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h relabelling step is fully determined by the knowledge of a �xed size subgraph, the lo
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ontext of the relabelled o
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e. The studied families are based on the relabelling of partial or indu
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hanisms to lo
ally 
ontrol the appli
ability of rules : a priority relationon the set of rules or a set of forbidden 
ontexts asso
iated with ea
h rule. We show that these two basi
 (i.e.without lo
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ontrol) families of graph relabelling systems are distin
t, but whenever we 
onsider the lo
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tionWe are interested in models to en
ode and to prove de
entralized and distributed 
omputations ongraphs. The presented models are graph relabelling systems satisfying the following 
onstraints whi
hseem to be natural when des
ribing distributed 
omputations with a de
entralized 
ontrol:(C1) they do not 
hange the underlying graph but only the labelling of its 
omponents (edges and/orverti
es), the �nal labelling being the result of the 
omputation,(C2) they are lo
al, that is, ea
h relabelling step 
hanges only a 
onne
ted subgraph of a �xed size inthe underlying graph,(C3) they are lo
ally generated, that is, the appli
ation 
ondition of the relabelling only depends onthe lo
al 
ontext of the relabelled subgraph.For su
h systems, the distributed aspe
t 
omes from the fa
t that several relabelling steps 
an beperformed simultaneously on \far enough" subgraphs, giving the same result as a sequential realisationof them, in any order.In this paper, we de�ne and 
ompare six types of graph relabelling systems. Any su
h system, sayR, is de�ned by a �nite set L of labels (labels used in the relabelled graphs), a set I � L of initiallabels (every graph starting a relabelling pro
ess has only labels in I) and a �nite set of relabellingrules ; it may be equipped with a me
hanism whi
h lo
ally 
ontrols the appli
ation of the relabellingrules. A relabelling rule r 
onsists of the relabelling of a �xed 
onne
ted subgraph Gr :r : (Gr; �) �! (Gr; �0)1With the support of the PRC Math�ematiques et Informatique, the European Basi
 Resear
h A
tion ESPRIT No3166 ASMICS and the ESPRIT-Basi
 Resear
h Working Group \COMPUGRAPH II".1



2 Di�erent lo
al 
ontrols for graph relabelling systemsWe say that a labelled graph (G; l) is relabelled into (G; l0) by R if there exists a �nite sequen
e ofallowed appli
ations (in a sense spe
i�ed below) of relabellings in R leading from (G; l) to (G; l0).Given a noetherian graph relabelling system R, we are interested in the fun
tion IrredR whi
h, withea
h initial graph (G; l), asso
iates the set of irredu
ible graphs (i.e. where no allowed appli
ation ofa rule is possible) obtained from (G; l). We say that two noetherian graph relabelling systems R andR' are equivalent when they have the same set of initial labels and when IrredR = IrredR'. A familyF1 of graph relabelling systems is less powerful than a family F2 if every noetherian graph relabellingsystem in F1 is equivalent to a graph relabelling system in F2. The families F1 and F2 are equivalentif ea
h one is less powerful than the other one.We now present the six types of graph relabelling systems we will 
onsider in this paper. For ea
hof them we have to spe
ify the notion of allowed appli
ation of a rule r in a graph (G; l). The �rst
riterium 
hara
terizing the appli
ability of r is given by the de�nition of an o

urren
e of the graph(Gr; �) in (G; l). Su
h an o

urren
e may be :� a partial subgraph of (G; l) isomorphi
 to (Gr; �),� an indu
ed subgraph of (G; l) isomorphi
 to (Gr; �).Hen
e, we respe
tively obtain the families of pGRS's and iGRS's. We prove that the family ofpGRS's is stri
tly less powerful than the family of iGRS's.On the other hand, to in
rease the 
omputational power of these basi
 graph relabelling systems,we use two kinds of lo
al 
ontrol on the appli
ability of rules :� The �rst one has been introdu
ed in [4℄ and 
onsists of adding a partial order relation, 
alledpriority, on the set of relabelling rules. In su
h systems, the appli
ation of a rule r is allowedon an o

urren
e � of (Gr; �) if no rule with a greater priority has an o

urren
e overlapping �.Note that the e�e
t of these priorities is stri
tly lo
al (
onstraint (C3) is respe
ted).� The se
ond one, inspired by [5℄, 
onsists of adding to ea
h relabelling rule r a set of forbidden
ontexts, where a 
ontext is a graph having (Gr; �) as subgraph. For su
h systems, an appli
ationof r is allowed on an o

urren
e � of (Gr; �) if � is not a subgraph of a forbidden 
ontext in(G; l).Remark 1 Partial order and forbidden 
ontext 
onditions are known in formal language theory [6℄.However, partial order of rules is used here in a stri
tly lo
al way.These relabelling systems are respe
tively 
alled PxGRS's and FCxGRS's (for x 2 fp; ig). It iseasy to see that the so-de�ned families are stri
tly more powerful than the previous ones, and thatthe family of FCxGRS's is more powerful than the family of PxGRS's (for x 2 fp; ig). The mainpart of this paper is devoted to proving the equivalen
e of the FCpGRS's and the PpGRS's. Thisresult is not immediate : for example, it is easy to give a one-rule FCpGRS \re
ognizing" the 
lassof 
omplete graphs, but no \simple" PpGRS 
an do it. The main diÆ
ulty 
omes from the fa
t thata FCpGRS forbids the appli
ation of a relabelling rule by only 
onsidering the forbidden 
ontextsasso
iated with this rule, sin
e a PpGRS only forbids su
h an appli
ation when another rule (with agreater priority) is appli
able on an overlapping o

urren
e. Assuming �rst that one works on graphshaving a distinguished vertex, depth-�rst traversals 
an be sequentially pro
essed by using a PpGRS(see example 1.4). In this 
ase, every FCpGRS 
an be simulated by a PpGRS in the following way: ea
h depth-�rst traversal attempts to apply a f
-rule ; when it has found one or more su
h rules, it\
hooses" one of them and applies it ; when no f
-rule is appli
able, the PpGRS stops (see Rlo
simin Se
tion 4). But it is known that the problem of distinguishing one vertex (known as the ele
tionproblem) is not solvable for arbitrary graphs (see [1, 2, 12℄). Hen
e, the main idea of this paper is to
onstru
t, using a PpGRS, a partition of the graph into subgraphs (
alled 
ountries) of k-boundeddiameter (where k is the maximal diameter of the graphs in the rules of the FCpGRS), ea
h 
ountryhaving an ele
ted vertex (the 
apital). This \k-ele
tion" me
hanism, used together with the PpGRSRlo
sim, enables us to simulate every FCpGRS by a PpGRS (Proposition 6.1).



I. Litovsky, Y. M�etivier and E. Sopena 3We also prove that with a lo
al 
ontrol Y (Priority or Forbidden Contexts), the Y pGRS's andthe Y iGRS's are equivalent. The following s
heme summarizes the relative powers of these di�erentfamilies. PpGRSFCpGRSPiGRSFCiGRSpGRS iGRS
This paper is organized as follows. Se
tion 1 
ontains the de�nitions. Se
tions 2 to 5 des
ribethe di�erent steps used for proving Proposition 6.1 : the k-ele
tion problem is solved in Se
tion 2,a PpGRS enumerating m-tuples of verti
es is given in Se
tion 3 and used for the lo
al simulationof a FCpGRS by a PpGRS in Se
tion 4, Se
tion 5 realizes the global simulation. In Se
tion 6, theequivalen
e between PpGRS's and FCpGRS's is proved. In Se
tion 7, we �nally 
ompare the otherrelabelling families we have introdu
ed.2 De�nitions and notation2.1 GraphsA simple, loopless, undire
ted graph G [3, 7℄ is de�ned as a pair (v(G);e(G)) where v(G) is a �niteset of verti
es and e(G) a set of edges, an edge being a subset of two distin
t verti
es in v(G). Letv1 and v2 be two verti
es in v(G) ; a path p from v1 to v2 in G is a sequen
e x0; : : : ; xn of verti
es inv(G) su
h that for 0 � i < n, fxi; xi+1g 2 e(G), x0 = v1 and xn = v2 ; n is said to be the length ofp. The graph G is 
onne
ted if any two verti
es in v(G) are linked by a path. The distan
e betweentwo verti
es v1 and v2 in G, denoted d(v1; v2), is the length of the shortest path from v1 to v2. Themaximal distan
e between any two verti
es in v(G) is 
alled the diameter of G.Let L = (Lv; Le) be a pair of two �nite sets of labels (Lv (resp. Le) stands for the set of vertex(resp. edge) labels). A labelled graph is a pair (G;�) where G is a graph and � = (�v ; �e) where �v(resp. �e) is a mapping from v(G) (resp. e(G)) to Lv (resp. Le). We will denote by jAj(G;�), or simplyjAj, the number of A-labelled verti
es (or edges) in (G;�). Let (G;�) and (G0; �0) be two labelledgraphs. (G;�) is a (partial) subgraph of (G0; �0) if8><>: v(G) � v(G0);e(G) � e(G0);� = �0jG = (�0v jG; �0ejG):where �0vjG (resp. �0ejG) denotes the restri
tion of �v (resp. �e) to v(G) (resp. e(G)).Remark 2 From now on, we will simply use �0 instead of �0jG whenever G is 
learly given by the
ontext.An inje
tive mapping � from v(G) into v(G0) is an o

urren
e of (G;�) in (G0; �0) if for any x; yin v(G), we have : 8><>: fx; yg 2 e(G) =) f�(x); �(y)g 2 e(G0)�v(x) = �0v(�(x))�e(fx; yg) = �0e(f�(x); �(y)g)Let � be an o

urren
e of (G;�) in (G0; �0); we will denote by �(G) the graph (�(v(G)); E) whereE = ff�(x); �(y)g = fx; yg 2 e(G)g. Note that (�(G); �0) is a subgraph of (G0; �0).Let (G;�) be a subgraph of (G0; �0). We say that (G;�) is an indu
ed subgraph of (G0; �0) i� forall x; y in v(G), fx; yg 2 e(G0) () fx; yg 2 e(G). An o

urren
e � of (G00; �00) in (G0; �0) is said tobe an indu
ed o

urren
e if (�(G00); �0) is an indu
ed subgraph of (G0; �0).Let r be an integer and x be a vertex in v(G) ; the ball subgraph B(x; r) is the indu
ed subgraphof (G;�) whose verti
es are all the verti
es in v(G) whose distan
e to vertex x is at most r.



4 Di�erent lo
al 
ontrols for graph relabelling systemsRemark 3 From now on, as we will only deal with 
onne
ted labelled graphs, we will simply usegraph to denote 
onne
ted labelled graphs. By using a spe
ial \empty label", denoted by ", we willbe able to 
onsider unlabelled graphs as labelled ones.2.2 Relabelling of partial or indu
ed subgraphsA partial-Graph Relabelling rule is a triple (Gr; �r; �0r), also denoted (Gr; �r) �! (Gr; �0r). (Gr; �r)(resp. (Gr; �0r)) is 
alled the left-hand side (resp. right-hand side) graph of the rule r. The relabellingrelation �!r is de�ned by : (G;�) �!r (G;�0) if there exists an o

urren
e � of (Gr; �r) in (G;�) su
hthat � is an o

urren
e of (Gr; �0r) in (G;�0), for any x 2 v(G) n v(�(Gr)), �v(x) = �0v(x) and for anye 2 e(G) n e(�(Gr)), �e(e) = �0e(e). We say that � is the relabelled o

urren
e.A partial-Graph Relabelling System (pGRS) is a triple R = (L; I; P ) where L = (Lv ; Le) is the setof labels, I = (Iv; Ie), with Iv � Lv and Ie � Le, is the set of initial labels and P is a �nite set ofpartial-graph relabelling rules, su
h that the graphs in these rules have labels in L. The relabellingrelation �!R is de�ned by : (G;�) �!R (G;�0) if and only if there exists a rule r 2 R su
h that(G;�) �!r (G;�0).A partial-Graph Relabelling System with Priorities (PpGRS) is a triple R = (L; I; P ) where L andI are de�ned as before and P is a �nite set of relabelling rules equipped with a partial ordering relation> 
alled priority whi
h works as follows : let � be an o

urren
e of a rule r 2 R in a graph (G;�). Therule r is appli
able to � if there is no o

urren
e �0 of a rule r0 > r su
h that v(�(Gr))\v(�0(Gr0)) 6= ;.If two or more rules are simultaneously appli
able in (G;�), one of them (nondeterministi
ally 
hosen)is applied. We write (G;�) �!R (G;�0) if there exists a rule r 2 R su
h that (G;�) �!r (G;�0) andr is appli
able in (G;�) to the relabelled o

urren
e. In the sequel, the priority of ea
h rule may bespe
i�ed by using an integer to indi
ate the ordering (whenever two rules have the same integer aspriority, they are not 
omparable).A partial-Graph Relabelling rule with forbidden 
ontexts (f
-rule for short) is a pair (r;Hr) wherer is a relabelling rule (Gr; �r; �0r) and Hr is a �nite family of pairs f((Gi; �i); �i)gi2Ir where (Gi; �i) is agraph (
alled forbidden 
ontext) and �i is an o

urren
e of (Gr; �r) in (Gi; �i). The forbidden 
ontextsof the f
-rule are used as follows : let � be an o

urren
e of (Gr; �r) in (G;�); the f
-rule (r;Hr) isappli
able to � if for no i, there exists an o

urren
e 'i of (Gi; �i) in (G;�) su
h that 'i�i = �.A partial-Graph Relabelling System with Forbidden Context (FCpGRS) is a triple R = (L; I; P )where L and I are de�ned as before and P is a �nite set of f
-rules. We write (G;�) �!R (G;�0) ifthere exists a rule r 2 R su
h that (G;�) �!r (G;�0) and r is appli
able in (G;�) to the relabelledo

urren
e.The same notions 
an be de�ned by using indu
ed o

urren
es instead of partial ones, leadingrespe
tively to i-, Pi- and FCiGRS. We shall use �!iR to denote the 
orresponding relabelling relations.Example 4 Consider the graph (G;�) of Figure 1(f) and the graph relabelling rules r = (Gr; �r; �0r),s = (Gs; �s; �0s), where (Gr; �r), (Gr; �0r), (Gs; �s) and (Gs; �0s) are given by Figure 1(a,b,d,e) respe
-tively. Re
all that unlabelled edges are 
onsidered as labelled with the empty label.� As rule of a pGRS, r 
an be applied to the four 
orners of graph (G;�) (verti
es marked as Æ).� As rule of a iGRS, r 
an be applied to ea
h 
orner of graph (G;�) ex
ept to the upper-rightone, sin
e there is a forbidden edge linking two verti
es of the o

urren
e.� As rule of a FCpGRS, with graph (G1; �1) of Figure 1(
) as forbidden 
ontext, r 
an only beapplied to the two upper 
orners of graph (G;�).� As rule of a FCiGRS, r 
an be applied to the upper-left 
orner of (G;�) and to its bottom-right
orner, sin
e the forbidden 
ontext of r does not appear as an indu
ed subgraph.� As rule of a PpGRS, with s > r, rule r 
an only be applied to the two upper 
orners of (G;�).
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tAtC tA(a) The graph (Gr; �r) tAtB tA(b) The graph (Gr; �0r)

tB tBtAtC tA(
) The graph (G1; �1)
tBtC tB

(d) The graph (Gs; �s)
tCtB tC

(e) The graph (Gs; �0s)
dC tA���dCtA tAdCtB tB tA dC tBtB���(f) The graph (G;�)Figure 1: Appli
ability of rewriting rules.� As rule of a PiGRS, with s > r, rule r 
an be applied to the upper left 
orner, and the bottom-right 
orner of (G;�) (sin
e s 
annot be applied to o

urren
es overlapping these 
orners).2.3 Relabelling system behaviourAny 
omputation on a graph (by means of a relabelling system) must give a result in a �nite time.Thus (unless expli
itly stated otherwise) we will only 
onsider noetherian graph relabelling systems,whi
h means that from any initial graph, there exists no in�nite relabelling 
hain.Given a graph relabelling system R, we 
onsider the re
exive transitive 
losure �!�R of �!R (or�!iR ). A graph (G;�0) is said to be irredu
ible with respe
t to R if no rule of R is appli
able to (G;�0).For every graph (G;�) with labels in I, we denote by IrredR((G;�)) the set of irredu
ible graphsobtained from (G;�):IrredR((G;�)) = f(G;�0) = (G;�) �!�R (G;�0) and no rule of R is appli
able to (G;�0)gLet R andR0 be two relabelling systems. The systemsR andR0 are said to be equivalent if I = I 0 andfor every graph (G;�) with labels in I we have IrredR((G;�)) = IrredR0 ((G;�)). We will say thata family F1 of graph relabelling systems is less powerful than a family F2, if every graph relabellingsystem in F1 is equivalent to a graph relabelling system in F2. The families F1 and F2 are equivalentif ea
h one is less powerful than the other one.We now give some examples of various GRS0s. To avoid any ambiguity between the left andright-hand sides of the relabelling rules (whi
h 
orrespond to the same underlying unlabelled graph)we will number the verti
es by x1, x2,...Example 5 The following iGRS is su
h that L = (fC;nCg; f"g), I = (fCg; f"g) and P has two rulesgiven below. We have the property that a graph (G;�0) 2 Irred((G;�)) has only C-labels if G is a
omplete graph, it has only nC-labels if G is not 
omplete.R1 tCx1 tCx2 tCx3 - tnCx1 tnCx2 tnCx3



6 Di�erent lo
al 
ontrols for graph relabelling systemsR2 tnCx1 tCx2 - tnCx1 tnCx2Rule R1 is applied whenever the two verti
es asso
iated with x1 and x3 are not linked by an edge.In su
h a 
ase, the graph G is not a 
omplete graph, and rule R2 broad
asts the nC-label to all otherverti
es. Whenever the graph G is 
omplete, no rule 
an be applied.Example 6 The following pGRS is su
h that L = (f0; 1g; f";�g), I = (f0g; f"g) and P has threerules given below. An irredu
ible graph will be su
h that all its verti
es are labelled 0 or 1 a

ordingto the parity of their degree.R00 t0x1 t0x2 - t1x1 � t1x2R01 t0x1 t1x2 - t1x1 � t0x2R11 t1x1 t1x2 - t0x1 � t0x2Every rule marks an edge of the graph and updates the labels of its end-points. When all theedges are marked, the so-obtained graph is irredu
ible.Example 7 The following PpGRS is su
h that L = (fN;A;M;Fg; f";�g), I = (fA;Ng; f"g) and Phas two rules given below. This PpGRS 
omputes a spanning forest (i.e. a subgraph whi
h is a forestin
luding all the verti
es) of the initial graph su
h that ea
h tree is \rooted" at a vertex with initiallabel A. The intuitive idea is the following : from ea
h initially A-labelled vertex starts a 
omputationwhi
h 
onsists in \atta
hing" free verti
es (i.e. with a N -label) by marking the 
orresponding edges(with a �-label).R1 tAx1 tNx2 - tMx1 � tAx2 priority 1R2 tMx1 � tAx2 - tAx1 � tFx2 priority 0Every tree in the spanning forest is 
omputed in a depth-�rst way : every a
tive (A-labelled)vertex 
hooses one of its free neighbours whi
h be
omes a
tive (rule R1). When an a
tive vertex hasno more free neighbours, it a
tivates its father, i.e. the M -labelled vertex to whi
h it is linked bya marked edge (rule R2). If it does not have su
h a neighbour, that means that it was one of theinitially A-labelled verti
es. At the end of the 
omputation, any initially A-labelled vertex has labelA, every initially N -labelled vertex has label F . Note that we are interested in initial graphs with atleast one A-labelled vertex (otherwise, the initial graph is irredu
ible). If there is exa
tly one initiallyA-labelled vertex x, this PpGRS 
onstru
ts a spanning tree rooted at x.Figure 2 shows a sample derivation of this PpGRS.Remark 8 The 
omputation of any tree in the spanning forest is done \sequentially" : at any moment,there is only one a
tive vertex in ea
h tree. We 
an in
rease the \parallelism" of this 
omputation bysimply repla
ing the M -label of the right-hand side of rule R1 by a A-label and deleting rule R2. The
omputation is no longer \depth-�rst-sear
h-like" (neither \breadth-�rst-sear
h-like") and the verti
esof an irredu
ible graph are then all A-labelled.
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tt tt ttN A N
A N N �!R1 tt tt ttN A N

M A N� �!R1 tt tt ttA M N
M A N��

�!R2 tt tt ttA M N
A F N�� �!R2 tt tt ttF A N

A F N�� �!R1 tt tt ttF M A
A F N�� �

�!R1 tt tt ttF M M
A F A�� � � �!R2 tt tt ttF M A

A F F�� � � �!R2 tt tt ttF A F
A F F�� � �Figure 2: Computing a spanning forest.Example 9 The following FCpGRS is su
h that L = (fN;Tg; f"g), I = (fNg; f"g) and P has tworules given below. We have the property that an irredu
ible graph (G;�) has only T -labels if and onlyif G is a tree. The �rst relabelling rule is:R1 tNx1 tNx2 - tNx1 tTx2and its forbidden 
ontext is:tNx1 tNx2 tNx3The se
ond rule is:R2 tNx1 - tTx1and its forbidden 
ontext is: tNx1 tNx2The forbidden 
ontext of R1 for
es x2 to have exa
tly one neighbour with labelN , and the forbidden
ontext of R2 for
es x1 to have no neighbour with label N .Figure 3 shows two sample derivations of this FCpGRS, ea
h one leading to an irredu
ible graph.3 The k-ele
tion problemIt is not possible to ele
t exa
tly one vertex in a graph with a PpGRS [9℄. For this reason, we areinterested in \lo
al" ele
tions 
alled k-ele
tions where k is a given integer. The k-ele
tion problem on agraph 
an be intuitively introdu
ed as follows. Ea
h vertex of the graph stands for a town, ea
h edgefor a road segment joining two di�erent towns. Initially, ea
h town has a neutral status. We want
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al 
ontrols for graph relabelling systems
t����N tAAAAN t���� AAAANtN tN �!R1(3) t����T tAAAAN t���� AAAANtT tT �!R1 t����T tAAAAN t���� AAAATtT tT �!R2 t����T tAAAAT t���� AAAATtT tT(a) Derivation of a tree.tN tNtN tN tN �!R1 tN tNtN tN tT(b) Derivation of a 
y
li
 graph.Figure 3: The re
ognition of trees.to organize the graph by delimiting 
ountries, ea
h 
ountry having one 
apital. In ea
h 
ountry, thedistan
e between any town and the 
apital must at most be k. Moreover, the distan
e between anytwo 
apitals in the graph must be at least k + 1. Ea
h 
apital (resp. ea
h town) has also to \know"the towns (resp. the 
apital) of its 
ountry | in the sense that there is a marked path between a
apital and ea
h of its towns.The PpGRS whi
h solves this problem will ful�ll two additional requirements : the towns in allthe 
ountries will be 
lassi�ed a

ording to their distan
e to the 
apital and any town will belongto one of the 
ountries whose 
apital is the nearest. This will be done by 
onstru
ting a \spanningforest" of the initial graph (i.e. a partial subgraph of the initial graph whi
h is a forest in
luding everyvertex). Ea
h tree (standing for a 
ountry) of this forest will be rooted at a 
apital.To solve this problem, we 
onsider the PpGRS Rk�ele
 = (L; I; P ). The set of labels L =(fN;C; T; T1; :::; Tkg;f�; "g) where N stands for Neutral, C for Capital, T for a town belonging to a
ountry (but not yet 
lassi�ed), Ti (1 � i � k) for a 
lassi�ed town, � for marked edges (i.e. edgesbelonging to the spanning forest) and " (the empty symbol) for unmarked edges. The set of initiallabels is given as I = (fNg; f"g).The set of rules P is given in Figure 4. Labels Xi stand for any vertex label. Ex
ept when it isexpli
itly spe
i�ed (rules R4(i)), any edge 
an be marked or unmarked, and this is preserved in theright-hand side of any rule.The priorities are given as :R1 < R4(k) < R4(k � 1) < � � � < R4(1) < nR3(i)ok<i�2k < nR2(i)o1�i�kRule R1 says that any neutral town 
an spontaneously be
ome a 
apital, ex
ept if there alreadyexists a 
apital in its k-neighbourhood (rules R2(i) prevent rule R1 to be applied).Rules R2(i) are intended to mark any town in the k-neighbourhood of a 
apital as a town belongingto a 
ountry (label T ). The 
lassi�
ation of these towns will be done later, by using rules R4(i).Rules R3(i) have been essentially introdu
ed for te
hni
al purposes. Thanks to them, a 
apitalwill only begin to 
lassify its towns when the 
apitals of its neighbouring 
ountries are ele
ted. This
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R1 : txN - txCR2(i) : tx0C tx1X1 � � � txi�1Xi�1 txiN - tx0C tx1X1 � � � txi�1Xi�1 txiT for 1 � i � kR3(i) : tx0C tx1X1 � � � txi�1Xi�1 txiN - tx0C tx1X1 � � � txi�1Xi�1 txiCfor k < i � 2kR4(i) : tx0C tx1T1 � � � txi�1Ti�1 txiT - tx0C tx1T1 � � � txi�1Ti�1� txiTi for 1 � i � kFigure 4: The PpGRS Rk�ele
.tCx0 � tT1x1HHHH� tT2x2HHHH����tNx3tNx4(a) A bad intermediate 
on�guration

tCx0 � tT1x1HHHHtT1x2HHHH������ tCx3tT2x4(b) A good terminal 
on�gurationFigure 5: The 
lassi�
ation problem.will ensure a good 
lassi�
ation of the towns in a 
ountry. Figure 5 shows what kind of problem wouldarise if we do not use su
h rules : let k = 2 and suppose vertex x0 be
omes a 
apital. But for rulesR3(i), it 
an mark verti
es x1 and x2 as 
lassi�ed towns (see �gure 5(a)). Then the system terminatesby ele
ting, say x3, as a 
apital and relabelling x4 by T ; x4 remains an un
lassi�ed town. Figure 5(b)shows a good terminal 
on�guration, obtained by using rules R3(i).Rules R4(i) implement the 
lassi�
ation of the towns. Their priority ensures that ea
h town will belabelled a

ording to its distan
e to the nearest 
apital (a Ti-label means that this town is at distan
ei from the nearest 
apital).We now give some results on the behaviour of the PpGRS Rk�ele
.Proposition 10 The PpGRS Rk�ele
 is noetherian. Moreover, if (G;�) is a graph with unmarkededges and n verti
es all N -labelled, the number of relabelling steps in any derivation sequen
e issuedfrom (G;�) is bounded by 2n.Proof. The termination 
riteria is given by the stri
t de
reasing of the ordered pair of labels (jN j; jT j):whenever the number of N 's does not de
rease the number of T 's does.Any vertex is su

essively labelled by the sequen
e (N , C) or (N , T , Ti). As every rule modi�esthe label of at least one vertex, we 
an say that the length of any derivation sequen
e is bounded bythe quantity 2n. 2



10 Di�erent lo
al 
ontrols for graph relabelling systemsProposition 11 Let (G;�) be a graph with every vertex N -labelled and with unmarked edges. Let(G;�0) be a graph su
h that : (G;�) ��!Rk�ele
 (G;�0)Then the graph (G;�0) satis�es :(P1) If x and y are two C-labelled verti
es of (G;�0) then the distan
e from x to y is at least k + 1.(P2) If x is a T -labelled vertex of (G;�0), then there exists a C-labelled vertex y at distan
e at mostk from vertex x.(P3) If x is a Ti-labelled (i > 1) vertex in (G;�0), then there exists no N -labelled vertex at distan
eless than k + 1 from x.(P4) The subgraph indu
ed by the marked edges is a forest with all verti
es labelled C, T1, . . . , Tk�1or Tk and su
h that :{ Every tree has exa
tly one C-labelled vertex,{ Every Ti-labelled vertex x belongs to that subgraph and is 
onne
ted to the C-labelled vertexof its tree by a marked path whose length is i.(P5) If x is a Ti-labelled vertex of (G;�0), then we have d(x; f�0�1(C)g) = i.Proof. All these properties are obviously true for the initial graph. Let us suppose that (G;�i)satis�es these properties and let (G;�i+1) be su
h that(G;�i) �!Rk � ele
 (G;�i+1)We have to show that (G;�i+1) also satis�es these properties. Most of them are very easy to 
he
k.Hen
e, we only give proofs of (P1) and (P3) as examples.(P1) Only rules R1 and R3(i) 
an lead to a C-labelled vertex. This property is guaranteed by thegreater priority of rules R2(i).(P3) Every Ti-labelled vertex, say x, is issued from a rule R4(i). If there exists a N -labelled vertex yat distan
e less than k+1 from x, rules R2(i) or R3(i) should have been applied �rst, thanks tothe priorities. 2We now state the main result of this se
tion, whi
h says that the PpGRS Rk�ele
 solves thek-ele
tion problem.Theorem 12 Let (G;�) be a graph with unmarked edges and whose verti
es are all N -labelled. Then,any graph (G;�0) in IrredRk�ele
((G;�)) is su
h that the subgraph indu
ed by the marked edges is aspanning forest of (G;�0) with all verti
es labelled C, T1, . . . , Tk�1 or Tk and satisfying :� Every tree of that forest has exa
tly one C-labelled vertex,� The distan
e between two C-labelled verti
es is at least k + 1,� Every Ti-labelled vertex x satis�es d(x; �0�1(C)) = i.
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ible, it 
ontains neither N -labelled verti
es (rules R1, R2(i) or R3(i) shouldbe appli
able) nor T -labelled verti
es (rule R4(i) should be appli
able). Hen
e, (G;�0) only 
ontainsC-, T1-, . . . , Tk�1- or Tk-labelled verti
es. Property (P1) ensures that the distan
e between two C-labelled verti
es is at least k + 1. By property (P5), the subgraph indu
ed by the marked edges is aspanning forest of (G;�0), ea
h tree having exa
tly one C-labelled vertex. Moreover, by property (P6)ea
h Ti-labelled vertex satis�es the stated property. 24 The m-enumeration problemLet G be a graph and m; r be two integers. We 
an 
onstru
t a PpGRS whi
h enables us to \enumer-ate" all the m-tuples of distin
t verti
es in a ball B(x; r) (given together with a rooted spanning treeT (x)) for any \given" vertex x in G. A given vertex x means that x has a spe
ial label whi
h does notappear elsewhere in G and \a PpGRS R enumerates all the m-tuples of B(x; r)" means that duringa 
omputation of R on G, for every m-tuple (y1; : : : ; ym) of B(x; r), there is exa
tly one intermediaterelabelling � su
h that h(�v(y1)) = 1; : : : ; h(�v(ym)) = m, and h(�v(x)) = � for all x 62 fy1; : : : ; ymgwhere h is a �xed mapping from Lv to f1; : : : ;m; �g. Note that we 
an obtain a spanning tree ofB(x; r), rooted at x, by using an obvious variation of the PpGRS of example 1.4 (in whi
h all nodesof the tree are for
ed to have a distan
e at most r to x).Let us intuitively des
ribe the behaviour of su
h a PpGRS : vertex x will be the 
ontroller ofthe 
omputation. It �rst looks for a vertex, say v1, whi
h 
an be 
hosen as the �rst 
omponent of anew m-tuple. When su
h a vertex is found, it looks for a se
ond one and so on. When for i givenverti
es v1; : : : ; vi the system has enumerated all the m-tuples having these verti
es as �rst (ordered)
omponents, vertex vi is marked as having been the ith 
omponent of all su
h m-tuples and a new ith
omponent is sear
hed. All these steps will be handled by depth-�rst traversals : vertex x initiates atraversal whi
h looks for a given vertex ; when the 
ontrol returns to x, it initiates a new traversalfor the next sear
h. This 
omputation terminates when all the verti
es in the graph are marked ashaving been the �rst 
omponent of all possible m-tuples.Lemma 13 There is a (non noetherian) PpGRS Rtrav whi
h, given a rooted tree T (x), makes alter-nating tree traversals of T (x).Proof. The PpGRS Rtrav that we now des
ribe works on T (x) where the vertex x is the root ofT (x). Initially the root has label R0 and all other verti
es label N0. In the �rst traversal there isalways exa
tly one A0-labelled vertex (the \a
tive" vertex, initially the root), all verti
es on the pathfrom the root to the a
tive vertex have labelW , and the other verti
es have label N0 (if they have notyet been visited) or label N1 (if they have been visited). At the end of the �rst traversal the root haslabel R1 and all other verti
es label N1. The se
ond traversal 
an then be made (simply inter
hangethe roles of 0's and 1's) and the system inde�nitely alternates su
h traversals.In the following rules, i 2 f0; 1g and R stands for Root, A for A
tive, N for Neutral and W forWaiting:R1 tRix1 - tAix1 priority -1R2 tAix1 tNix2 - tWx1 tAix2 priority 2R3 tWx1 tAix2 - tAix1 tN1�ix2 priority 1R4 tAix1 - tR1�ix1 priority -1 2



12 Di�erent lo
al 
ontrols for graph relabelling systemsProposition 14 Let m and r be two integers (m; r > 0). There exists a PpGRS Renum whi
h, givena graph (G;�) and any vertex x 2 v(G), enumerates all m-tuples of the ball B(x; r) in (G;�).Proof. As the vertex x is given, we may assume that a rooted spanning tree T (x) of B(x; r) is
onstru
ted, whi
h means that some edges in (G;�) are marked as belonging to T (x). The PpGRSRenum that we now des
ribe works on T (x) (all the edges in the following rules have to be 
onsideredas marked). Ea
h 
omputation of Renum 
orresponds to a sequen
e of alternating tree traversals ofT (x) based on the PpGRS Rtrav .Every vertex v 2 B(x; r) is labelled by a 
ouple or a triple of 
omponents. The �rst 
omponent is alabel of Rtrav : Ri; Ai; Ni or W . The se
ond 
omponent is a m-tuple of labels (l1; : : : ; lm) des
ribingthe state of v with respe
t to the enumeration of m-tuples. These labels are su
h that :� lj = 1 means that v is the jth 
omponent in the 
urrent m-tuple,� lj = 1 means that v has been the jth 
omponent of all the m-tuples whose j�1 �rst 
omponentsare the (unique) verti
es su
h that l1 = 1; : : : ; lj�1 = 1,� lj = 0 means that v is not in one of the previous 
ases.Finally the a
tive vertex (with Ai or Ri as �rst 
omponent) has an additional \a
tion label" :Sear
hj for Sear
hing the jth 
omponent of a m-tuple, Returnj when the jth 
omponent has beenfound (then the a
tive vertex has to return ba
k to the root), Resetj when the jth 
omponent has beenused as jth 
omponent of all the m-tuples having the same j �rst 
omponents and has to be markedas su
h (i.e., has to 
hange its lj-label from 1 to �1), and Stop when the 
omputation has terminated.Initially, for every vertex, we have lj = 0; 8 j 2 f1; : : : ;mg. Moreover, the root has a (A0; Sear
h1)label and any other vertex has a N0 label. The irredu
ible graphs are su
h that for every vertex, l1 = �1and lj = 0; 1 < j � m.The PpGRS Renum 
ontains rules R2 to R4, extended with all possible values of the se
ond andthird 
omponents of the labels (but does not 
ontain the rule R4 when the a
tive label has a Stop
omponent). The role of rule R4 is taken over by rules R6(j), R7(j) and R10(j), below.In the following rules of Renum, 0j (resp. 1j , 1j) means that lj = 0 (resp. lj = 1, lj = 1), and onlythe 
omponents involved in the relabelling are spe
i�ed.R5(j) is used when the jth 
omponent of a m-tuple is found.R5(j) t(Ai; 0j ; Sear
hj)x1 - t(Ai; 1j ; Returnj)x1 priority 4for an a
tive vertex su
h that 8 x 2 f1; : : : ; j � 1; j + 1; : : : ;mg; lx 6= 1:When su
h a jth 
omponent has been found, the (Ai; Returnj) label �nishes its traversal, returnsto the root by means of rules R2 and R3 of Rtrav with the 
orresponding labels of Renum and be
omes(R1�i; Returnj) by rule R4. Then, when j < m, the root initiates a new traversal for sear
hing a(j + 1)th 
omponent. This is done by the following rules :R6(j; j < m) t(Ri; Returnj)x1 - t(Ai; Sear
hj+1)x1 priority 0When a mth 
omponent has been found and the (Ai; Returnm) label has returned to the root, thismth 
omponent must be marked (it 
an no more be the mth 
omponent of a m-tuple having the samem�1 �rst verti
es). This pro
ess is initiated by rule R6(m), and done by rules R8(m) and rules R2 toR4 of Rtrav with the 
orresponding labels of Renum. Next, a new mth 
omponent has to be sear
hed,whi
h is initiated by rules R10(m).R6(m) t(Ri; Returnm)x1 - t(Ai; Resetm)x1 priority 0
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omponent (j > 1) has not been found after a 
omplete traversal (this means that allremaining verti
es have already been the jth 
omponent or that there is not enough verti
es in theball), the vertex with label 1j�1 must be marked. This pro
ess is initiated by rule R7(j), and done byrules R8(j � 1) and R2 to R4. In su
h a 
ase, all the verti
es with labels �1j have to be reset to 0j (the(j � 1)th 
omponent will 
hange). This will be done by rules R9(j). Next, a new (j � 1)th 
omponenthas to be sear
hed, whi
h is initiated by rules R10(j � 1).R7(j; j > 1) t(Ri; Sear
hj)x1 - t(Ai; Resetj�1)x1 priority 4R8(j) t(Ai; 1j ; Resetj)x1 - t(Ai; �1j ; Resetj)x1 priority 4R9(j; j > 1) t(Ai; �1j ; Resetj�1)x1 - t(Ai; 0j ; Resetj�1)x1 priority 4R10(j) t(Ri; Resetj)x1 - t(Ai; Sear
hj)x1 priority 4When a �rst 
omponent has not been found during a 
omplete depth-�rst tree traversal, thePpGRS stops (all the verti
es have been the �rst 
omponent of any possible m-tuple).R7(1) t(Ri; Sear
h1)x1 - t(Ai; Stop)x1 priority 0As every tree traversal stops, the stri
t in
reasing of the 3m-tuple (j11j; : : : ; j1mj; j11j; : : : ; j1mj;jReset1j; : : : ; jResetmj) evaluated whenever the root has a label Ri is a termination 
riterium for the
omplete PpGRS Renum. Hen
e Renum is noetherian.Furthermore, we have the following invariant properties, ensuring that the PGRS Renum enumer-ates all the m-tuples of verti
es of B(x; r) :(P1) if Sear
hj is the 
urrent A
tion label, then for 1 � x < j exa
tly one vertex has a 
omponentlx = 1 and for j � y � m every vertex has a 
omponent ly 6= 1(P2) lj = 1 implies that the vertex v has been the jth 
omponent of all the m-tuples su
h that :(C1) 8 x < j, the xth 
omponent is the unique vertex su
h that lx = 1(C2) the jth 
omponent is the vertex v.At ea
h moment that Returnm has just be
ome the a
tion label (by rule R5(m)), a new m-tuple(y1; : : : ; ym) is enumerated : for every 1 � j � m exa
tly one vertex yj has a 
omponent lj = 1. Themapping h from Lv to f1; : : : ;m; �g mentioned in the beginning of this se
tion 
an now be de�ned inan obvious way (e.g., h(Ai; 1m; Returnm) = m). 25 Lo
al Simulation of a FCpGRS by a PpGRSLet R be a FCpGRS. In this se
tion, we des
ribe a PpGRS Rlo
sim working on a 
ountry of a given
apital 
 (in the sense de�ned in Se
tion 2) within a given graph (G;�). We assume that a rootedspanning tree T (
) of the 
ountry has been 
onstru
ted. Then Rlo
sim will realize a nondeterministi
appli
ation on T (
) of one appli
able f
-rule of R when su
h a rule exists.Proposition 15 Let R be a FCpGRS and let k be the greatest diameter of a graph in the de�nitionof R. There exists a PpGRS Rlo
sim whi
h, for any given rooted tree T (
) in a given graph (G;�),
an test whether a f
-rule r of R is appli
able in (G;�) to an o

urren
e � of Gr su
h that �(Gr)is a partial subgraph of the ball B(v; k) for some vertex v of T (
). Furthermore, a nondeterministi
appli
ation of su
h an appli
able f
-rule (when it exists) is done.



14 Di�erent lo
al 
ontrols for graph relabelling systemsProof. By using a depth-�rst tree traversal, Rlo
sim a
tivates every vertex v 2 T (
). Then, from anyvertex v, Rlo
sim marks in (G;�) a rooted spanning tree T (v) of the ball B(v; k) in (G;�). This ballmay in
lude verti
es of other 
ountries but only of 
ountries whi
h are near the 
ountry of v (two
ountries C1, C2 are near if their respe
tive 
apitals are at distan
e at most 3k : thus a ball B(v; k)with 
enter in C1 
an interse
t C2). Hen
e, it will be the main point of the global simulation in Se
tion5 to ensure that two near 
ountries are not simultaneously a
tive.For ea
h f
-rule (r;Hr) in the FCpGRS R, with r = (Gr; �r; �0r), the PpGRS Rlo
sim uses aPpGRS Rr that tests wether r is appli
able to an o

urren
e of Gr that lies inside B(v; k). Let m bethe number of verti
es of Gr. To �nd all o

urren
es of Gr in B(v; k), Rr will enumerate all m-tuplesof verti
es of B(v; k). Thus, Rr is obtained from the PpGRS Renum by adding the 
he
king and theeventual appli
ation of r whenever we have a label (Ai; 1m; F oundm). Labels (Ai; 1m; F oundm) appearinstead of the labels (Ai; 1m; Returnm) of rules R5(m), and mean that we have found a new m-tupleand that we must try to apply the f
-rule r on the m-tuple. The PpGRS Rlo
sim (that we will notdes
ribe in detail) a
tivates the PpGRS's Rr one after another (in some �xed order) to ensure thatall f
-rules of R are tried.Let us now des
ribe the PpGRS's Rr. We �rst 
hoose a numbering v1; : : : ; vm of the verti
es ofGr. Next, for ea
h vertex vj 2 v(Gr), we 
on
atenate to �v(vj) a label 
hosen from Renum : (Wi; 1j)or (Ni; 1j) if j < m and a label (Ai; 1m; F oundm) if j = m. Hen
e, for ea
h of these 
hoi
es, we obtaina new labelling of Gr. Let 
 be su
h a labelling of Gr and let (Gr; 
; 
0) be the new 
orrespondingrelabelling rule. For ea
h pair ((Gl; �l); �l) 2 Hr, we 
onsider all possible graphs (Gl; 
l) where forevery x 2 v(Gl) [ e(Gl), 
l(x) is the 
on
atenation of the label �l(x) and a label from Renum. Thelabelling 
l must be su
h that for every x 2 v(Gr) [ e(Gr), 
l(�l(x)) = 
(x). Furthermore a labelDone or Notdone is possibly added to the label Ai. Done means that r has been applied; Notdonemeans that r is appli
able, but it has not been applied.Now we 
an add the following rules to the PpGRS Renum in order to obtain the PpGRS Rr thatsimulates the appli
ation of the f
-rule r.R51(r) t(Ai; 0m; Sear
hm)x1 - t(Ai; 1m; F oundm)x1 priority 5for an a
tive vertex su
h that 8 x 2 f1; : : : ;m� 1g; lx 6= 1.R52(r; l) (Gl; 
l) - (Gl; 
0l) priority 7where 
l = 
0l ex
ept for the 
omponent (Ai; 1m; F oundm) whi
h be
omes (Ai; 1m; Returnm). Forevery possible 
 and 
l (depending on how we add labels of Renum) su
h rules are added.R53(r) (Gr; 
) - (Gr; 
0) priority 6where 
 = 
0 but the \� part" of the label is repla
ed by �0 and the vertex numbered m has now alabel (Ai;Done) instead of Ai or (Ai; Notdone).R54(r) (Gr; 
) - (Gr; 
00) priority 6where 
 = 
00 but the 
omponent (Ai; 1m; F oundm) of the vertex numbered m has be
ome(Ai; Notdone; 1m; Returnm).R55(r) t(Ai; 1m; F oundm)x1 - t(Ai; 1m; Returnm)x1 priority 5Rules R51(r) repla
e rules R5(m) and mean that a new 
urrent m-tuple is found.Rules R52(r; l) mean that the 
urrent m-tuple is an o

urren
e � of Gr, su
h that �(Gr) is inthe 
ontext (Gl; �l). In this 
ase, the f
-rule r 
annot be applied to the 
urrent m-tuple and a new
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-rule r is appli
able to the 
urrent m-tuple (thanks to the respe
tivepriorities of R52(r; l) and R53(r)) and that the relabelling has been done. Then the label (Ai;Done)stops the enumeration of m-tuples and gives a label Done to the root v of the tree T (v) (and Rlo
simwill then give label Done to the 
apital 
, in a way that is not spe
i�ed here).Rules R54(r) mean that the f
-rule r is appli
able to the 
urrent m-tuple (thanks to the respe
tivepriorities of R52(r; l) and R54(r)) but the relabelling has not been done. Rules R53(r) and RulesR54(r) have the same priority, thus they have the same probability to be applied. This possibility ofnon-appli
ation ensures a nondeterministi
 appli
ation of the f
-rules of R in T(
).Rule R55(r) means that the 
urrent m-tuple is not an o

urren
e of Gr. Hen
e, a new m-tuplemust be sear
hed.When all f
-rules of R are sequentially pro
essed, if the 
apital 
 has a label Notdone, a newsear
hing of appli
able f
-rules is started, and the �rst appli
able f
-rule is applied (we do notdes
ribe the PpGRS). Thus a nondeterministi
 appli
ation of an appli
able f
-rule of R in T (
), ifit exists, is made by the 
omplete PpGRS Rlo
sim so 
onstru
ted. Furthermore, when Rlo
sim stops,if a relabelling has been made, the 
apital 
 has the label Done and if there is no appli
able rule inT (
), the 
apital 
 has the label Nothing (the Nothing-labelling is not des
ribed). 26 Simulating the a
tivity of a FCpGRS by using a PpGRSTo a
hieve the simulation of a given FCpGRS R by a PpGRS, we now give a PpGRS Ra
tsim whi
hsupervises the a
tivity of 
apitals. A 
apital x is said to be a
tive if the PpGRS Rlo
sim from theprevious se
tion is looking for applying a f
-rule in the 
ountry of the 
apital x.Let k be the greatest diameter of a graph in the de�nition of R. Given a graph (G;�), we 
onsiderthe graph Cap(G) whose verti
es are the 
apitals obtained via a k-ele
tion in (G;�), and whose edgesare linking two 
apitals when these two 
apitals are near (i.e. whose distan
e is at most 3k). We aregoing to give a PpGRS R
ap whi
h simulates, in Cap(G), the a
tivity on (G;�) of every exe
ution ofthe given FCpGRS R. More pre
isely, let us assume that we have a graph (G;�) where a k-ele
tionhas been made. An exe
ution of R on G is de�ned by the sequen
e of relabelled o

urren
es �1; : : : ; �nin G. Ea
h o

urren
e �i interse
ts one or more 
ountries with 
apitals Ci;1; : : : ; Ci;ji respe
tively. Thegoal of the PpGRS R
ap is to ensure that �rst, one of the 
apitals C1;1; : : : ; C1;j1 is a
tive (step1), nextone of the 
apitals C2;1; : : : ; C2;j2 is a
tive (step2),. . . , next one of the 
apitals Cn;1; : : : ; Cn;jn (stepn)is a
tive, and �nally every 
apital must be ina
tive (i.e. N -labelled in the PpGRS of Figure 6). Thus,at ea
h stepi (1 � i � n), the PpGRS Rlo
sim may simulate the relabelling of R on �i (1 � i � n).To obtain a PpGRS no longer working on Cap(G), but on the whole graph (G;�), it is suÆ
ient to
onsider that the edges in Figure 6 are in fa
t paths of length at most 3k.Proposition 16 Let R be a FCpGRS. There exists a PpGRS Ra
tsim whi
h, for every given graph(G;�), 
an simulate on Cap(G) the a
tivity of any exe
ution of the given FCpGRS R.Proof. We use the following labels for every 
apital x 2 Cap(G):� W means that the 
ountry of x is Waiting to be a
tive,� A means that the 
ountry of x is A
tive : the PpGRS Rlo
sim is looking for applying a f
-ruleof R in the 
ountry of x (after whi
h the label of x be
omes D or N),� D (= Done) means that a f
-rule has been applied to an o

urren
e 
ontaining a vertex in the
ountry of x,� N (= Nothing) means that no f
-rule 
an be applied to an o

urren
e 
ontaining a vertex ofthe 
ountry of x.All 
apitals are initially W -labelled. We must ensure that:



16 Di�erent lo
al 
ontrols for graph relabelling systemsR1 tAx1 tWx2 - tLx1 tWx2 priority 5R2 tAx1 - tLx1 priority 4R3 tDx1 tNx2 - tDx1 tWx2 priority 3R4 tDx1 tWx2 - tWx1 tWx2 priority 2R5 tDx1 - tWx1 priority 1R6 tWx1 - tAx1 priority 0Figure 6: The PpGRS Ra
tsim of global simulation(P1) two neighbouring 
apitals in Cap(G) are not simultaneously A
tive, to ensure that two lo
alsimulations do not work on a 
ommon subgraph of G (see Se
tion 4),(P2) whenever a 
apital x has applied a f
-rule to an o

urren
e whi
h interse
ts its 
ountry, allneighbouring 
apitals of x in Cap(G) and the 
apital x itself will be
ome Waiting,(P3) every Waiting 
apital will be
ome A
tive.The PpGRS Ra
tsim is given by the rules in Figure 6 where L stands for a label D or N . RuleR1 indi
ates that the lo
al simulation of the FCpGRS in the 
ountry of the A-labelled 
apital hasterminated. The relative priorities of R1 and R6 ensure that two neighbouring 
apitals are not simul-taneously a
tive ((P1) is satis�ed). Rule R2 does the same thing when the 
apital has no W -labelledneighbouring 
apitals. Rule R3 is used when a 
apital has done an appli
ation and allows us to \wakeup" a sleeping 
apital. Then rule R4 is applied when all the neighbouring 
apitals have been wakedup and the D-labelled 
apital be
omes itself W -labelled ((P2) is satis�ed). Rule R5 
on
erns graphshaving only one 
apital. Rule R6 a
tivates a waiting 
apital ((P3) is satis�ed).Furthermore we have the following properties:(P4) 8 fx; yg 2 e(Cap(G)); �v(x) = A =) �v(y) 2 fN;Wg (indeed, a

ording to R6 < R1 we have�v(y) 6= A, and a

ording to R6 < R4 we have �v(y) 6= D),(P5) 8 fx; yg 2 e(Cap(G)); �v(x) = D =) �v(y) 2 fN;Wg (a

ording to (P4)),(P6) whenever a vertex x be
omes Done, all its neighbours are W -labelled or will be
ome againW -labelled (a

ording to (P5) and rule R3),(P7) a D-labelled vertex will be W -labelled only when all its neighbours are W -labelled (a

ordingto R4, R5 < R3),(P8) 8 fx; yg 2 e(Cap(G)), if �v(x) = D and �v(y) = W , y will stay W -labelled as long as x isD-labelled (a

ording to (P5)).Thanks to these properties, the PpGRS Ra
tsim simulates on Cap(G) the a
tivity of any exe
utionof the FCpGRS R on (G;�) (if no rule of R is appli
able, then all 
apitals will be
ome N -labelled,
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able). Conversely any exe
ution of the previous PpGRS is asimulation of an exe
ution of the FCpGRS R in (G;�). 27 Equivalen
e between PpGRS's and FCpGRS'sWe are now going to show that PpGRS0s and FCpGRS0s are in fa
t equivalent. We �rst give, forany FCpGRS R, a PpGRS R' whi
h 
an simulate the behaviour of R on any graph G labelled withinitial labels. The intuitive idea is the following one : let k (resp. m) be the greatest diameter (resp.number of verti
es) of the graphs in the rules of R. We �rst 
onstru
t a 
overing of the graph Gby means of 
ountries and 
apitals (two 
apitals being at a distan
e at least k + 1 from ea
h other).Then, any 
apital 
an test whether a f
-rule 
an or 
annot be applied on an o

urren
e overlappingits 
ountry, by enumerating the m-tuples in its neighbourhood, and apply one of these rules whenpossible. The whole a
tivity of the 
apitals is managed by the PpGRS Ra
tsim seen in the previousse
tion.Proposition 17 The 
lass of FCpGRS's is less powerful than the 
lass of PpGRS's.Proof. Let R be a given FCpGRS. Putting together the PpGRS's 
onstru
ted in Se
tions 2, 4 and5 with appropriate priorities we obtain a PpGRS R0 equivalent to R. First, we observe that theW -labels in Ra
tsim are here C-labels from PpGRS Rk�ele
. Rule R1 of Ra
tsim is repla
ed by therules of Rlo
sim where paths of length at most 3k are added from the A
tive vertex to a C-labelledvertex. The so-
onstru
ted rules (with the priorities of Rlo
sim) lead to a PpGRS 
alled R0lo
sim.Finally, rule R2 of Ra
tsim is repla
ed by the rules of Rlo
sim.The priorities of the so-obtained PpGRS R' are given as:Rk�ele
 > R0lo
sim > Rlo
sim > R3;a
tsim > R4;a
tsim > R5;a
tsim > R6;a
tsimwhere in ea
h used PpGRS, the respe
tive priorities of the rules are respe
ted. Giving the greatestpriorities to the rules of Rk�ele
 we ensure that a 
apital is A
tive (i.e. A-labelled) only if all near
apitals (i.e. at a distan
e at most 3k) have been ele
ted (i.e. have a C-label). In su
h a system,simulations of relabelling may be pro
essed before the k-ele
tion has globally terminated, but thegreater priorities of the rules of Rk�ele
 ensure that the near 
ountries are 
onstru
ted. Thus theso-pro
essed relabelling steps are allowed. 2Conversely, for any PpGRS R, one 
an easily 
onstru
t a FCpGRS R0 whi
h simulates thebehaviour of R. For any rule r in R, one 
an 
hara
terize the 
ontexts whi
h have to prevent theappli
ation of r : it suÆ
es to take into a

ount all the rules r0 in R whi
h have a higher priority thanr and whi
h 
an overlap an o

urren
e of Gr. Hen
e, we obtain the following result :Proposition 18 The 
lass of PpGRS's is less powerful than the 
lass of FCpGRS's.Proof. Let R be a PpGRS. We are going to 
onstru
t a FCpGRS R1 whi
h, for any graph (G;�),leads to the same irredu
ible graphs (by allowing the same relabelling steps than R). For ea
h ruler 2 R, we 
onsider the set S of rules r0 2 R whi
h have a higher priority than r. For every r0 2 S, we
onsider the set Gr0 UGr of pairs ((G;�); �) de�ned as follows. A pair ((G;�); �) belongs to Gr0 UGri� � is an o

urren
e of Gr in (G;�) and there exists an o

urren
e �0 of Gr0 su
h that:v(G) = v(�(Gr)) [ v(�0(Gr0)) and v(�(Gr)) \ v(�0(Gr0)) 6= ;Then (r;Gr0 UGr) is the f
-rule asso
iated in R1 with r. Thus a rule r 2 R is appli
able toan o

urren
e � i� the f
-rule (r;Gr0 UGr) 2 R1 is appli
able to �. Hen
e, the PpGRS R and theso-
onstru
ted FCpGRS R1 allow exa
tly the same relabelling steps. 2Finally, we obtain the following result :



18 Di�erent lo
al 
ontrols for graph relabelling systemsTheorem 19 The PpGRS's and the FCpGRS's are equivalent.8 Other 
omparisons between the 
lasses of relabelling systemsThe aim of this se
tion is to a
hieve all the 
omparisons between the di�erent kinds of relabellingsystems we have introdu
ed. We �rst 
lassify the two basi
 systems based on the relabelling of partialor indu
ed subgraphs. Then, we will 
onsider the two me
hanisms of lo
al 
ontrol that we have de�ned: the priorities on the set of rules and the use of forbidden 
ontexts. We will see that whenever we usesu
h a lo
al 
ontrol, the di�eren
es between the powers of partial or indu
ed relabellings disappear.Proposition 20 The 
lass of pGRS's is stri
tly less powerful than the 
lass of iGRS's.Proof. Let R be a given pGRS. The 
onstru
ted iGRS will have the same sets of labels as R.Ea
h rule (Gr; �; �0) 2 R is simulated by the set of rules (G0r; 
; 
0) on indu
ed subgraphs su
h thatv(G0r) = v(Gr), (Gr; �) is a subgraph of (G0r; 
) and 
0e(fx; yg) = 
e(fx; yg) for every edge fx; yg 2e(G0r)n e(Gr). Thus R 
an be simulated by a iGRS. 2The following example shows that the stated in
lusion is stri
t.Example 21 Consider the iGRS previously de�ned in Example 1.2. The following properties holdfor every graph (G;�0) in some Irred((G;�)) where (G;�) has only C-labels.� an irredu
ible graph (G;�0) has only C-labels or only nC-labels,� an irredu
ible graph (G;�0) has only C-labels if and only if G is a 
omplete graph.On the other hand, a pGRS working on initially C-labelled graphs 
annot satisfy the previousproperties. To see that, let us suppose that a pGRS R satis�es these properties. Then, R would allowthe following relabelling:tCx1����tCx2 ���� tCx3 -+ tnCx1����tnCx2 ���� tnCx3 AC-labelled triangle should be irredu
ible, but there is no way to prevent the pGRS R from applyingto it the same relabelling rules as before, whi
h gives the 
ontradi
tion :tCx1����tCx2 ���� tCx3 -+ tnCx1����tnCx2 ���� tnCx3 2Proposition 22 The 
lass of iGRS's is stri
tly less powerful than the 
lass of FCpGRS's.Proof. Let R be a given iGRS. Ea
h rule (Gr; �; �0) 2 R 
an be simulated by a f
-rule given by(Gr; �; �0) where the forbidden 
ontexts are the graphs obtained by adding any new edge linking twoverti
es of v(Gr). On the other hand, the set of trees is \re
ognized" by a FCpGRS (see Example 9),but is not \re
ognizable" by a iGRS. To see that, let us assume that a iGRS R' \re
ognizes" theset of trees, that is, R' works on initially N -labelled graphs and is su
h that an irredu
ible graph



I. Litovsky, Y. M�etivier and E. Sopena 19(G;�) has only T -labels i� G is a tree. Hen
e, R' must re
ognize a string (i.e. a \line-graph"). Now,
onsider a long enough string (whose length is greater than the greatest diameter of a rule in R') ; ifwe add an edge linking the two end-points of this string, R' will be able to apply the same relabellingrules as it did for the string, and then re
ognizes a ring. This leads to a 
ontradi
tion, thus the statedin
lusion is stri
t. 2As in Theorem 19, by adapting the 
onstru
ted PpGRS to the notion of indu
ed o

urren
esinstead of partial ones, one 
an prove that:Proposition 23 The PiGRS's and the FCiGRS's are equivalent.We still have to relate the 
lasses of Y pGRS's and ZiGRS's, for Y;Z 2 fP; FCg. To do that, we�rst need the following result :Lemma 24 There exists a PpGRS whi
h, given a rooted spanning tree of a graph G and given agraph Gi having m verti
es, makes an enumeration of all the m-tuples of verti
es of G and during thisenumeration re
ognizes the m-tuples whi
h 
orrespond to an indu
ed o

urren
e of Gi in G.Sket
h of proof. One takes again a PpGRS whi
h enumerates all m-tuples of verti
es of G (seeSe
tion 3). Then we add a rule ri with Gi as left-hand side and a label re
ognized in the right-handside. For any possible Gj , obtained from Gi by adding a new edge, we add a rule rj with Gj asleft-hand side and a label unre
ognized in the right-hand side, and assign to rj a greater priority thanri. 2Proposition 25 The 
lass of FCiGRS's is less powerful than the 
lass of PpGRS's.Proof. Let R be a FCiGRS. The simulation prin
iple is the same that we have used in the proofof Proposition 17. Let (r;Hr) be a rule of R, with r = (Gr; �r; �0r), Hr = f((Gi; �i); �i)gi2Ir and d bethe greatest diameter of the 
ontext graphs Gi's. We only need to 
hange the appli
ation test of thef
-rule r. We informally des
ribe this new test, whi
h repla
es rules R52, R53 and R54 in Rlo
sim. Letm be the number of verti
es of the relabelled graph Gr of r. A

ording to the previous lemma, duringan enumeration of m-tuples, one 
an re
ognize whether the 
urrent m-tuple is an indu
ed o

urren
eof (Gr; �r) or not. When it is the 
ase one 
an test (lemma 7.5), for any i 2 Ir, whether a ni-tuple isan indu
ed o

urren
e of Gi (ni is the number of verti
es of Gi). The f
-rule r is then appli
able tothe 
urrent m-tuple if and only if no ni-tuple is an indu
ed o

urren
e of Gi. 2Thus, any PiGRS, equivalent to a FCiGRS, 
an also be simulated by a PpGRS. On the otherhand, by adding priorities to the sets of rules obtained by simulating, like in Proposition 20, ea
h ruleof a PpGRS, one proves that any PpGRS 
an be simulated by a PiGRS. Thus, we have the followingresult :Proposition 26 The PiGRS's and the PpGRS's are equivalent.Finally, we obtain the global 
lassi�
ation | given in the introdu
tion | of the graph relabellingsystems introdu
ed in this paper.Referen
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