LaBRI Research Report No. Compiled on April 11, 2001
The final version of this paper has been published in Math. System Theory 28 (1995), 41-65.

DIFFERENT LOCAL CONTROLS
FOR GRAPH RELABELLING
SYSTEMS!

Igor LITOVSKY, Yves METIVIER and Eric SOPENA
Laboratoire Bordelais de Recherche en Informatique, Unité associée C.N.R.S. 1304, 351, cours de la
Libération, 33405 Talence, France.

Abstract. We are interested in models to encode and to prove decentralized and distributed computations
on graphs. In this paper, we define and compare six models of graph relabelling systems. These systems do
not change the underlying structure of the graph on which they work, but only the labelling of its components
(edges or vertices). Each relabelling step is fully determined by the knowledge of a fixed size subgraph, the local
context of the relabelled occurrence. The studied families are based on the relabelling of partial or induced
subgraphs and we use two kinds of mechanisms to locally control the applicability of rules : a priority relation
on the set of rules or a set of forbidden contexts associated with each rule. We show that these two basic (i.e.
without local control) families of graph relabelling systems are distinct, but whenever we consider the local
controls of the relabelling, the four so-obtained families are equivalent.

Keywords. Graph relabelling systems, Graph grammars.

1 Introduction

We are interested in models to encode and to prove decentralized and distributed computations on
graphs. The presented models are graph relabelling systems satisfying the following constraints which
seem to be natural when describing distributed computations with a decentralized control:

(C1) they do not change the underlying graph but only the labelling of its components (edges and/or
vertices), the final labelling being the result of the computation,

(C2) they are local, that is, each relabelling step changes only a connected subgraph of a fixed size in
the underlying graph,

(C3) they are locally generated, that is, the application condition of the relabelling only depends on
the local context of the relabelled subgraph.

For such systems, the distributed aspect comes from the fact that several relabelling steps can be
performed simultaneously on “far enough” subgraphs, giving the same result as a sequential realisation
of them, in any order.

In this paper, we define and compare six types of graph relabelling systems. Any such system, say
R, is defined by a finite set L of labels (labels used in the relabelled graphs), a set I C L of initial
labels (every graph starting a relabelling process has only labels in I) and a finite set of relabelling
rules ; it may be equipped with a mechanism which locally controls the application of the relabelling
rules. A relabelling rule r consists of the relabelling of a fixed connected subgraph G, :

i (G) — (Gy, V)

With the support of the PRC Mathématiques et Informatique, the European Basic Research Action ESPRIT No
3166 ASMICS and the ESPRIT-Basic Research Working Group “COMPUGRAPH II”.

2 Different local controls for graph relabelling systems

We say that a labelled graph (G,) is relabelled into (G,I’) by R if there exists a finite sequence of
allowed applications (in a sense specified below) of relabellings in R leading from (G,I) to (G,I').
Given a noetherian graph relabelling system R, we are interested in the function Irredz which, with
each initial graph (G,[), associates the set of irreducible graphs (i.e. where no allowed application of
a rule is possible) obtained from (G,1). We say that two noetherian graph relabelling systems R and
R’ are equivalent when they have the same set of initial labels and when Irredr = Irredp:. A family
F1 of graph relabelling systems is less powerful than a family Fs if every noetherian graph relabelling
system in F is equivalent to a graph relabelling system in Fo. The families F; and F are equivalent
if each one is less powerful than the other one.

We now present the six types of graph relabelling systems we will consider in this paper. For each
of them we have to specify the notion of allowed application of a rule r in a graph (G,[). The first
criterium characterizing the applicability of r is given by the definition of an occurrence of the graph
(Gy, A) in (G,1). Such an occurrence may be :

e a partial subgraph of (G,1) isomorphic to (G, \),
e an induced subgraph of (G,1) isomorphic to (G,).

Hence, we respectively obtain the families of pGRS’s and iGRS’s. We prove that the family of
pGRS’s is strictly less powerful than the family of iGRS’s.

On the other hand, to increase the computational power of these basic graph relabelling systems,
we use two kinds of local control on the applicability of rules :

e The first one has been introduced in [4] and consists of adding a partial order relation, called
priority, on the set of relabelling rules. In such systems, the application of a rule r is allowed
on an occurrence 6 of (G, \) if no rule with a greater priority has an occurrence overlapping 6.
Note that the effect of these priorities is strictly local (constraint (C3) is respected).

e The second one, inspired by [5], consists of adding to each relabelling rule r a set of forbidden
contexts, where a context is a graph having (G, \) as subgraph. For such systems, an application
of r is allowed on an occurrence 6 of (G,,\) if € is not a subgraph of a forbidden context in

(G, 1).

Remark 1 Partial order and forbidden context conditions are known in formal language theory [6].
However, partial order of rules is used here in a strictly local way.

These relabelling systems are respectively called PetGRS’s and FCxGRS’s (for = € {p,i}). It is
easy to see that the so-defined families are strictly more powerful than the previous ones, and that
the family of FCxzGRS’s is more powerful than the family of PxGRS’s (for z € {p,i}). The main
part of this paper is devoted to proving the equivalence of the FCpGRS’s and the PpGRS’s. This
result is not immediate : for example, it is easy to give a one-rule FCpGRS “recognizing” the class
of complete graphs, but no “simple” PpGRS can do it. The main difficulty comes from the fact that
a FCpGRS forbids the application of a relabelling rule by only considering the forbidden contexts
associated with this rule, since a PpGRS only forbids such an application when another rule (with a
greater priority) is applicable on an overlapping occurrence. Assuming first that one works on graphs
having a distinguished vertex, depth-first traversals can be sequentially processed by using a PpGRS
(see example 1.4). In this case, every FCpGRS can be simulated by a PpGRS in the following way
: each depth-first traversal attempts to apply a fc-rule ; when it has found one or more such rules, it
“chooses” one of them and applies it ; when no fc-rule is applicable, the PpGRS stops (see Riocsim
in Section 4). But it is known that the problem of distinguishing one vertex (known as the election
problem) is not solvable for arbitrary graphs (see [1, 2, 12]). Hence, the main idea of this paper is to
construct, using a PpGRS, a partition of the graph into subgraphs (called countries) of k-bounded
diameter (where k£ is the maximal diameter of the graphs in the rules of the FCpGRS), each country
having an elected vertex (the capital). This “k-election” mechanism, used together with the PpGRS
Riocsims enables us to simulate every FCpGRS by a PpGRS (Proposition 6.1).

I. LITOVSKY, Y. METIVIER AND E. SOPENA 3

We also prove that with a local control Y (Priority or Forbidden Contexts), the YpGRS’s and
the YiGRS’s are equivalent. The following scheme summarizes the relative powers of these different
families.

pGRS 1GRS PpGRS
FCpGRS
PiGRS
FCiGRS
This paper is organized as follows. Section 1 contains the definitions. Sections 2 to 5 describe
the different steps used for proving Proposition 6.1 : the k-election problem is solved in Section 2,
a PpGRS enumerating m-tuples of vertices is given in Section 3 and used for the local simulation
of a FCpGRS by a PpGRS in Section 4, Section 5 realizes the global simulation. In Section 6, the
equivalence between PpGRS’s and FCpGRS’s is proved. In Section 7, we finally compare the other
relabelling families we have introduced.

2 Definitions and notation

2.1 Graphs

A simple, loopless, undirected graph G [3, 7] is defined as a pair (v(G), e(G)) where v(G) is a finite
set of vertices and e(G) a set of edges, an edge being a subset of two distinct vertices in v(G). Let
v1 and vy be two vertices in v(G) ; a path p from vy to v9 in G is a sequence xy, ..., x, of vertices in
v(G) such that for 0 <i < n, {z;,z;i11} € e(G), xo = v1 and z, = ve ; n is said to be the length of
p. The graph G is connected if any two vertices in v(G) are linked by a path. The distance between
two vertices v1 and ve in G, denoted d(v1,v9), is the length of the shortest path from v; to ve. The
maximal distance between any two vertices in v(G) is called the diameter of G.

Let L = (Ly, L) be a pair of two finite sets of labels (L, (resp. L.) stands for the set of vertex
(resp. edge) labels). A labelled graph is a pair (G,) where G is a graph and A = (X, A\.) where A,
(resp. A.) is a mapping from v(G) (resp. e(G)) to L, (resp. Le). We will denote by A (g,), or simply
|A|, the number of A-labelled vertices (or edges) in (G,)\). Let (G,) and (G',)\') be two labelled
graphs. (G, \) is a (partial) subgraph of (G',) if

v(G) C (@),
e(G) C e(G"),
A= Nl =Nl Xele)-

where /| (resp. AL|g) denotes the restriction of A, (resp. Ae) to v(G) (resp. e(G)).

Remark 2 From now on, we will simply use)\’ instead of \'|¢ whenever G is clearly given by the
context.

An injective mapping 6 from v(G) into v(G') is an occurrence of (G, \) in (G', \') if for any z,y
in v(G), we have :
{z,y} € e(G) = {0(2),0(y)} € e(G)
Ao(z) = X, (0())
Ae({z,y}) = A({0(2),0(y)})

Let 6 be an occurrence of (G,) in (G', \'); we will denote by 6(G) the graph (0(v(G)),E) where
E={{0(x),0(y)} / {z,y} € e(G)}. Note that (#(G), ') is a subgraph of (G', \).

Let (G,) be a subgraph of (G',X). We say that (G, \) is an induced subgraph of (G, \') iff for
all z,y in v(Q), {z,y} € e(G') < {z,y} € e(G). An occurrence 0 of (G",\") in (G', \') is said to
be an induced occurrence if (0(G"), \') is an induced subgraph of (G', \).

Let r be an integer and z be a vertex in v(G) ; the ball subgraph B(z,r) is the induced subgraph
of (G, \) whose vertices are all the vertices in v(G) whose distance to vertex x is at most r.

4 Different local controls for graph relabelling systems

Remark 3 From now on, as we will only deal with connected labelled graphs, we will simply use
graph to denote connected labelled graphs. By using a special “empty label”, denoted by e, we will
be able to consider unlabelled graphs as labelled ones.

2.2 Relabelling of partial or induced subgraphs

A partial-Graph Relabelling rule is a triple (Gy, Ay, AL), also denoted (G, A\r) — (G, AL). (Gr, A)
(resp. (Gr, L)) is called the left-hand side (vesp. right-hand side) graph of the rule r. The relabelling
relation — is defined by : (G,) — (G, \') if there exists an occurrence 0 of (Gy, A) in (G, A) such
that 6 is an occurrence of (G, \)) in (G, X'), for any z € v(G) \ v(0(G,)), \y(z) = X (z) and for any
e € e(G)\ e(0(Gr)), Ae(e) = AL(e). We say that 6 is the relabelled occurrence.

A partial-Graph Relabelling System (pGRS) is a triple R = (L, I, P) where L = (L,, L) is the set
of labels, I = (I, I.), with I, C L, and I, C L., is the set of initial labels and P is a finite set of
partial-graph relabelling rules, such that the graphs in these rules have labels in L. The relabelling
relation — is defined by : (G,\) — (G,X) if and only if there exists a rule r € R such that
(G,A) — (G, X).

A partial-Graph Relabelling System with Priorities (PpGRS) is a triple R = (L, I, P) where L and
I are defined as before and P is a finite set of relabelling rules equipped with a partial ordering relation
> called priority which works as follows : let 8 be an occurrence of a rule » € R in a graph (G, \). The
rule r is applicable to 6 if there is no occurrence 6 of a rule v’ > r such that v(0(G,)) Nv(8'(G,/)) # 0.
If two or more rules are simultaneously applicable in (G, \), one of them (nondeterministically chosen)
is applied. We write (G,\) —» (G,)') if there exists a rule r € R such that (G,\) — (G,\") and
r is applicable in (G, \) to the relabelled occurrence. In the sequel, the priority of each rule may be
specified by using an integer to indicate the ordering (whenever two rules have the same integer as
priority, they are not comparable).

A partial-Graph Relabelling rule with forbidden contexts (fc-rule for short) is a pair (r, H,) where
r is a relabelling rule (G, Ay, \..) and H, is a finite family of pairs {((G;, \;), 0;) }ic1, where (G, \;) is a
graph (called forbidden context) and 6, is an occurrence of (G, A;) in (G;, A;). The forbidden contexts
of the fc-rule are used as follows : let # be an occurrence of (G, A;) in (G, A); the fc-rule (r,H,) is
applicable to @ if for no 7, there exists an occurrence ¢; of (Gj, \;) in (G, \) such that ¢;6; = 0.

A partial-Graph Relabelling System with Forbidden Context (FCpGRS) is a triple R = (L, I, P)
where L and I are defined as before and P is a finite set of fc-rules. We write (G,\) —> (G, X) if
there exists a rule 7 € R such that (G,\) — (G,\) and r is applicable in (G,) to the relabelled
occurrence.

The same notions can be defined by using induced occurrences instead of partial ones, leading
respectively to i-, Pi- and FCiGRS. We shall use Z—R> to denote the corresponding relabelling relations.

Example 4 Consider the graph (G, \) of Figure 1(f) and the graph relabelling rules r = (G, A, A.),
s = (G, As, Ay), where (G, \r), (G, AL), (Gs, Xs) and (G, \,) are given by Figure 1(a,b,d,e) respec-
tively. Recall that unlabelled edges are considered as labelled with the empty label.

e As rule of a pGRS, r can be applied to the four corners of graph (G, \) (vertices marked as o).

e As rule of a iGRS, r can be applied to each corner of graph (G,)\) except to the upper-right
one, since there is a forbidden edge linking two vertices of the occurrence.

e As rule of a FCpGRS, with graph (G, A1) of Figure 1(c) as forbidden context, r can only be
applied to the two upper corners of graph (G, \).

e Asruleof a FCiGRS, r can be applied to the upper-left corner of (G, A) and to its bottom-right
corner, since the forbidden context of r does not appear as an induced subgraph.

e As rule of a PpGRS, with s > r, rule r can only be applied to the two upper corners of (G,).

I. LITOVSKY, Y. METIVIER AND E. SOPENA)

B
C A B A B C A
A A A

(a) The graph (G,,Ar) (b) The graph (G, X';) (c) The graph (G1, A1)

A C

©
C B B C Al \
B C A
. Fany . Fany
B C /

(d) The graph (Gs,As) (e) The graph (Gs,\s) (f) The graph (G,)

o Q

e
&

Figure 1: Applicability of rewriting rules.

e Asrule of a PiGRS, with s > r, rule r can be applied to the upper left corner, and the bottom-
right corner of (G, \) (since s cannot be applied to occurrences overlapping these corners).

2.3 Relabelling system behaviour

Any computation on a graph (by means of a relabelling system) must give a result in a finite time.
Thus (unless explicitly stated otherwise) we will only consider noetherian graph relabelling systems,
which means that from any initial graph, there exists no infinite relabelling chain.

Given a graph relabelling system R, we consider the reflexive transitive closure LR> of —= (or

Z—R>) A graph (G, ') is said to be irreducible with respect to R if no rule of R is applicable to (G,).
For every graph (G,) with labels in I, we denote by Irredr((G,))) the set of irreducible graphs

obtained from (G, \):
Irredr((G,) ={(G,X) / (G,\) —& (G,\) and no rule of R is applicable to (G,\")}

Let R and R’ be two relabelling systems. The systems R and R’ are said to be equivalent if I = I’ and
for every graph (G, \) with labels in I we have Irredg((G,)\)) = Irredg: ((G,)\)). We will say that
a family F; of graph relabelling systems is less powerful than a family Fs, if every graph relabelling
system in Fy is equivalent to a graph relabelling system in Fy. The families 1 and Fo are equivalent
if each one is less powerful than the other one.

We now give some examples of various GRS's. To avoid any ambiguity between the left and
right-hand sides of the relabelling rules (which correspond to the same underlying unlabelled graph)
we will number the vertices by z1, xo,...

Example 5 The following iGRS is such that L = ({C,nC},{e}), I = ({C},{e}) and P has two rules
given below. We have the property that a graph (G,\') € Irred((G,\)) has only C-labels if G is a
complete graph, it has only nC-labels if G is not complete.

C C C nC nC nC

Ry ° . ° ° ° °
z1 z2 z3 z1 Z2 z3

6 Different local controls for graph relabelling systems

nC C nC nC
Ry — o — — o
1 T3 1 T3

Rule R; is applied whenever the two vertices associated with z; and z3 are not linked by an edge.
In such a case, the graph G is not a complete graph, and rule Ry broadcasts the nC-label to all other
vertices. Whenever the graph G is complete, no rule can be applied.

Example 6 The following pGRS is such that L = ({0,1},{e, x}), I = ({0},{e}) and P has three
rules given below. An irreducible graph will be such that all its vertices are labelled 0 or 1 according
to the parity of their degree.

0 0 1 1
Ry — o — —x—eo
T To z T3
0 1 1 0
Ro1 ———o — *—x—eo
T T2 HA Z2
1 1 0 0
Ry) — o—x—e
T1 T2 T1 T2

Every rule marks an edge of the graph and updates the labels of its end-points. When all the
edges are marked, the so-obtained graph is irreducible.

Example 7 The following PpGRS is such that L = ({N, A, M, F},{e,x}), I = ({A,N},{e}) and P
has two rules given below. This PpG RS computes a spanning forest (i.e. a subgraph which is a forest
including all the vertices) of the initial graph such that each tree is “rooted” at a vertex with initial
label A. The intuitive idea is the following : from each initially A-labelled vertex starts a computation
which consists in “attaching” free vertices (i.e. with a N-label) by marking the corresponding edges
(with a x-label).

A N M A

Ry o — —x—e priority 1
T T2 T T2
M A A F

Ry —x—=o — —x—e priority 0
z1 z3 z1 z3

Every tree in the spanning forest is computed in a depth-first way : every active (A-labelled)
vertex chooses one of its free neighbours which becomes active (rule R;). When an active vertex has
no more free neighbours, it activates its father, i.e. the M-labelled vertex to which it is linked by
a marked edge (rule Ry). If it does not have such a neighbour, that means that it was one of the
initially A-labelled vertices. At the end of the computation, any initially A-labelled vertex has label
A, every initially N-labelled vertex has label F. Note that we are interested in initial graphs with at
least one A-labelled vertex (otherwise, the initial graph is irreducible). If there is exactly one initially
A-labelled vertex z, this PpGRS constructs a spanning tree rooted at x.

Figure 2 shows a sample derivation of this PpGRS.

Remark 8 The computation of any tree in the spanning forest is done “sequentially” : at any moment,
there is only one active vertex in each tree. We can increase the “parallelism” of this computation by
simply replacing the M-label of the right-hand side of rule Ry by a A-label and deleting rule Ry. The
computation is no longer “depth-first-search-like” (neither “breadth-first-search-like”) and the vertices
of an irreducible graph are then all A-labelled.

I. LITOVSKY, Y. METIVIER AND E. SOPENA 7

A N N M A N M A N
— —
R1 Rl
N A N N A N A M N
A F N A F N A F N
q
— — —
Ry Ry Ry
[
A M N F A N F M A
A F A A F F A F F
— — —
Ry Ry Ry
F M M F M A F A F

Figure 2: Computing a spanning forest.

Example 9 The following FCpGRS is such that L = ({N,T},{e}), I = ({N},{e}) and P has two
rules given below. We have the property that an irreducible graph (G, \) has only T-labels if and only
if G is a tree. The first relabelling rule is:

N N N T
Ry) — — o
T T2 T T2

and its forbidden context is:

N N N
° ° °
T Z2 z3
The second rule is:
N T
RQ L] — [J
T T
and its forbidden context is:
N N
— o
il 9

The forbidden context of Ry forces x5 to have exactly one neighbour with label N, and the forbidden
context of Ry forces z; to have no neighbour with label N.

Figure 3 shows two sample derivations of this FCpGR.S, each one leading to an irreducible graph.

3 The k-election problem

It is not possible to elect exactly one vertex in a graph with a PpGRS [9]. For this reason, we are
interested in “local” elections called k-elections where k is a given integer. The k-election problem on a
graph can be intuitively introduced as follows. Each vertex of the graph stands for a town, each edge
for a road segment joining two different towns. Initially, each town has a neutral status. We want

8 Different local controls for graph relabelling systems

N N N T
N N (3) T N T T T T
— — —
Ry Ry Ry
N N T T T T T T

(a) Derivation of a tree.

(b) Derivation of a cyclic graph.

Figure 3: The recognition of trees.

to organize the graph by delimiting countries, each country having one capital. In each country, the
distance between any town and the capital must at most be k. Moreover, the distance between any
two capitals in the graph must be at least k + 1. Each capital (resp. each town) has also to “know”
the towns (resp. the capital) of its country — in the sense that there is a marked path between a
capital and each of its towns.

The PpGRS which solves this problem will fulfill two additional requirements : the towns in all
the countries will be classified according to their distance to the capital and any town will belong
to one of the countries whose capital is the nearest. This will be done by constructing a “spanning
forest” of the initial graph (i.e. a partial subgraph of the initial graph which is a forest including every
vertex). Each tree (standing for a country) of this forest will be rooted at a capital.

To solve this problem, we consider the PpGRS Ri—_ciee = (L,I,P). The set of labels L =
({N,C,T,T1,..., T },{x,e}) where N stands for Neutral, C' for Capital, T for a town belonging to a
country (but not yet classified), T; (1 < i < k) for a classified town, x for marked edges (i.e. edges
belonging to the spanning forest) and e (the empty symbol) for unmarked edges. The set of initial
labels is given as I = ({N}, {€}).

The set of rules P is given in Figure 4. Labels X; stand for any vertex label. Except when it is
explicitly specified (rules R4(7)), any edge can be marked or unmarked, and this is preserved in the
right-hand side of any rule.

The priorities are given as :

Ry < Ry(k) < Ry(k—1) <--- < Ry(1) < {RS(i)}k<i§2k < {RZ(i)}ISiSk

Rule Ry says that any neutral town can spontaneously become a capital, except if there already
exists a capital in its k-neighbourhood (rules Ry(i) prevent rule R; to be applied).

Rules Ry(7) are intended to mark any town in the k-neighbourhood of a capital as a town belonging
to a country (label T'). The classification of these towns will be done later, by using rules Ry(7).

Rules R3(i) have been essentially introduced for technical purposes. Thanks to them, a capital
will only begin to classify its towns when the capitals of its neighbouring countries are elected. This

I. LITOVSKY, Y. METIVIER AND E. SOPENA 9

N C
Ry : e — o
T T
C X Xi—l N C X Xi—l T
Ry (i) : o—e .- o— —> o—o --- &—
o T Ti-1 I o T Ti-1 Xy
for1 <i<k
C X1 Xi—l N C X1 Xi—l C
R3(1) : *—o .- &— —> Oo6—0 - 6—@
To T Ti-1 T To T Ti-1 T
for k <1 <2k
c T T,w T c T T T
Ri(i): e—e -+ &— — o —0 -~ &—xo
To T Ti-1 T To T Ti-1 T
for1 <i<k
Figure 4: The PpGRS Ri_ciec-
C T N C Ty o
o T1 T T3 To T1 T 3
) N T T2
T4 T4
(a) A bad intermediate configuration (b) A good terminal configuration

Figure 5: The classification problem.

will ensure a good classification of the towns in a country. Figure 5 shows what kind of problem would
arise if we do not use such rules : let & = 2 and suppose vertex zy becomes a capital. But for rules
R3(i), it can mark vertices 21 and x5 as classified towns (see figure 5(a)). Then the system terminates
by electing, say x3, as a capital and relabelling x4 by T'; x4 remains an unclassified town. Figure 5(b)
shows a good terminal configuration, obtained by using rules R3(7).

Rules R4(7) implement the classification of the towns. Their priority ensures that each town will be
labelled according to its distance to the nearest capital (a T;-label means that this town is at distance
i from the nearest capital).

We now give some results on the behaviour of the PpGRS Ri_ejee-

Proposition 10 The PpGRS Ry _ciec 18 noetherian. Moreover, if (G,)\) is a graph with unmarked
edges and n vertices all N-labelled, the number of relabelling steps in any derivation sequence issued
from (G, \) is bounded by 2n.

Proof. The termination criteria is given by the strict decreasing of the ordered pair of labels (| N|, |T'|):
whenever the number of N’s does not decrease the number of T"s does.

Any vertex is successively labelled by the sequence (N, C) or (N, T, T;). As every rule modifies
the label of at least one vertex, we can say that the length of any derivation sequence is bounded by
the quantity 2n. |

10 Different local controls for graph relabelling systems

Proposition 11 Let (G, \) be a graph with every vertex N-labelled and with unmarked edges. Let
(G, X') be a graph such that :

(G,\) = (G,\N)

Ri—elec
Then the graph (G, \') satisfies :
(P1) If z and y are two C-labelled vertices of (G, \') then the distance from x to y is at least k + 1.

(P2) If x is a T-labelled vertex of (G,\'), then there exists a C-labelled vertex y at distance at most
k from vertex x.

(P3) If = is a T;-labelled (i > 1) vertex in (G, \'), then there exists no N-labelled vertezx at distance
less than k+ 1 from .

(P4) The subgraph induced by the marked edges is a forest with all vertices labelled C, Ty, ..., Ty 1
or Ty, and such that :

— FEuvery tree has exactly one C-labelled vertez,

— FBvery T;-labelled vertex x belongs to that subgraph and is connected to the C-labelled vertex
of its tree by a marked path whose length is i.

(P5) If z is a Tj-labelled vertex of (G, \'), then we have d(z, {\N~'(C)}) = i.

Proof. All these properties are obviously true for the initial graph. Let us suppose that (G, \;)
satisfies these properties and let (G, A\;11) be such that

(G’ AZ) 7??— elec (G’ Ai+1)

We have to show that (G, \; 1) also satisfies these properties. Most of them are very easy to check.
Hence, we only give proofs of (P1) and (P3) as examples.

(P1) Onuly rules R; and R3(i) can lead to a C-labelled vertex. This property is guaranteed by the
greater priority of rules R (i).

(P3) Every T;-labelled vertex, say x, is issued from a rule Ry (7). If there exists a N-labelled vertex y
at distance less than k + 1 from z, rules Ry (¢) or R3(i) should have been applied first, thanks to
the priorities.

|

We now state the main result of this section, which says that the PpGRS Rp_cjec solves the
k-election problem.

Theorem 12 Let (G, \) be a graph with unmarked edges and whose vertices are all N -labelled. Then,
any graph (G,X') in Irredg, .. ((G,X)) is such that the subgraph induced by the marked edges is a
spanning forest of (G, \') with all vertices labelled C, Ty, ..., Ty_1 or T} and satisfying :

e FEuvery tree of that forest has exactly one C-labelled vertex,
e The distance between two C-labelled vertices is at least k + 1,

e Every Tj-labelled vertex x satisfies d(z, N' =1 (C)) = i.

I. LITOVSKY, Y. METIVIER AND E. SOPENA 11

Proof. If (G, \) is irreducible, it contains neither N-labelled vertices (rules Ry, Rz(i) or R3(i) should
be applicable) nor T-labelled vertices (rule R4(i) should be applicable). Hence, (G, ') only contains
C-, Ty-, ..., Ty,_1- or Ty-labelled vertices. Property (P1) ensures that the distance between two C-
labelled vertices is at least k& + 1. By property (P5), the subgraph induced by the marked edges is a
spanning forest of (G, \'), each tree having exactly one C-labelled vertex. Moreover, by property (P6)
each Tj-labelled vertex satisfies the stated property. a

4 The m-enumeration problem

Let G be a graph and m, r be two integers. We can construct a PpG RS which enables us to “enumer-
ate” all the m-tuples of distinct vertices in a ball B(z,r) (given together with a rooted spanning tree
T(x)) for any “given” vertex z in G. A given vertex = means that z has a special label which does not
appear elsewhere in G and “a PpGRS R enumerates all the m-tuples of B(z,r)” means that during
a computation of R on G, for every m-tuple (y1,...,ym) of B(x,r), there is exactly one intermediate
relabelling A\ such that h(Ay(y1)) = 1,...,A(Ay(Ym)) = m, and h(Ay(z)) = x for all z & {y1,...,Ym}
where h is a fixed mapping from L, to {1,...,m,*}. Note that we can obtain a spanning tree of
B(z,r), rooted at x, by using an obvious variation of the PpGRS of example 1.4 (in which all nodes
of the tree are forced to have a distance at most r to z).

Let us intuitively describe the behaviour of such a PpGRS : vertex z will be the controller of
the computation. It first looks for a vertex, say vy, which can be chosen as the first component of a
new m-tuple. When such a vertex is found, it looks for a second one and so on. When for ¢ given
vertices v1,...,v; the system has enumerated all the m-tuples having these vertices as first (ordered)
components, vertex v; is marked as having been the i*" component of all such m-tuples and a new 7"
component is searched. All these steps will be handled by depth-first traversals : vertex z initiates a
traversal which looks for a given vertex ; when the control returns to z, it initiates a new traversal
for the next search. This computation terminates when all the vertices in the graph are marked as
having been the first component of all possible m-tuples.

Lemma 13 There is a (non noetherian) PpGRS Rirqy which, given a rooted tree T(x), makes alter-
nating tree traversals of T(x).

Proof. The PpGRS Rirqy that we now describe works on T'(z) where the vertex z is the root of
T(x). Initially the root has label Ry and all other vertices label Ny. In the first traversal there is
always exactly one Ap-labelled vertex (the “active” vertex, initially the root), all vertices on the path
from the root to the active vertex have label W, and the other vertices have label Ny (if they have not
yet been visited) or label Ny (if they have been visited). At the end of the first traversal the root has
label R; and all other vertices label N7. The second traversal can then be made (simply interchange
the roles of 0’s and 1’s) and the system indefinitely alternates such traversals.

In the following rules, ¢ € {0,1} and R stands for Root, A for Active, N for Neutral and W for
Waiting:

R; A;
Ry ° — ° priority -1
T T
A; N; w A;
Ry ——+o — ——o priority 2
T T2 T T2
W A; A; Nyi_;
R; —+o — —o priority 1
T T2 HA Z2
A; Ry_; o
Ry ° — ° priority -1
T z1

12 Different local controls for graph relabelling systems

Proposition 14 Let m and r be two integers (m,r > 0). There exists a PpGRS Renym which, given
a graph (G,) and any vertex © € v(G), enumerates all m-tuples of the ball B(x,r) in (G,).

Proof. As the vertex z is given, we may assume that a rooted spanning tree T(x) of B(z,r) is
constructed, which means that some edges in (G, \) are marked as belonging to T'(z). The PpGRS
Renum that we now describe works on T'(z) (all the edges in the following rules have to be considered
as marked). Each computation of Repym corresponds to a sequence of alternating tree traversals of
T (z) based on the PpGRS Riray-

Every vertex v € B(x,r) is labelled by a couple or a triple of components. The first component is a
label of Rypqy @ Ri, Aj, Nj or W. The second component is a m-tuple of labels (I1,...,1,,) describing
the state of v with respect to the enumeration of m-tuples. These labels are such that :

e [; = 1 means that v is the 4™ component in the current m-tuple,

e [; =1 means that v has been the 4™ component of all the m-tuples whose j — 1 first components
are the (unique) vertices such that iy =1,...,0[;_1 =1,

e [; = 0 means that v is not in one of the previous cases.

Finally the active vertex (with A; or R; as first component) has an additional “action label” :
Search; for Searching the 4§ component of a m-tuple, Return; when the 4§ component has been
found (then the active vertex has to return back to the root), Reset; when the 4™ component has been
used as j'' component of all the m-tuples having the same j first components and has to be marked
as such (i.e., has to change its [;-label from 1 to 1), and Stop when the computation has terminated.

Initially, for every vertex, we have [; =0, Vj € {1,...,m}. Moreover, the root has a (Ao, Search,)
label and any other vertex has a Ny label. The irreducible graphs are such that for every vertex, I; = 1
and [; = 0,1 <j <m.

The PpGRS Renum contains rules Ry to R4, extended with all possible values of the second and
third components of the labels (but does not contain the rule R4 when the active label has a Stop
component). The role of rule Ry is taken over by rules Rg(5), R7(j) and Ryo(j), below.

In the following rules of Repum, 0; (vesp. 1;, 1;) means that [; =0 (resp. [; =1, [; = 1), and only
the components involved in the relabelling are specified.

R5(j) is used when the j*" component of a m-tuple is found.

(A4;,04, fearchj) (A;, 15,]:Leturnj)

T T

R5(5) priority 4
for an active vertex such that Vz € {1,...,5 — 1,7+ 1,...,m}, I, # 1:

When such a j'™ component has been found, the (4;, Return;) label finishes its traversal, returns
to the root by means of rules Ry and Rj3 of R4, with the corresponding labels of Repum and becomes
(Ri—;, Return;) by rule Ry. Then, when j < m, the root initiates a new traversal for searching a
(j + 1)t component. This is done by the following rules :

(R;, Return) (A;, Searchji1) o
Rg(j;7 <m) ° — ° priority 0
T Ty

When a m'™ component has been found and the (4;, Return,,) label has returned to the root, this
m'" component must be marked (it can no more be the m!™ component of a m-tuple having the same
m — 1 first vertices). This process is initiated by rule Rg(m), and done by rules Rg(m) and rules Rz to
Ry of Ry with the corresponding labels of Repym. Next, a new mth component has to be searched,

which is initiated by rules Rig(m).
(R;, Returny,) (A;, Resety,)
° °

T z1

Rg(m) priority 0

I. LITOVSKY, Y. METIVIER AND E. SOPENA 13

When a ;'™ component (5 > 1) has not been found after a complete traversal (this means that all
remaining vertices have already been the j™ component or that there is not enough vertices in the
ball), the vertex with label 1;_; must be marked. This process is initiated by rule R7(j), and done by
rules Rg(j —1) and Ry to R4. In such a case, all the vertices with labels 1; have to be reset to 0; (the
(— 1)*" component will change). This will be done by rules Ry(j). Next, a new (j — 1) component
has to be searched, which is initiated by rules Rio(j — 1).

(R;, Search,) (A;, Reset;_1)
° °

Rq(j;5 > 1) — priority 4
T z1
A;,1;, Reset; A;, 1;, Reset;
Rs(j) (i1 ° 2 —_— (il ° i) priority 4
T z1
A;,1;, Reset; A;,0;, Reset;_
Ry(j;5 > 1)(Ve) — (45,0; o v priority 4
z1 z1
R;, Reset; A;, Search;
Rio(j) (t o 2 — (4 ° i) priority 4
z1 z1

When a first component has not been found during a complete depth-first tree traversal, the
PpGRS stops (all the vertices have been the first component of any possible m-tuple).

(R;, Searchy) (4;, Stop)
° °

R+ (1) — priority 0
T z1
As every tree traversal stops, the strict increasing of the 3m-tuple (|11],...,|Tml,|11],---,|1m],
|Reset],. .., |Resety|) evaluated whenever the root has a label R; is a termination criterium for the

complete PpGRS Repym. Hence Repym is noetherian.
Furthermore, we have the following invariant properties, ensuring that the PGRS Repym enumer-
ates all the m-tuples of vertices of B(x,r) :

(P1) if Search; is the current Action label, then for 1 < z < j exactly one vertex has a component
l; =1 and for j <y < m every vertex has a component I, # 1

(Py) 1; =T implies that the vertex v has been the j' component of all the m-tuples such that :

(C1) V z < j, the '™ component is the unique vertex such that I, = 1

(Co) the j'™ component is the vertex v.

At each moment that Return,, has just become the action label (by rule R5(m)), a new m-tuple

(Y1,--.,Ym) is enumerated : for every 1 < j < m exactly one vertex y; has a component [; = 1. The
mapping h from L, to {1,...,m,*} mentioned in the beginning of this section can now be defined in
an obvious way (e.g., h(A;, 1, Returny,,) = m). O

5 Local Simulation of a FCpGRS by a PpGRS

Let R be a FCpGRS. In this section, we describe a PpGRS Rioesim working on a country of a given
capital ¢ (in the sense defined in Section 2) within a given graph (G,). We assume that a rooted
spanning tree T'(c) of the country has been constructed. Then Rjycsim will realize a nondeterministic
application on T'(c) of one applicable fc-rule of R when such a rule exists.

Proposition 15 Let R be a FCpGRS and let k be the greatest diameter of a graph in the definition
of R. There exists a PpGRS Riocsim which, for any given rooted tree T'(c) in a given graph (G,)\),
can test whether a fc-rule v of R is applicable in (G,) to an occurrence 0 of G, such that 6(G,)
is a partial subgraph of the ball B(v, k) for some vertex v of T'(c). Furthermore, a nondeterministic
application of such an applicable fc-rule (when it exists) is done.

14 Different local controls for graph relabelling systems

Proof. By using a depth-first tree traversal, Rjocsim activates every vertex v € T'(¢). Then, from any
vertex v, Ripesim marks in (G, A) a rooted spanning tree T'(v) of the ball B(v, k) in (G, A). This ball
may include vertices of other countries but only of countries which are near the country of v (two
countries C1, Cy are near if their respective capitals are at distance at most 3k : thus a ball B(v, k)
with center in C can intersect C5). Hence, it will be the main point of the global simulation in Section
5 to ensure that two near countries are not simultaneously active.

For each fe-rule (r,H,) in the FCpGRS R, with r = (Gy, A\, AL), the PpGRS Ripesim uses a
PpGRS R, that tests wether r is applicable to an occurrence of G, that lies inside B(v, k). Let m be
the number of vertices of G,. To find all occurrences of G, in B(v, k), R, will enumerate all m-tuples
of vertices of B(v,k). Thus, R, is obtained from the PpGRS Re¢pum by adding the checking and the
eventual application of r whenever we have a label (A4;, 1,,, Found,,). Labels (4;, 1,,,, Found,,) appear
instead of the labels (A;, 1,,, Return,,) of rules R5(m), and mean that we have found a new m-tuple
and that we must try to apply the fc-rule r on the m-tuple. The PpGRS Rjocsim (that we will not
describe in detail) activates the PpGRS’s R, one after another (in some fixed order) to ensure that
all fc-rules of R are tried.

Let us now describe the PpGRS’s R,.. We first choose a numbering vy, ..., v, of the vertices of
G,. Next, for each vertex v; € v(G,), we concatenate to A,(v;) a label chosen from Repum : (Wi, 15)
or (N;,1;) if j < m and a label (A;, 1,,, Found,,) if j = m. Hence, for each of these choices, we obtain
a new labelling of G,.. Let v be such a labelling of G, and let (G,,~,7') be the new corresponding
relabelling rule. For each pair ((Gy, \;),6;) € H,, we consider all possible graphs (G},~;) where for
every z € v(G;) U e(G), v(z) is the concatenation of the label A\;(z) and a label from Repym. The
labelling -, must be such that for every z € v(G,) U e(G,), y(0;(x)) = vy(z). Furthermore a label
Done or Notdone is possibly added to the label A;. Done means that r has been applied; Notdone
means that r is applicable, but it has not been applied.

Now we can add the following rules to the PpGRS Repym in order to obtain the PpGRS R, that
simulates the application of the fc-rule r.

(A, 0y, Search,) (Ai, 1, Found,y,)
° °

Rs:1(r) — priority 5
T z1
for an active vertex such that V z € {1,...,m — 1},1, # 1.
Rsa(r,1) (Gr,m) — (G, M) priority 7
where vy, = 7, except for the component (A;,1,,, Foundy,) which becomes (A;, 1, Return,,). For

every possible v and 7; (depending on how we add labels of R¢pyum) such rules are added.

Rs3(r) (Gry7) — (Gr,v") priority 6

where v = 4/ but the “\ part” of the label is replaced by X' and the vertex numbered m has now a
label (A;, Done) instead of A; or (A;, Notdone).

Ry (r) (Gry7) — (Gr,v") priority 6

where v = 4" but the component (A;,1,,, Found,) of the vertex numbered m has become
(A;, Notdone, 1,,, Return,,).

(A;, 1, Found,y,) (Ai, 1, Returny,)
° °

Rs5(r) priority 5

1 T
Rules Rs;(r) replace rules Rs(m) and mean that a new current m-tuple is found.

Rules Rsz(r,l) mean that the current m-tuple is an occurrence € of G,, such that #(G,) is in
the context (Gy, \;). In this case, the fe-rule r cannot be applied to the current m-tuple and a new

I. LITOVSKY, Y. METIVIER AND E. SOPENA 15

m-tuple must be looked for.

Rules R53(r) mean that the fe-rule r is applicable to the current m-tuple (thanks to the respective
priorities of Rsa(r,[) and Rs3(r)) and that the relabelling has been done. Then the label (A4;, Done)
stops the enumeration of m-tuples and gives a label Done to the root v of the tree T'(v) (and Rjpesim
will then give label Done to the capital ¢, in a way that is not specified here).

Rules R54(r) mean that the fe-rule r is applicable to the current m-tuple (thanks to the respective
priorities of Rso(r,l) and Rs4(r)) but the relabelling has not been done. Rules Rs3(r) and Rules
R54(r) have the same priority, thus they have the same probability to be applied. This possibility of
non-application ensures a nondeterministic application of the fc-rules of R in T(c).

Rule Rs5(r) means that the current m-tuple is not an occurrence of G,. Hence, a new m-tuple
must be searched.

When all fe-rules of R are sequentially processed, if the capital ¢ has a label Notdone, a new
searching of applicable fec-rules is started, and the first applicable fe-rule is applied (we do not
describe the PpGRS). Thus a nondeterministic application of an applicable fc-rule of R in T'(c), if
it exists, is made by the complete PpG RS Rjpecsim 50 constructed. Furthermore, when Rjoesim Stops,
if a relabelling has been made, the capital ¢ has the label Done and if there is no applicable rule in
T'(c), the capital ¢ has the label Nothing (the Nothing-labelling is not described). O

6 Simulating the activity of a FCpGRS by using a PpGRS

To achieve the simulation of a given FCpGRS R by a PpGRS, we now give a PpGRS Ractsim Which
supervises the activity of capitals. A capital z is said to be active if the PpGRS Ripesim from the
previous section is looking for applying a fc-rule in the country of the capital z.

Let k be the greatest diameter of a graph in the definition of R. Given a graph (G, \), we consider
the graph Cap(G) whose vertices are the capitals obtained via a k-election in (G, \), and whose edges
are linking two capitals when these two capitals are near (i.e. whose distance is at most 3k). We are
going to give a PpGRS R,y which simulates, in Cap(G), the activity on (G, A) of every execution of
the given FCpGRS R. More precisely, let us assume that we have a graph (G,) where a k-election
has been made. An execution of R on G is defined by the sequence of relabelled occurrences 61, ..., 0,
in G. Each occurrence 6; intersects one or more countries with capitals Cj 1, ..., C; j, respectively. The
goal of the PpGRS R.qp is to ensure that first, one of the capitals C 1,...,C1 ; is active (step;), next
one of the capitals Co1,...,Cy, is active (stepz),..., next one of the capitals Cy, 1,...,Cp j, (stepy)
is active, and finally every capital must be inactive (i.e. N-labelled in the PpGRS of Figure 6). Thus,
at each step; (1 < i < n), the PpGRS Rjpesim may simulate the relabelling of R on 0; (1 < i < n).
To obtain a PpGRS no longer working on Cap(G), but on the whole graph (G,)), it is sufficient to
consider that the edges in Figure 6 are in fact paths of length at most 3k.

Proposition 16 Let R be a FCpGRS. There exists a PDGRS Ractsim which, for every given graph
(G,), can simulate on Cap(G) the activity of any execution of the given FCpGRS R.

Proof. We use the following labels for every capital z € Cap(G):

e W means that the country of z is Waiting to be active,

e A means that the country of x is Active : the PpGRS Riocsim 18 looking for applying a fc-rule
of R in the country of z (after which the label of z becomes D or N),

e D (= Done) means that a fc-rule has been applied to an occurrence containing a vertex in the
country of z,

e N (= Nothing) means that no fe-rule can be applied to an occurrence containing a vertex of
the country of x.

All capitals are initially W-labelled. We must ensure that:

16 Different local controls for graph relabelling systems
A w L w
Ry) — o priority 5
1 o Ty Z2
A L
Rs ° ° priority 4
1 Al
D N D w
Rs3 ——o ——+o priority 3
1 o 1 x2
D w w w
Ry —o — ———o priority 2
1 9 1 x2
D w
Rs ° — ° priority 1
1 Tt
w A
Rg ° e ° priority 0
T T

Figure 6: The PpGRS Ryctsim of global simulation

(Py) two neighbouring capitals in Cap(G) are not simultaneously Active, to ensure that two local
simulations do not work on a common subgraph of G (see Section 4),

(P») whenever a capital z has applied a fe-rule to an occurrence which intersects its country, all
neighbouring capitals of z in Cap(G) and the capital z itself will become Waiting,

(Ps) every Waiting capital will become Active.

The PpGRS Ractsim 18 given by the rules in Figure 6 where L stands for a label D or N. Rule
Ry indicates that the local simulation of the FCpGRS in the country of the A-labelled capital has
terminated. The relative priorities of R; and Rg ensure that two neighbouring capitals are not simul-
taneously active ((P;) is satisfied). Rule Ry does the same thing when the capital has no W-labelled
neighbouring capitals. Rule Rj3 is used when a capital has done an application and allows us to “wake
up” a sleeping capital. Then rule R4 is applied when all the neighbouring capitals have been waked
up and the D-labelled capital becomes itself W-labelled ((P) is satisfied). Rule R5 concerns graphs
having only one capital. Rule Rg activates a waiting capital ((P3) is satisfied).

Furthermore we have the following properties:

(Py) V {z,y} € e(Cap(G)), A\y(z) = A = \y(y) € {N,W} (indeed, according to Rg < R; we have
Av(y) # A, and according to Rg < R4 we have \,(y) # D),

(P5) YV {z,y} € e(Cap(G)), A\y(z) = D = A\,(y) € {N,W} (according to (Py)),

(Ps) whenever a vertex z becomes Done, all its neighbours are TW-labelled or will become again
W-labelled (according to (Ps) and rule Rj),

(P7) a D-labelled vertex will be W-labelled only when all its neighbours are W-labelled (according
to R4, Ry < R3),

(Pg) V {z,y} € e(Cap(Q)), if A\y(z) = D and \,(y) = W, y will stay W-labelled as long as z is
D-labelled (according to (Ps)).

Thanks to these properties, the PpGRS Ryctsim simulates on Cap(G) the activity of any execution
of the FCpGRS R on (G,)\) (if no rule of R is applicable, then all capitals will become N-labelled,

I. LITOVSKY, Y. METIVIER AND E. SOPENA 17

and no rule Ry,..., Rg is then applicable). Conversely any execution of the previous PpGRS is a
simulation of an execution of the FCpGRS R in (G,). O

7 Equivalence between PpGRS’s and FCpGRS’s

We are now going to show that PpGRS’s and FCpGRS's are in fact equivalent. We first give, for
any FCpGRS R, a PpGRS R’ which can simulate the behaviour of R on any graph G labelled with
initial labels. The intuitive idea is the following one : let k (resp. m) be the greatest diameter (resp.
number of vertices) of the graphs in the rules of R. We first construct a covering of the graph G
by means of countries and capitals (two capitals being at a distance at least k 4+ 1 from each other).
Then, any capital can test whether a fc-rule can or cannot be applied on an occurrence overlapping
its country, by enumerating the m-tuples in its neighbourhood, and apply one of these rules when
possible. The whole activity of the capitals is managed by the PpG RS Ractsim seen in the previous
section.

Proposition 17 The class of FCpGRS'’s is less powerful than the class of PpGRS ’s.

Proof. Let R be a given FCpGRS. Putting together the PpGRS’s constructed in Sections 2, 4 and
5 with appropriate priorities we obtain a PpGRS R’ equivalent to R. First, we observe that the
W-labels in Rgctsim are here C-labels from PpGRS Ry _ejee- Rule Ry of Ryetsim is replaced by the
rules of Rjoesim where paths of length at most 3k are added from the Active vertex to a C-labelled
vertex. The so-constructed rules (with the priorities of Rjgcsim) lead to a PpGRS called Rj,..;,,-
Finally, rule Ry of Rgctsim is replaced by the rules of Rpcsim-

The priorities of the so-obtained PpGRS R’ are given as:

/
Rk—elec > Rlocsim > Rlocsim > R3,actsim > R4,actsim > R5,actsim > R6,actsim

where in each used PpGRS, the respective priorities of the rules are respected. Giving the greatest
priorities to the rules of Ri_cc we ensure that a capital is Active (i.e. A-labelled) only if all near
capitals (i.e. at a distance at most 3k) have been elected (i.e. have a C-label). In such a system,
simulations of relabelling may be processed before the k-election has globally terminated, but the
greater priorities of the rules of Ry .. ensure that the near countries are constructed. Thus the
so-processed relabelling steps are allowed. |

Conversely, for any PpGRS R, one can easily construct a FCpGRS R’ which simulates the
behaviour of R. For any rule r in R, one can characterize the contexts which have to prevent the
application of 7 : it suffices to take into account all the rules ' in R which have a higher priority than
r and which can overlap an occurrence of G,.. Hence, we obtain the following result :

Proposition 18 The class of PDGRS s is less powerful than the class of FCpGRS ’s.

Proof. Let R be a PpGRS. We are going to construct a FCpGRS Ry which, for any graph (G, \),
leads to the same irreducible graphs (by allowing the same relabelling steps than R). For each rule
r € R, we consider the set S of rules 7’ € R which have a higher priority than r. For every r’ € S, we
consider the set G,/ |§ G, of pairs ((G, A), #) defined as follows. A pair ((G, A), #) belongs to G+ | G,
iff f is an occurrence of G, in (G, \) and there exists an occurrence 6’ of G, such that:

v(G) = v(0(Gy)) Uv(0'(Gyr)) and v(0(Gr)) N (0'(Gy)) # 0

Then (r, G, ¥ G,) is the fc-rule associated in Ry with 7. Thus a rule » € R is applicable to
an occurrence 6 iff the fe-rule (r, G § G,) € Ry is applicable to 6. Hence, the PpGRS R and the
so-constructed FCpGRS R, allow exactly the same relabelling steps. a

Finally, we obtain the following result :

18 Different local controls for graph relabelling systems
Theorem 19 The PpGRS’s and the FCpGRS’s are equivalent.

8 Other comparisons between the classes of relabelling systems

The aim of this section is to achieve all the comparisons between the different kinds of relabelling
systems we have introduced. We first classify the two basic systems based on the relabelling of partial
or induced subgraphs. Then, we will consider the two mechanisms of local control that we have defined
: the priorities on the set of rules and the use of forbidden contexts. We will see that whenever we use
such a local control, the differences between the powers of partial or induced relabellings disappear.

Proposition 20 The class of pGRS’s is strictly less powerful than the class of iGRS ’s.

Proof. Let R be a given pGRS. The constructed :GRS will have the same sets of labels as R.
Each rule (G,,\,\') € R is simulated by the set of rules (G,~,v') on induced subgraphs such that
0(G}) = v(G,), (Gr,)) is a subgraph of (G1,) and 4L({z,y}) = 7({z,y}) for every edge {z,y} €
e(G))\ e(G,). Thus R can be simulated by a iGRS. O

The following example shows that the stated inclusion is strict.

Example 21 Consider the :GRS previously defined in Example 1.2. The following properties hold
for every graph (G, \') in some Irred((G,\)) where (G,) has only C-labels.

e an irreducible graph (G, \') has only C-labels or only nC-labels,
e an irreducible graph (G, \') has only C-labels if and only if G is a complete graph.

On the other hand, a pGRS working on initially C-labelled graphs cannot satisfy the previous
properties. To see that, let us suppose that a pGRS R satisfies these properties. Then, R would allow
the following relabelling:

C C + nC nC
T T3 o T I3
C nC
o T2 A

C-labelled triangle should be irreducible, but there is no way to prevent the pGRS R from applying
to it the same relabelling rules as before, which gives the contradiction :

C C + nC nC
T T3 T z3
C nC
xo z2

Proposition 22 The class of iGRS’s is strictly less powerful than the class of FCpGRS'’s.

Proof. Let R be a given iGRS. Each rule (G,,\,\) € R can be simulated by a fe-rule given by
(Gy, X\, ') where the forbidden contexts are the graphs obtained by adding any new edge linking two
vertices of v(G,). On the other hand, the set of trees is “recognized” by a FCpGRS (see Example 9),
but is not “recognizable” by a iGRS. To see that, let us assume that a iGRS R’ “recognizes” the
set of trees, that is, R’ works on initially N-labelled graphs and is such that an irreducible graph

I. LITOVSKY, Y. METIVIER AND E. SOPENA 19

(G,) has only T-labels iff G is a tree. Hence, R’ must recognize a string (i.e. a “line-graph”). Now,
consider a long enough string (whose length is greater than the greatest diameter of a rule in R’) ; if
we add an edge linking the two end-points of this string, R’ will be able to apply the same relabelling
rules as it did for the string, and then recognizes a ring. This leads to a contradiction, thus the stated
inclusion is strict. |

As in Theorem 19, by adapting the constructed PpGRS to the notion of induced occurrences
instead of partial ones, one can prove that:

Proposition 23 The PiGRS’s and the FCiGRS’s are equivalent.

We still have to relate the classes of YpGRS’s and ZiGRS’s, for Y, Z € {P, FC}. To do that, we
first need the following result :

Lemma 24 There exists a PpGRS which, given a rooted spanning tree of a graph G and given a
graph G; having m vertices, makes an enumeration of all the m-tuples of vertices of G and during this
enumeration recognizes the m-tuples which correspond to an induced occurrence of G; in G.

Sketch of proof. One takes again a PpGRS which enumerates all m-tuples of vertices of G (see
Section 3). Then we add a rule r; with G; as left-hand side and a label recognized in the right-hand
side. For any possible Gj, obtained from G; by adding a new edge, we add a rule r; with G as
left-hand side and a label unrecognized in the right-hand side, and assign to r; a greater priority than
7. O

Proposition 25 The class of FCiGRS'’s is less powerful than the class of PpGRS ’s.

Proof. Let R be a FCiGRS. The simulation principle is the same that we have used in the proof
of Proposition 17. Let (r,H,) be a rule of R, with r = (G, A\r, \L), Hy = {((Gi, Mi), 0i) }ier, and d be
the greatest diameter of the context graphs G;’s. We only need to change the application test of the
ferule r. We informally describe this new test, which replaces rules Rgs, Rs3 and Rsq in Rypesim. Let
m be the number of vertices of the relabelled graph G, of r. According to the previous lemma, during
an enumeration of m-tuples, one can recognize whether the current m-tuple is an induced occurrence
of (Gr, Ar) or not. When it is the case one can test (lemma 7.5), for any i € I, whether a n;-tuple is
an induced occurrence of G; (n; is the number of vertices of G;). The fec-rule r is then applicable to
the current m-tuple if and only if no n;-tuple is an induced occurrence of G;. O

Thus, any PiGRS, equivalent to a FCiGRS, can also be simulated by a PpGRS. On the other
hand, by adding priorities to the sets of rules obtained by simulating, like in Proposition 20, each rule
of a PpG RS, one proves that any PpG RS can be simulated by a PiGRS. Thus, we have the following
result :

Proposition 26 The PiGRS’s and the PpGRS’s are equivalent.

Finally, we obtain the global classification — given in the introduction — of the graph relabelling
systems introduced in this paper.

References

[1] M.W. Alford, J.P. Ansart, G. Hommel, L. Lamport, B. Liskov, G.P. Mullery and F.B. Schneider,
Distributed Systems, Lecture Notes in Computer Science 190 (1985).

[2] D. Angluin, Local and global properties in networks of processors, Proceedings of the 12 STOC
(1980), 82-93.

20

3]
[4]

[5]

[6]

[10]

[11]

[12]

Different local controls for graph relabelling systems

C. Berge, Graphs and Hypergraphs, North Holland, Amsterdam (1977).

M. Billaud, P. Lafon, Y. Métivier and E. Sopena, Graph Rewriting Systems with Priorities,
Lecture Notes in Computer Science 411 (1989), 94-106.

B. Courcelle, Recognizable sets of unrooted trees in Tree Automata and Languages, M. Nivat and
A. Podelski (editors), Elsevier Science Publishers (1992), 141-157.

J. Dassow and G. Paun, Regulated Rewriting in Formal Language Theory, EATCS Series 18
(1989).

A. Gibbons, Algorithmic graph theory, Cambridge University Press (1985).
F.T. Leighton, Finite common coverings of graphs, J. Combin. Theory Ser. B 33 (1982), 231-238.

I. Litovsky and Y. Métivier, Computing with Graph Rewriting Systems with Priorities, Fourth
International Worshop on Graph Grammars and their Applications to Computer Science, Bremen.
Lecture Notes in Computer Science 532 (1991), 549-563.

I. Litovsky and Y. Métivier, Computing trees with graph rewriting systems with priorities, in Tree
Automata and Languages, M. Nivat and A. Podelski (editors), Elsevier Science Publishers (1992),
115-139.

I. Litovsky, Y. Métivier and W. Zielonka The power and limitations of local computations on
graphs and networks, Proceedings of Graph-Theoretic Concepts in Computer Science (WG’92),
To appear in Lecture Notes in Computer Science.

A. Mazurkiewicz Elections in planar graphs, Internal report, University Bordeaux I 90-105 (1990).

