie within distane two in the subgraph G[W 00℄ indued by W 00 in G. Note thatevery graph F ontains a k-partite subgraph F 0 suh that the maximum degree of the graph obtainedfrom F by removing the edges of F 0 is at most b�(F )=k. Thus, sine the maximum degree �(H 00)of H 00 is bounded from above by �2(G[W 00℄) � log4k n, H 00 an be deomposed intom00 � 1 + logk(logk n)4 = 4 logk logk n+ 1k-partite subgraphs H1; : : : ;Hm00 . Observe also that the sum of the orders of all graphs fGw0gw02W 0and fHigm00i=1 an be bounded from above byXw02W 0 jGw0 j+ m00Xi=1 jHij� e(G) + jW 00j(4 logk logk n+ 1)� jW 00j� logk n� 4 logk logk n� 51� 2= logk n + 4 logk logk n+ 1�� jW 00jn( logk n� 4 logk logk n� 5)h1 + 2logk n +O� 1log2k n�i+ 4 logk logk n+ 1o



A.V. Kostohka, T.  Luzak, G. Simonyi and E. Sopena 3< jW 00j( logk n� 1) < jW 00j logk jW 00j :Hene, the Claim implies that there exists a pair of verties fx00; y00g whih appears as an edge innone of the graphs fGw0gw02W 0 and fHigm00i=1, i.e. verties x00 and y00 are not adjaent, they have noommon neighbours in W 00, and for eah of their ommon neighbours z0 2W 0 both edges fx00; z0g andfy00; z0g are oloured with the same olour. Thus, the olouring in whih x00 and y00 are oloured withthe same olour, while all other verties of G reeive di�erent olours, is admissible. Consequently,�k(G) � n� 1 and the assertion follows. 2Proof of Theorem 2. Note that a graph G on n verties has oriented hromati number n if andonly if in some orientation ~G of G eah pair of non-adjaent verties of G is onneted by a diretedpath of length two. Now to estimate g(n) from above take the 2-oloured omplete bipartite graphwith bipartition (W 0;W 00) used in the proof of Theorem 1 to get an upper bound for f2(n); the edgesoloured with the �rst olour diret from W 0 to W 00, for the edges of the seond olour hoose theother diretion.Similarly, to get a lower bound for g(n) divide the set of verties of a graph G into two lassesW 0 and W 00, where W 0 onsists of all verties of degree at least log22 n. Then one an mimi the proofof Theorem 1 and show that in order to orient all edges in suh a way that all non-adjaent vertiesof W 00 are joined by a direted path of length two, G must have at least n(log2 n� 4 log2 log2 n� 5)edges. 2We onlude with a few words on the expeted behaviour of fk(n) and g(n). It is tempting toonjeture that the upper bounds given in Theorems 1 and 2 are lose to the truth and fk(n) =n logk n+O(n) and g(n) = n log2 n+O(n), where the term O(n) depends on the arithmeti propertiesof n. On the other hand, we should mention that the elementary bipartite onstrution we used to getthe upper bound for fk(n) is far from being best possible. For instane, one an modify it slightly bydeleting one vertex from the smaller set of the bipartition at the same time adding a perfet mathing tothe larger of the sets; the graph obtained in suh a way has k-hromati number n� 1 and, typially,less than dlogk(n � 1)e(n � 1 � dlogk(n � 1)e) edges. Furthermore, if we have a family of graphsG1; G2; : : : ; Gr, suh that Gi has ni verties and k-hromati number ni, then the graph 1 +Pri=1Giobtained by taking disjoint opies of G1; G2; : : : ; Gr and adding to it one more vertex of degreePri=1 nihas the largest possible k-hromati number as well. Hene, one an take small \extremal" graphsand build out of them graphs with a large k-hromati number, whih also improve the upper boundfor fk(n) given in Theorem 1. The same observation applies for the oriented hromati number; theReader an easily provide examples of sparse small extremal graphs for this problem with n vertiesand less than dlog2 ne(n � dlog2 ne) edges, and desribe a reursive onstrution for obtaining suhan extremal graph out of two smaller ones. However, to �nd an exat guess for the struture of theextremal graphs does not seem to be easy for us.Referenes[1℄ N. Alon and T.H. Marshall, Homomorphisms of edge-oloured graphs and Coxeter groups, J.Algebrai Combinatoris, to appear.[2℄ A.V. Kostohka, E. Sopena and X. Zhu, Ayli and oriented hromati numbers of graphs, J.Graph Theory 24 (1997), 331{340.[3℄ A. Raspaud and E. Sopena, Good and semi-strong olorings of oriented planar graphs, Informa-tion Proessing Letters 51 (1994), 171{174.[4℄ E. Sopena, The hromati number of oriented graphs, J. Graph Theory 25 (1997), 191{205.
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