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tion.1 Introdu
tionGraph relabelling systems and, more generally, lo
al 
omputations in graphs are powerful modelswhi
h provide general tools for en
oding distributed algorithms, for proving their 
orre
tness andfor understanding their power. We 
onsider a network of pro
essors with arbitrary topology. It isrepresented as a 
onne
ted, undire
ted graph where verti
es denote pro
essors, and edges denotedire
t 
ommuni
ation links. An algorithm is en
oded by means of lo
al relabelings. Labels atta
hedto verti
es and edges are modi�ed lo
ally, that is on a subgraph of �xed radius k of the given graph,a

ording to 
ertain rules depending on the subgraph only (k�lo
al 
omputations). The relabellingis performed until no more transformation is possible. The 
orresponding 
on�guration is said to bein normal form. Two sequential relabelling steps are said to be independent if they are applied ondisjoint subgraphs. In this 
ase they may be applied in any order or even 
on
urrently.The present 
ontribution re
e
ts 
lassi
al topi
s in
luding basi
 properties of lo
al 
omputations.Among paradigms asso
iated with lo
al 
omputations, we present the ele
tion problem, the re
ognitionproblem and the lo
al dete
tion of the termination problem.For these three problems, we 
onsider graphs whi
h are uniformly labelled by some initial label(whi
h may en
ode some knowledge on the graph as, for instan
e, the number of verti
es and/or edges).For the re
ognition problem, the presen
e or the absen
e of 
ertain �nal labels determines whether Gis a

epted or not. The aim of an ele
tion algorithm is to 
hoose exa
tly one element among the setof verti
es. The more general assumption used in the paper is as follows. We suppose that initiallyevery vertex and every edge has the same label whi
h en
odes some knowledge on the graph. Then we
onsider lo
al 
omputation systems su
h that for ea
h irredu
ible graph there is a given vertex labelwhi
h appears exa
tly on
e in the graph. A distributed algorithm terminates whenever it rea
hes aterminal 
on�guration, that is a 
on�guration in whi
h no step of the algorithm 
an be applied. Weare interested in the question whether the global termination of a system of lo
al 
omputations 
an bedete
ted also lo
ally. This means that for every terminal 
on�guration there is a vertex in the graphsu
h that its neighbourhood of a given radius r determines that a normal form has been rea
hed. Inthis 
ase, we say that global termination is r�lo
ally dete
ted. We use 
overings as a fundamental tool1



2 Graph relabelling systems and distributed algorithmswhi
h enable to understand the borderline between positive and negative results about distributed
omputations. We are parti
ularly interested in the question whether 
ertain additional knowledgeabout the network, whi
h is used in spe
i�
 distributed algorithms, is really needed for solving thegiven problem or not. For la
k of spa
e, some results about the 
omparison with the power of logi
formulas will not be given, see [25, 31℄.Among models related to our model there are lo
al 
omputations systems, as de�ned by Rosensthielet al. [1℄, Angluin [2℄ or Yamashita and Kameda [3, 4℄. In [1℄ a syn
hronous model is 
onsidered,where all verti
es are equipped with a deterministi
 �nite automata (the same for all verti
es). Abasi
 
omputation step 
onsists then in 
omputing the next state of ea
h pro
essor a

ording to itsown state and to the states of its neighbours. In [2℄ an asyn
hronous model is 
onsidered: duringa basi
 
omputation step, two adja
ent verti
es ex
hange their labels and then 
ompute new labels.In [3, 4℄ an asyn
hronous model is also 
onsidered where during a basi
 
omputation step a pro
essoreither 
hanges its state and sends a message or re
eives a message.Introdu
tion to distributed algorithms and main topi
s of the �eld are presented in [5, 6℄.2 GraphsAll graphs we 
onsider are �nite, undire
ted, with no multiple edges nor self-loops. A graph G is thusa pair (V (G); E(G)); where V (G) is a �nite set of verti
es and E(G) � ffv; v0g j v; v0 2 V (G); v0 6= vgis the set of edges. The number of verti
es in a graph G is 
alled the size of G.Let e = fv; v0g be an edge; we say that e is in
ident with v and v0 and that v0 is a neighbour of v.The set of neighbours of a vertex v, together with v itself, is denoted NG(v). Two edges are adja
entif they share a 
ommon vertex. The degree of a vertex v, denoted by d(v), is the number of edgesin
ident with v. Verti
es of degree 1 are 
alled leafs, other verti
es are internal verti
es. A path Pfrom v1 to vi in G is a sequen
e P = v1; e1; v2; e2; : : : ; ei�1; vi of alternating verti
es and edges su
hthat for every j, 1 � j < i, ej is an edge in
ident with verti
es vj and vj+1; i � 1 is the length of P .If v1 = vi then P is a 
y
le. A path P is simple if no vertex o

urs twi
e in P . Two verti
es v andw are 
onne
ted if there exists a path from v to w. A graph is 
onne
ted if every two verti
es are
onne
ted. Let v and v0 be two 
onne
ted verti
es; the distan
e between v and v0, denoted by d(v; v0),is the minimum length of a (simple) path from v to v0. The maximal distan
e d(v; v0), taken over allpairs of verti
es fv; v0g of a 
onne
ted graph G, is the diameter of G and is denoted by D(G). A treeis a 
onne
ted graph 
ontaining no 
y
le. In a tree, every two verti
es are thus 
onne
ted by pre
iselyone simple path.Let G and G0 be two graphs; G0 is a subgraph of G if V (G0) � V (G) and E(G0) � E(G). LetV 0 be a subset of V (G); the subgraph of G indu
ed by V 0, denoted by G[V 0℄, has vertex set V 0 and
ontains all edges of G whose both endpoints belong to V 0. Let v be a vertex and k a positive integer;the ball of radius k with 
enter v, denoted by BG(v; k), is the subgraph of G indu
ed by the set ofverti
es V 0 = fv0 2 V j d(v; v0) � kg. A homomorphism of a graph G to a graph H is a mapping
 : V (G) �! V (H) su
h that if fu; vg is an edge of G then f
(u); 
(v)g is an edge of H. Sin
e wedeal with graphs having no self-loop, we ne
essarily have 
(u) 6= 
(v) if fu; vg is an edge of G. Notealso that 
(NG(u)) � NH(
(u)) for every vertex u. We say that 
 is an isomorphism if 
 is bije
tiveand 
�1 is also a homomorphism. Two graphs G and H are isomorphi
, denoted by G ' H, if thereexists an isomorphism from G to H. A 
lass of graphs is any 
olle
tion of graphs 
losed under theisomorphism relation.Notation. For every integers i and j, i � j, we shall denote by [i; j℄ the set fi; i+ 1; : : : ; jg.Remark 1 In the following, we will only 
onsider 
onne
ted graphs and will simply 
all them \graphs".3 First ExamplesThe aim of this se
tion is to illustrate, in an intuitive way, the notion of graph relabelling systems byshowing how some algorithms on networks of pro
essors may be en
oded within our framework [7℄.
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Figure 1: Sequential 
omputation of a spanning treeAs usual, su
h a network is represented by a graph whose verti
es stand for pro
essors and edges for(bidire
tional) links between pro
essors. At every time, ea
h vertex and ea
h edge is in some parti
ularstate and this state will be en
oded by a vertex or edge label. A

ording to its own state and to thestates of its neighbours, ea
h vertex may de
ide to realize an elementary 
omputation step. After thisstep, the states of this vertex, of its neighbours and of the 
orresponding edges may have 
hangeda

ording to some spe
i�
 
omputation rules.3.1 Sequential Computation of a Spanning TreeWe 
onsider here the problem of building a spanning tree in a graph using the depth-�rst sear
halgorithm.Suppose that all the verti
es are initially in some neutral state (with label N) ex
ept exa
tly onevertex whi
h is in an a
tive state (with label A) and that all edges have label 0. The algorithm willrun in su
h a way that at every time exa
tly one vertex will be A-labelled.At ea
h step of the 
omputation, the A-labelled vertex, say u, will a
t as follows:1. If u has a N-labelled neighbour v, then u will a
tivate this neighbour: u be
omes marked (withlabel M), v be
omes a
tive (with label A) and the edge fu; vg be
omes 1-labelled.2. If u has no N-labelled neighbour and has a (unique) M-labelled neighbour w then u will rea
tivatethis neighbour: u enters a �nal state (with label F) and w be
omes A-labelled.The 
omputation stops as soon as none of the above 
omputation rules may be applied (in that 
ase,all the neighbours of the A-labelled vertex are F-labelled). The spanning tree is then given by the setof all 1-labelled edges.Figure 1 des
ribes a sample 
omputation using this algorithm (edges with label 1 are drawn asthi
k edges).3.2 Distributed Computation of a Spanning Tree Without Lo
al Dete
tion of theGlobal TerminationIn the previous example, the spanning tree is 
omputed in a stri
tly sequential way sin
e at any timeat most one vertex is a
tive (with label A). We will give here a se
ond version of this algorithm thatwill run in a more distributed way.



4 Graph relabelling systems and distributed algorithms
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Figure 2: Distributed 
omputation of a spanning tree
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FFigure 3: Distributed 
omputation of a spanning tree with lo
al dete
tion of the global terminationAs before, we assume that a unique vertex has initially label A, all other verti
es having label Nand all edges having label 0.At ea
h step of the 
omputation, an A-labelled vertex u may a
tivate any of its neutral neighbours,say v. In that 
ase, u keeps its label, v be
omes A-labelled and the edge fu; vg be
omes 1-labelled.Hen
e, several verti
es may be a
tive at the same time. Con
urrent steps will be allowed providedthat two su
h steps involve distin
t verti
es. The 
omputation stops as soon as all the verti
es havebeen a
tivated. As before, the spanning tree is given by the 1-labelled edges.Figure 2 des
ribes a sample 
omputation using this algorithm. A

ording to the previous dis
us-sion, the reader should keep in mind that some of the relabelling steps may be applied 
on
urrently.3.3 Distributed Computation of a Spanning Tree with Lo
al Dete
tion of theGlobal TerminationThe sequential algorithm des
ribed before is su
h that the a
tive vertex is able to lo
ally dete
t theglobal termination of the algorithm: if all the neighbours of the a
tive vertex are F-labelled, then the
omputation is terminated. However, it is not diÆ
ult to observe that the distributed version of thisalgorithm does not have this property. We will give here a new distributed version of this algorithm



I. Litovsky, Y. M�etivier and E. Sopena 5having the property of lo
al dete
tion of the global termination.As before, we assume that a unique vertex has initially label A, all other verti
es having label Nand all edges having label 0. The main idea is that the unique initially A-labelled vertex will keep itslabel until the end of the 
omputation, while other a
tivated verti
es will be A'-labelled. As soon asan A'-labelled vertex is no longer \useful" for the 
omputation, it will rea
h its �nal state (with labelF). More pre
isely, we will use the following 
omputation rules:At ea
h step of the 
omputation, an a
tive vertex (with label A or A'), say u, will a
t as follows:1. If u has a N-labelled neighbour v, then u will a
tivate this neighbour: u keeps its label, v be
omesa
tive (with label A') and the edge fu; vg be
omes 1-labelled.2. If u is A'-labelled, has no N-labelled neighbour and is su
h that all its neighbours to whi
h itis linked by a 1-labelled edge ex
ept one of these neighbours are F-labelled, then u be
omesF-labelled.At any time, the subgraph indu
ed by the 1-labelled edges and the A- or A'-labelled verti
es is a tree.Intuitively speaking, the se
ond rule means that the vertex u is a leaf in this tree.Thus, this algorithm runs in two phases (that may overlap): in the �rst phase, the tree is growinguntil all verti
es are rea
hed; in the se
ond phase, it will de
rease (by loosing its leaves) until it isredu
ed to the initially A-labelled vertex. This vertex is then able to dete
t that the algorithm hasterminated sin
e all its neighbours are F-labelled.Figure 3 des
ribes a sample 
omputation using this algorithm.4 Graph Relabelling Systems4.1 Labelled GraphsWe 
onsider now L�labelled graphs, that is graphs whose verti
es and edges are labelled with labelsfrom a possibly in�nite alphabet L. A L�labelled graph will be denoted by (G;�), where G is a graphand �:V (G) [ E(G) ! L is the labelling fun
tion. The graph G is 
alled the underlying graph of(G;�), and � is a labelling of G. The 
lass of L�labelled graphs will be denoted by GL, or simply G ifthe alphabet L is 
lear from the 
ontext.Let (G;�) and (G0; �0) be two labelled graphs; (G;�) is a subgraph of (G0; �0), denoted by (G;�) �(G0; �0), if G is a subgraph of G0 and � is the restri
tion of �0 to V (G) [E(G).A mapping ':V (G) [ E(G) ! V (G0) [ E(G0) is a homomorphism of (G;�) to (G0; �0) if ' is ahomomorphism of G to G0 whi
h preserves the labelling, that is su
h that �0('(x)) = �(x) holds forevery x 2 V (G) [ E(G). An o

urren
e of (G;�) in (G0; �0) is an isomorphism ' between (G;�) andsome subgraph (H; �) of (G0; �0).4.2 Graph Relabelling SystemsWe introdu
e in this se
tion the formal notion of graph relabelling systems.De�nition 2 A (graph) relabelling rule is a triple R = (GR; �R; �0R) su
h that (GR; �R) and (GR; �0R)are two labelled graphs. The labelled graph (GR; �R) is the left-hand side and the labelled graph (GR; �0R)is the right-hand side of R.De�nition 3 A graph relabelling system (GRS for short) is a triple R = (L; I; P ) where L is a setof labels, I a subset of L 
alled the set of initial labels and P a �nite set of relabelling rules.The intuitive notion of 
omputation step will then 
orrespond to the notion of relabelling step:De�nition 4 A R�relabelling step is a 5-tuple (G;�;R; '; �0) su
h that R is a relabelling rule in Pand ' is both an o

urren
e of (GR; �R) in (G;�) and an o

urren
e of (GR; �0R) in (G;�0).



6 Graph relabelling systems and distributed algorithmsIntuitively speaking, the labelling �0 of G is obtained from � by modifying all the labels of theelements of '(GR; �R) a

ording to the labelling �0R. Su
h a relabelling step will be denoted by(G;�) �!R;' (G;�0).The notion of 
omputation then 
orresponds to the notion of relabelling sequen
e:De�nition 5 A R�relabelling sequen
e is a tuple (G,�0,R0,'0,�1,R1,'1,�2,: : :, �n�1, Rn�1,'n�1,�n) su
h that for every i, 0 � i < n, (G;�i; Ri; 'i; �i+1) is a R�relabelling step. The exis-ten
e of su
h a relabelling sequen
e will be denoted by (G;�0) �!�R (G;�n).The 
omputation stops when the graph is labelled in su
h a way that no relabelling rule 
an beapplied:De�nition 6 A labelled graph (G;�) is said to be R�irredu
ible if there exists no o

urren
e of(GR; �R) in (G;�) for every relabelling rule R in P .For every labelled graph (G;�) in GI we denote by IrredR(G;�) the set of all R�irredu
iblelabelled graphs (G;�0) su
h that (G;�) �!�R (G;�0). Intuitively speaking, the set IrredR(G;�)
ontains all the �nal labellings that 
an be obtained from a I�labelled graph (G;�) by applyingrelabelling rules in P and may be viewed as the set of all the possible results of the 
omputationen
oded by the system R.Example 7 The algorithm introdu
ed in Subse
tion 3.2 may be en
oded by the graph relabelling systemR1 = (L1; I1; P1) de�ned by L1 = fN;A; 0; 1g, I1 = fN;A; 0g, and P1 = fRg where R is the followingrelabelling rule:
0 1

R :
A N A AFigure 1 thus des
ribes a sample R1�relabelling sequen
e.4.3 Lo
al Control Me
hanismsIn order to rea
h a satisfa
tory expressive power, we introdu
e some lo
al 
ontrol me
hanisms. Theseme
hanisms allow us to restri
t in some sense the appli
ability of relabelling rules.4.3.1 Graph Relabelling Systems with PrioritiesThe �rst me
hanism we will 
onsider is obtained by introdu
ing some priority relation on the set ofrelabelling rules:De�nition 8 A graph relabelling system with priorities (PGRS for short) is a 4-tuple R = (L; I; P;>)su
h that (L; I; P ) is a graph relabelling system and > is a partial order de�ned on the set P , 
alledthe priority relation.A R�relabelling step is then de�ned as a 5-tuple (G;�;R; '; �0) su
h that R is a relabelling rulein P , ' is both an o

urren
e of (GR; �R) in (G;�) and an o

urren
e of (GR; �0R) in (G;�0) and thereexists no o

urren
e '0 of a relabelling rule R0 in P with R0 > R su
h that '(GR) and '(GR0) interse
tin G (that is V ('(GR)) \ V ('(GR0)) = ;).The notion of relabelling sequen
e is de�ned as previously.Example 9 The algorithm introdu
ed in Subse
tion 3.2 may be en
oded by the PGRS R2 =(L2; I2; P2; >2) de�ned by L2 = fN;A;M; F; 0; 1g, I2 = fN;A; 0g, P2 = fR1; R2g where R1 andR2 are the following relabelling rules:
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with the priority relation: R1 >2 R2.Figure 1 thus des
ribes a sample R2�relabelling sequen
e.4.3.2 Graph Relabelling Systems with Forbidden ContextsThe idea we develop here is to prevent the appli
ation of a relabelling rule whenever the 
orrespondingo

urren
e is \in
luded" in some spe
ial 
on�guration, 
alled a 
ontext. More formally, we have:De�nition 10 Let (G;�) be a labelled graph. A 
ontext of (G;�) is a triple (H;�;  ) su
h that (H;�)is a labelled graph and  an o

urren
e of (G;�) in (H;�).De�nition 11 A relabelling rule with forbidden 
ontexts is a 4-tuple R = (GR; �R; �0R; FR) su
h that(GR; �R; �0R) is a relabelling rule and FR is a �nite set of 
ontexts of (GR; �R).De�nition 12 A graph relabelling system with forbidden 
ontexts (FCGRS for short) is a tripleR = (L; I; P ) de�ned as a GRS ex
ept that the set P is a set of relabelling rules with forbidden
ontexts.A relabelling rule with forbidden 
ontexts may be applied on some o

urren
e if and only if thiso

urren
e is not \in
luded" in an o

urren
e of some of its forbidden 
ontexts. More formally:De�nition 13 A R�relabelling step is a 5-tuple (G;�;R; '; �0) su
h that R is a relabelling rule withforbidden 
ontexts in P , ' is both an o

urren
e of (GR; �R) in (G;�) and an o

urren
e of (GR; �0R)in (G;�0), and for every 
ontext (Hi; �i;  i) of (GR; �R), there is no o

urren
e 'i of (Hi; �i) in (G;�)su
h that 'i( i(GR; �R)) = '(GR; �R).Example 14 The algorithm introdu
ed in Subse
tion 3.3 may be en
oded by the FCGRS R3 =(L3; I3; P3) de�ned by L3 = fN;A;M; F; 0; 1g, I3 = fN;A; 0g, P3 = fR1; R2; R3g where R1, R2and R3 are the following relabelling rules with forbidden 
ontexts:
, { }

R :2
0

N
1

A’A’ A’

A’ F

A’ A’

A’ A’

1 1

A’

N

0

A’

1 1

A

, ,

R :1
0

A N
1

A A’

R :3

, { }

, }{The unique vertex of the left-hand side of the rule R3 is asso
iated with the top vertex of itsforbidden 
ontexts.Figure 3 thus des
ribes a sample R3�relabelling sequen
e.



8 Graph relabelling systems and distributed algorithms4.3.3 PGRS's versus FCGRS'sDue to the 
ontrol me
hanism on the appli
ability of relabelling rules in PGRS's and FCGRS's,only relabelling steps 
on
erning \far enough" o

urren
es may be applied 
on
urrently [8℄. Roughlyspeaking, in order to 
he
k whether a relabelling rule may be applied on a given o

urren
e or notit is ne
essary to 
onsider some \
ontrol area" surrounding this o

urren
e. Two relabelling stepsare then \independant" if their 
orresponding 
ontrol areas do not interse
t. The reader should notehere that the diameter of this 
ontrol area is bounded by some 
onstant only depending on the graphrelabelling system.The 
omparison between the expressive power of PGRS's and FCGRS's, together with some othertypes of GRS's (where the o

urren
es are de�ned as indu
ed subgraphs), has been done in [8℄. Themain result is the following:Theorem 15 PGRS's and FCGRS's are equivalent.By \equivalent" we mean that for every PGRS (resp. FCGRS) R there exists a FCGRS (resp.PGRS) R0 su
h that for every labelled graph (G;�), the sets IrredR(G;�) and IrredR0(G;�) 
oin
ide.Outline of the proof. For any PGRSR, it is not diÆ
ult to 
onstru
t an equivalent FCGRSR0. Thebasi
 idea is to transform every relabelling rule R of R into a relabelling rule with forbidden 
ontextsR0 whose forbidden 
ontexts are all possible 
on�gurations 
orresponding to some \overlapping" of Rwith some relabelling rule R0 whith highest priority.The diÆ
ult part of the proof is to provide for every FCGRS R an equivalent PGRS R0. Themain idea is to 
onstru
t a PGRS R0 that will \simulate" the behaviour of R. Roughly speaking,this simulation is obtained by the \
omposition" of several PGRS's 
orresponding to the following\phases" of the simulation:Phase 1. The k-ele
tion 
onstru
tion.The ele
tion problem, dis
ussed in Se
tion 8, 
onsists in distinguishing (ele
ting) in a graph aunique vertex (by means of some spe
ial label). This problem is known to be unsolvable in the general
ase. We de�ne here a \weak" version of this problem, namely the k�ele
tion problem, whi
h 
onsistsin ele
ting several verti
es, 
alled 
apitals, in su
h a way that:1. Every 
apital is the root of some tree whose depth is at most d, where d is the maximal diameterof a forbidden 
ontext in a rule of R.2. Every vertex belongs to su
h a tree.3. The distan
e between every two 
apitals is at least d+ 1.This �rst phase allows us to partition the graph into several 
ountries 
orrespnding to the abovedes
ribed trees. Every 
ountry has a 
apital whi
h will organize the simulation.Phase 2. A
tivation of verti
es.Ea
h 
apital will generate a token and send it along its own tree (using a depth-�rst sear
htraversal). A vertex is a
tivated when it owns the token.Phase 3. Looking for appli
ability of relabelling rules.When a vertex x is a
tive, it �rst builds a spanning tree of the ballB(x; d). For every relabelling rulewith forbidden 
ontexts R whose left-hand side has p verti
es, the vertex x enumerates all possiblep�tuples in B(x; d), in order to 
he
k whether the rule R is appli
able or not (in parti
ular, itis ne
essary to verify that the 
orresponding o

urren
e is not in
luded in some of the forbidden
ontexts). When a rule is found to be appli
able then, undeterministi
ally, the rule is applied or not(in order to simulate all possible behaviours of R).The main diÆ
ulty is to 
orre
tly \
oordonate" the a
tivity of the 
apitals. In parti
ular, it isne
essary to ensure that two \near" 
apitals are not a
tive at the same time to prevent two verti
esto pro
ess the third phase on overlapping balls. 2



I. Litovsky, Y. M�etivier and E. Sopena 95 Proof Te
hniquesA major interest of the graph rewriting formalism for expressing distributed algorithms is that we 
anuse proof te
hniques issued from 
lassi
al Rewriting Theory to prove properties of these algorithms.The properties whi
h are of spe
ial interest are for instan
e: 
orre
tness, termination, terminationdete
tion or time 
omplexity. The aim of this se
tion is to illustrate, on the previously introdu
edexamples, how these te
hniques 
an be used to prove su
h properties.Roughly speaking, the 
orrespondan
e between properties of distributed algorithms and graphrelabelling systems will be the following. Let A be a distributed algorithm en
oded by some graphrelabelling system R (indi�erently, R may be a GRS, a PGRS or a FCGRS). Then :� The algorithm A is \
orre
t" if for every labelled graph (G;�) every labelled graph inIrredR(G;�) 
orresponds to a valid solution 1.� The algorithm A always terminates if and only if there exists no in�nite R�relabelling 
hain or,equivalently, if the system R is noetherian.� A measure of the time 
omplexity of the algorithm A 
an be obtained by 
onsidering the maxi-mum length of a R�relabelling 
hain.� The algorithm A has the property of \lo
al dete
tion of the global termination" if there existsa property P and a positive integer k su
h that every labelled graph 
ontaining a vertex v su
hthat the ball B(v; k) satis�es P is R�irredu
ible (in that 
ase, the vertex v is able to dete
t thetermination of A).The te
hnique we use to prove the 
orre
tness of a given algorithm or, equivalently, of a givenrelabelling system, is the following: we exhibit a set of invariant properties, whi
h are satis�ed byevery initially labelled graph and that are preserved by every relabelling step. Then, 
onsidering anR�irredu
ible graph (G;�) (and in parti
ular the fa
t that no rule 
an be applied to (G;�)), this setof invariant properties allows to 
on
lude.In order to prove that a given relabelling system is noetherian we will use the following usefulnotion:De�nition 16 Let R be a binary relation on a set X, R0 be a binary relation on the set X 0 and ' beany mapping from X to X 0. The relation R0 is 
ompatible with the relation R via ' if:8 a; b 2 X; a R b =) '(a) R0 '(b):The interest of this notion is given by the following obvious lemma:Lemma 17 Let R be a binary relation on a set X, R0 be a binary relation on the set X 0 and ' beany mapping from X to X 0 su
h that the relation R0 is 
ompatible with the relation R via '. If therelation R0 is noetherian, then so is the relation R.The relation R0 will generally be 
hosen as an a
y
li
 and transitive relation and we will say inthat 
ase that R0 is a 
ompatible order. The set X 0 will generally be the set Np , p > 0, of p-tuples ofpositives integers. In this latter 
ase, we will use the following 
lassi
al lexi
ographi
 order:De�nition 18 Let p be a non-negative integer. The ordering relation >p on Np is de�ned as follows:(x1; x2; : : : ; xp) >p (y1; y2; : : : ; yp) if and only if there exists some i, 1 � i � p, su
h that x1 = y1,: : :, xi�1 = yi�1 and xi > yi.Observe that the ordering relation >p is noetherian for every p. In the following we will often dropthe subs
ript and <p will be simply denoted <.We now turn to the study of the previously introdu
ed sample relabelling systems.1We will say that an algorithm A, undeterministi
ally solves a given problem if for every labelled graph (G; �), thereexists a labelled graph (G0; �0) in IrredR(G; �) whi
h 
orresponds to a valid solution.



10 Graph relabelling systems and distributed algorithms5.1 The graph relabelling system R1Re
all �rst that the GRS R1 is de�ned by R1 = (L1; I1; P1) with L1 = fN;A; 0; 1g, I1 = fN;A; 0g,and P1 = fRg where R is the following relabelling rule:
0 1

R :
A N A AThen we have:Theorem 19 1. The system R1 is noetherian.2. Let (G;�) be an I1�labelled graph su
h that exa
tly one vertex is A�labelled, and (G;�0) beany L1�labelled graph in IrredR1(G;�). Then the set of 1-labelled edges in (G;�0) indu
es aspanning tree of G. Moreover, the length of a maximal R1�relabelling 
hain starting from (G;�)is at most jV (G)j � 1.Proof. Let ' : GL1 ! N be the mapping whi
h asso
iates with ea
h L1�labelled graph the numberof its N�labelled verti
es. The usual ordering relation > on N is 
learly 
ompatible with R1 sin
eevery appli
ation of the rule R stri
tly de
reases the number of N�labelled verti
es. Thus the systemR1 is noetherian.To prove the se
ond part of the theorem, we use the following invariant properties:P1 Every edge in
ident with an N�labelled vertex is 0-labelled.P2 Every A�labelled vertex is in
ident with at least one 1-labelled edge ex
ept when there is no1-labelled edge at all.P3 The subgraph indu
ed by the set of 1-labelled edges is a tree.These three properties are 
learly satis�ed for the initial graph (G;�) and preserved by the appli
ationof the rule R.Let now (G;�0) be any labelled graph in IrredR1(G;�). Sin
e (G;�0) is irredu
ible, it 
ontainsno N�labelled vertex. Thus, thanks to properties P2 and P3, the subgraph of (G;�0) indu
ed by the1-labelled edges is a spanning tree of G.Moreover, the maximal length of an R1�relabelling 
hain starting from (G;�) is equal to thenumber of N�labelled verti
es in (G;�), that is jV (G)j � 1, sin
e ea
h appli
ation of the rule Rrepla
es an N�label by an A�label. This 
on
ludes the proof. 2Moreover, the maximal length of an R1�relabelling 
hain starting from (G;�) is equal to thenumber of N�labelled verti
es in (G;�), that is jV (G)j � 1, sin
e ea
h appli
ation of the rule Rrepla
es an N�label by an A�label.The reader should observe that if the initial graph has several A�labelled verti
es, say p, then thesystem R1 
onstru
ts a spanning forest of G 
ontaining exa
tly p trees.5.2 The graph relabelling system with priorities R2Re
all that the PGRS R2 is de�ned by R2 = (L2; I2; P2; >2) with L2 = fN;A;M; F; 0; 1g, I2 =fN;A; 0g, P2 = fR1; R2g where R1 and R2 are the following relabelling rules:

1
AM

1
AM

0
A N

1
A F

R :

R :

2

1



I. Litovsky, Y. M�etivier and E. Sopena 11with the priority relation: R1 >2 R2.Then we have:Theorem 20 1. The system R2 is noetherian.2. Let (G;�) be an I2�labelled graph su
h that exa
tly one vertex is A�labelled, and (G;�0) beany L2�labelled graph in IrredR2(G;�). Then the set of 1-labelled edges in (G;�0) indu
es aspanning tree of G. Moreover, the length of a maximal R1�relabelling 
hain starting from (G;�)is at most 2(jV (G)j � 1).3. For every R2�relabelling 
hain from (G;�) to some labelled graph (G;�00), the graph (G;�00) isirredu
ible if and only if it 
ontains an A�labelled vertex whose all neighbours are F�labelled.Proof. Let ' : GL2 ! N2 be the mapping whi
h asso
iates with ea
h L2�labelled graph (H; �) the
ouple (�N ; �M ), where for every label X, �X denotes the 
ardinal of the set ��1(X). The orderingrelation > on N2 is 
learly 
ompatible with R2 sin
e every appli
ation of the rules R1 or R2 stri
tlyde
reases the 
ouple (�N ; �M ). Thus the system R2 is noetherian.To prove the se
ond part of the theorem, we use the following invariant properties:P1 Every edge in
ident with an N�labelled vertex is 0-labelled.P2 Every A�, M� or F�labelled vertex is in
ident with at least one 1-labelled edge ex
ept whenthere is no 1-labelled edge at all.P3 The subgraph indu
ed by the set of 1-labelled edges is a tree.P4 There is exa
tly one A�labelled vertex.P5 The subgraph indu
ed by the A� and M�labelled verti
es and the 1-labelled edges is a pathsu
h that one of its endpoints is A�labelled.P6 Every F�labelled vertex has no N�labelled neighbour.These properties are 
learly satis�ed for the initial graph (G;�). Let us 
he
k that all of them andpreserved by the appli
ation of the rules R1 and R2:P1 : Only the rule R1 
reates 1-labelled edges and in that 
ase none of its endpoints is N�labelled.P2 : Every time an A�, M� or F�labelled vertex appears, thanks to the rule R1 or R2, it is 
learlyin
ident with a 1-labelled edge.P3 : Only the rule R1 
reates a 1�labelled edge. One of the endpoints of this edge was N�labelledand, by P1, had no other 1-labelled in
ident edge. Thus this new edge 
annot 
reate a 
y
le.The other endpoint was A�labelled and, by P2, it was already adja
ent to at least one 1-labellededge. Thus the subgraph indu
ed by the set of 1-labelled edges is still 
onne
ted.P4 : Obvious, sin
e no A�labelled vertex is 
reated.P5 : This is 
learly preserved by the rule R1 (a vertex is added to the path) and by the rule R2 (avertex is removed from the path) thanks to the indu
tion hypothesis and property P3.P6 : This follows from the priority me
hanism: if an A�labelled vertex has an N�labelled neighbourthen the rule R2 
annot be applied.



12 Graph relabelling systems and distributed algorithmsLet now (G;�0) be any labelled graph in IrredR2(G;�). Sin
e (G;�0) is irredu
ible, it 
ontains noM�labelled vertex (otherwise, by property P5, the rule R2 would be appli
able). Thus it 
ontains anA�labelled vertex and all other verti
es may only be F� or N�labelled. By property P6 and by theirredu
ibility of (G;�0) other verti
es are ne
essarily F�labelled. Finally, thanks to properties P2 andP3, the subgraph of (G;�0) indu
ed by the 1-labelled edges is a spanning tree of G.Moreover, it is easy to observe that every 1-labelled edge in an irredu
ible graph has been relabelledtwi
e, one time with the rule R1, one time with the rule R2. The maximal length of an R2�relabelling
hain is thus twi
e the number of su
h edges, that is exa
tly 2(jV (G) � 1j).We already observed that all the verti
es of every irredu
ible graph are F�labelled ex
ept onevertex whi
h is A�labelled. To 
omplete the proof of the third assertion of the theorem, it suÆ
esto observe that if the A�labelled vertex (this vertex is unique by property P4) has only F�labelledneighbours then no rule is appli
able. This 
on
ludes the proof. 25.3 The graph relabelling system with forbidden 
ontexts R3Re
all that the FCGRSR3 is de�ned byR3 = (L3; I3; P3) with L3 = fN;A;M; F; 0; 1g, I3 = fN;A; 0g,P3 = fR1; R2; R3g where R1, R2 and R3 are the following relabelling rules with forbidden 
ontexts:
, { }

R :2
0

N
1

A’A’ A’

A’ F

A’ A’

A’ A’

1 1

A’

N

0

A’

1 1

A

, ,

R :1
0

A N
1

A A’

R :3

, { }

, }{The unique vertex of the left-hand side of the rule R3 is asso
iated with the top vertex of itsforbidden 
ontexts.Then we have:Theorem 21 1. The system R3 is noetherian.2. Let (G;�) be an I3�labelled graph su
h that exa
tly one vertex is A�labelled, and (G;�0) beany L3�labelled graph in IrredR3(G;�). Then the set of 1-labelled edges in (G;�0) indu
es aspanning tree of G. Moreover, the length of a maximal R3�relabelling 
hain starting from (G;�)is at most 2(jV (G)j � 1).3. For every R3�relabelling 
hain from (G;�) to some labelled graph (G;�00), the graph (G;�00) isirredu
ible if and only if it 
ontains an A�labelled vertex whose all neighbours are F�labelled.Proof. Let ' : GL3 ! N2 be the mapping whi
h asso
iates with ea
h L3�labelled graph (H; �) the
ouple (�N ; �A0). The ordering relation > on N2 is 
learly 
ompatible with R3 sin
e every appli
ationof the rules R1 or R2 stri
tly de
reases the 
ouple (�N ; �A0). Thus the system R3 is noetherian.To prove the se
ond part of the theorem, we use the following invariant properties:P1 Every edge in
ident with an N�labelled vertex is 0-labelled.P2 Every A�, A0� or F�labelled vertex is in
ident with at least one 1-labelled edge ex
ept whenthere is no 1-labelled edge at all.P3 The subgraph indu
ed by the set of 1-labelled edges is a tree.
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tly one A�labelled vertex.P5 The subgraph indu
ed by the A� and A0�labelled verti
es and the 1-labelled edges is a tree.P6 Every F�labelled vertex has no N�labelled neighbour.These properties are 
learly satis�ed for the initial graph (G;�). Let us 
he
k that all of them andpreserved by the appli
ation of the rules R1, R2 and R3:P1 : Only the rules R1 and R2 
reate 1-labelled edges and in that 
ase none of its endpoints isN�labelled.P2 : Every time an A� or A0�labelled vertex appears, thanks to the rule R1 or R2, it is 
learlyin
ident with a 1-labelled edge. Every F�labelled vertex was previously A0�labelled and inthat 
ase the result follows from the indu
tion hypothesis.P3 : Only the rules R1 and R2 
reate a 1�labelled edge. One of the endpoints of this edge wasN�labelled and, by P1, had no other 1-labelled in
ident edge. Thus this new edge 
annot 
reatea 
y
le. The other endpoint was A� or A0�labelled and, by P2, it was already adja
ent toat least one 1-labelled edge. Thus the subgraph indu
ed by the set of 1-labelled edges is still
onne
ted.P4 : Obvious, sin
e no A�labelled vertex is 
reated.P5 : This is 
learly preserved by the rules R1 and R2 (a leaf is added to the tree) and by the rule R3 (aleaf is removed from the tree sin
e, thanks to the forbidden 
ontexts me
hanism, the A0�labelledvertex has exa
tly one A� or A0�labelled neighbour) thanks to the indu
tion hypothesis andproperty P3.P6 : This follows from the forbidden 
ontexts me
hanism: if an A0�labelled vertex has an N�labelledneighbour then the rule R2 
annot be applied.Let now (G;�0) be any labelled graph in IrredR3(G;�). Sin
e (G;�0) is irredu
ible, it 
ontains noA0�labelled vertex (otherwise, by property P5, the rule R3 would be appli
able on some leaf). Thusit 
ontains an A�labelled vertex and all other verti
es may only be F� or N�labelled. By propertyP6 and by the irredu
ibility of (G;�0) other verti
es are ne
essarily F�labelled. Finally, thanks toproperties P2 and P3, the subgraph of (G;�0) indu
ed by the 1-labelled edges is a spanning tree of G.Moreover, it is easy to observe that every 1-labelled edge in an irredu
ible graph has been relabelledon
e, either with the rule R1 or with the rule R2. Then, every A0�labelled vertex is relabelled on
ewith the rule R3. The maximal length of an R2�relabelling 
hain is thus the number of 1-labellededges plus the number of initially N�labelled verti
es, that is exa
tly 2(jV (G)� 1j).We already observed that all the verti
es of every irredu
ible graph are F�labelled ex
ept onevertex whi
h is A�labelled. To 
omplete the proof of the third assertion of the theorem, it suÆ
esto observe that if the A�labelled vertex (this vertex is unique by property P4) has only F�labelledneighbours then no rule is appli
able. This 
on
ludes the proof. 26 Lo
al Computations6.1 De�nitionsGraph relabelling systems, as introdu
ed in the previous se
tion, are in fa
t an illustration of a moregeneral me
hanism 
alled lo
al 
omputations. Lo
al 
omputations as 
onsidered here 
an be des
ribedin the following general framework. Re
all that GL stands for the 
lass of L�labelled graphs.De�nition 22 A graph rewriting relation is a binary relation R � GL � GL 
losed under iso-morphism. The transitive 
losure of R is denoted R�. A R�rewriting 
hain is a sequen
e(G1; �1); (G2; �2); : : : ; (Gn; �n) su
h that for every i, 1 � i < n, (Gi; �i) R (Gi+1; �i+1).



14 Graph relabelling systems and distributed algorithmsBy \
losed under isomorphism" we mean that if (G1; �1) ' (G;�) and (G;�) R (G0; �0), then thereexists a labelled graph (G01; �01) su
h that (G1; �1) R (G01; �01) and (G01; �01) ' (G0; �0).De�nition 23 Let R � GL � GL be a graph rewriting relation and k be a non-negative integer.1. R is a relabelling relation if whenever two labelled graphs are in relation then their underlyinggraphs are equal (not only isomorphi
):(G;�) R (H;�0) =) G = H:When R is a relabelling relation we will speak about R�relabelling 
hains instead of R�rewriting
hains.2. A relabelling relation R is k�lo
al if whenever (G;�) R (G;�0), the labellings � and �0 onlydi�er on some ball of radius k:9 v 2 V (G) su
h that 8 x =2 V (BG(v; k)) [E(BG(v; k)); �(x) = �0(x):The relation R is lo
al if it is k�lo
al for some k > 0.3. An R�normal form of (G;�) 2 GL is a graph (G;�0) su
h that (G;�) R� (G;�0), and(G;�0) R (G;�00) holds for no (G;�00) in GL. We say that R is noetherian if for every graph(G;�) in GL there exists no in�nite R�relabelling 
hain starting from (G;�). Thus, if a rela-belling relation R is noetherian, then every labelled graph has an R�normal form.We now de�ne the notion of k�lo
ally generated relabelling relation. Roughly speaking, a rela-belling relation R is k�lo
ally generated if the knowledge of its restri
tion on 
entered balls of radiusk suÆ
es to 
ompletely determine R. In other words, the relabelling of a ball of radius k does notdepend on the rest of the graph:De�nition 24 Let R be a relabelling relation and k be a non-negative integer. The relation R isk�lo
ally generated if for every labelled graphs (G;�), (G;�0), (H; �), (H; �0) and every verti
es v 2V (G), w 2 V (H) su
h that the balls BG(v; k) and BH(w; k) are isomorphi
 via ':V (BG(v; k)) �!V (BH(w; k)) and '(v) = w, the following three 
onditions:1. 8 x 2 V (BG(v; k)) [E(BG(v; k)); �(x) = �('(x)) and �0(x) = �0('(x));2. 8 x =2 V (BG(v; k)) [E(BG(v; k)); �(x) = �0(x),3. 8 x =2 V (BH(w; k)) [E(BH(w; k)); �(x) = �0(x),imply that (G;�) R (G;�0) if and only if (H; �) R (H; �0).The relation R is lo
ally generated if it is k�lo
ally generated for some k > 0.6.2 Distributed Computations of Lo
al ComputationsThe notion of relabelling sequen
e de�ned above obviously 
orresponds to a notion of sequential
omputation. Let us also note that a k�lo
ally generated relabelling relation allows parallel rewritings,sin
e non-overlapping k�balls may be relabelled independently. Thus we 
an de�ne a distributed wayof 
omputing by saying that two 
onse
utive relabelling steps 
on
erning non-overlapping k�ballsmay be applied in any order. We say that su
h relabelling steps 
ommute and they may be applied
on
urrently. More generally, every two relabelling sequen
es su
h that the latter one may be obtainedfrom the former one by a su

ession of su
h 
ommutations lead to the same resulting labelled graph.Hen
e, our notion of relabelling sequen
e may be regarded as a serialization [9℄ of some distributed
omputation. This model is 
learly asyn
hronous: several relabelling steps may be done at the sametime but we do not require that all of them have to be performed. In the sequel we will essentially dealwith sequential relabelling sequen
es but the reader should keep in mind that su
h sequen
es may bedone in a distributed way.
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overing is well-known in algebrai
 topology [10℄ and has also been studied in GraphTheory [11, 12℄ where it is in parti
ular related to the notion of uniform emulation [13, 14℄. Con
erningthe theory of distributed 
omputations, 
overings of graphs have been used in parti
ular for derivingimpossibility results [2, 15℄.In the �rst subse
tion we introdu
e this notion of 
overing and give some basi
 properties. Wethen present some standard 
onstru
tion, the Krone
ker produ
t, whi
h allows to build 
overings ofgraphs. In order to be used within our framework this notion needs to be parti
ularized to that ofk-
overings. This will be done in the third subse
tion and we will �nally show how k�
overings arerelated to lo
al 
omputations.7.1 CoveringsDe�nition 25 A graph G is a 
overing of a graph G0 if there exists a surje
tive homomorphism 
from G onto G0 su
h that for every vertex v of V (G) the restri
tion of 
 to NG(v) is a bije
tion ontoNG0(
(v)). Su
h a 
overing is stri
t if G and G0 are not isomorphi
.From this de�nition, we easily get the following:Observation 26 If 
 is a surje
tive homomorphism of G to G0 and for every vertex v in V (G) wehave dG(v) = dG0(
(v)) then G is a 
overing of G0 via 
.Example 27 Let Rn, n > 2, denote the ring on n verti
es de�ned by V (Rn) = [0; n�1℄ and E(Rn) =ffx; yg : y = x + 1 (mod n)g. Let now m � n and 
m;n : [0;m℄ �! [0; n℄ be the mapping de�ned by
m;n(i) = i (mod n), for every i 2 [0;m℄. It is then easy to 
he
k that for every n > 2, the ring R2nis a 
overing of the ring Rn via the mapping 
2n;n.The notion of 
overing is extended in a natural way to labelled graphs. A labelled graph (G;�) isa 
overing of (G0; �0) via 
 if G is a 
overing of G0 via 
 and 
 preserves the vertex and edge labels.From the de�nition, we may observe that if a vertex v in V (G) has two distin
t neighbours v1 andv2 then these two neighbours must have distin
t images in G0 by the mapping 
. Thus we have:Proposition 28 Let G be a 
overing of G0 via 
 and let v1; v2 be two distin
t verti
es of V (G). If
(v1) = 
(v2) then NG(v1) \NG(v2) = ; and thus d(v1; v2) > 2.Moreover, we have:Proposition 29 Let G0 be a 
onne
ted graph and let G be a 
overing of G0 via 
. Then there existsan integer q su
h that 8 v 2 V (G0); Card(
�1(v)) = q:Proof. Let v 2 V (G0), v0 2 NG0(v) and q = 
ard(
�1(v)). By Proposition 28 we get that the inverseimage of NG0(v) is a family of q pairwise disjoint sets in G su
h that there is a bije
tion between ea
hof these sets and NG0(v). Thus q = 
ard(
�1(v)) = 
ard(
�1(v0)). Now let w 2 V (G0) be any vertexof G0. Sin
e G0 is 
onne
ted there exists a simple path v = v1,...,vi = w from v to w in G0. From theprevious 
onsiderations it follows that for every j, 1 � j < i, 
ard(
�1(vj)) = 
ard(
�1(vj+1)), whi
hyields the desired result. 2The integer q is 
alled the number of sheets of the 
overing G. In this 
ase we say that G is aq�sheeted 
overing of G0. The reader should observe that if q = 1 then G and G0 are isomorphi
.The following proposition states that the stru
ture of trees is preserved by the mapping 
�1:Proposition 30 Let G be a q�sheeted 
overing of G0 via 
 and T be a subgraph of G0. If T is a treethen 
�1(T ) is a set of q disjoint trees, ea
h being isomorphi
 to T .



16 Graph relabelling systems and distributed algorithmsThe proof of this result 
an be obtained using a simple indu
tive argument on the size of T . Ifwe 
onsider now a spanning tree T of G0 then 
�1(T ) is a spanning forest of G, whose all 
onne
ted
omponents are trees isomorphi
 to T . The inverse image of an edge fx0; y0g of G0 whi
h does notbelong to T is a set of distin
t edges of the form fxi; yig su
h that 
(xi) = x and 
(yi) = y. Hen
e,all the xi's (resp. all the yi's) belong to distin
t 
omponents of the spanning forest of G. In [16℄,Reidemeister proved that all the 
overings of G0 
an be obtained in this way:Theorem 31 (Reidemeister, 1932) Let G0 be a graph and T a spanning tree of G0. A graph G is a
overing of G0 if and only if there exist a non-negative integer q and a set � = f�e; e 2 E(G0)nE(T )gof permutations on [1; q℄ su
h that G is isomorphi
 to the graph G0T;� de�ned by:V (G0T;�) = f (x; i) : x 2 V (G0); i 2 [1; q℄ g;E(G0T;�) = f f(x; i); (y; i)g : fx; yg 2 E(T ); i 2 [1; q℄ g [f f(x; i); (y; �fx;yg(i))g : fx; yg 2 E(G0) n E(T ); i 2 [1; q℄ g:Proof. Let 
 : V (G0T;�) �! V (G) be the mapping de�ned by 
(x; i) = x for every (x; i) 2 V (G0T;�).It is not diÆ
ult to 
he
k that G0T;� is a 
overing of G0 via the mapping 
.Conversely, let G be a q�sheeted 
overing of G0 via some mapping 
. We will �rst 
onstru
t therequired set of permutations � and then show that there exists an isomorphism ' from G to G0T;�.By Proposition 30 we know that 
�1(T ) is a disjoint union of q trees, denoted by T1; T2; : : : ; Tq, whi
h
overs the graph G. Let fx; yg be any edge of G0 not belonging to T . The inverse image of fx; yg isa disjoint set of q edges, denoted by fx1; y1g; : : : ; fxq; yqg. Sin
e we have 
(xi) = x and 
(yi) = y forevery i 2 [1; q℄, no two distin
t xi's (resp. yi's) 
an belong to the same tree Tj . For every vertex vin V (G), let us denote by t(v) the index su
h that v belongs to Tt(v). The permutation �fx;yg is thende�ned by �fx;yg(t(xi)) = t(yi), for every i 2 [1; q℄. Consider now the 
orresponding graph G0T;� andlet ' : V (G) �! V (G0T;�) be the mapping de�ned by '(v) = (
(v); t(v)) for every v 2 V (G). It isthen not diÆ
ult to 
he
k that ' is an isomorphism from G to G0T;�, whi
h 
on
ludes the proof. 2Leighton 
onsidered in [17℄ the problem of de
iding whether two graphs admit a 
ommon 
overingor not. The degree partition of a graph G is the partition of the verti
es of G into the minimal numberof blo
ks B0; B1; � � � ; Bt�1 for whi
h there are 
onstants ri;j, 0 � i; j < t, su
h that every vertex v inBi is in
ident to ri;j edges linking v to verti
es in Bj. The degree re�nement of G is then the t � tmatrix R = (ri;j). Two degree re�nements R1 and R2 are 
onsidered to be the same if they have thesame size and if there is a permutation matrix P su
h that R1 = P TR2P . Then we have:Theorem 32 (Leighton, 1982) Given any two �nite 
onne
ted graphs G and H, G and H share a
ommon �nite 
overing if and only if they have the same degree re�nement.This result will be used in subse
tion 9.2 for deriving some impossibility results.7.2 The Krone
ker Produ
tAmong methods for produ
ing 
overings of a given graph, the Krone
ker produ
t by K2 (the 
ompletegraph of size 2) is a standard 
onstru
tion. The Krone
ker produ
t was �rstly de�ned on matri
es.We deal here with its natural extension to graphs as it was 
onsidered in [18℄.De�nition 33 Let G and H be two 
onne
ted graphs. The Krone
ker produ
t of G by H, denotedG ^H, is the graph de�ned by:V (G ^H) = V (G)� V (H)E(G ^H) = f f(v; w); (v0 ; w0)g : fv; v0g 2 E(G); fw;w0g 2 E(H) g
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The graph G The graph GThe graphFigure 4: The krone
ker produ
t by K2The Krone
ker produ
t of graphs is a 
ommutative and asso
iative operation through isomor-phisms. It has been used in [19℄ as a simple way of getting 
overings of graphs sin
e we have:Proposition 34 For every 
onne
ted graph G, G ^K2 is a 
overing of G.Proof. Let 
 be the mapping from V (G ^ K2) to V (G) de�ned by 
(v; i) = v for every (v; i) 2V (G^K2). From the de�nition of the Krone
ker produ
t, 
 is a surje
tive homomorphism of G^K2onto G. Furthermore, the degree of every vertex (v; i) in G^K2 is equal to the degree of 
(v; i) in G.Therefore, by Observation 26, G ^K2 is a 
overing of G via 
. 2Example 35 Figure 4 shows a sample graph G and the 
orresponding graph G ^K2.7.3 k�CoveringsIn this se
tion, we parti
ularize the notion of 
overings to that of k�
overings by requiring isomor-phisms between balls of radius k:De�nition 36 Let G and G0 be two graphs, 
 be a surje
tive homomorphism of G onto G0 and k bea non-negative integer. The graph G is a k�
overing of G0 via 
 if for every vertex v 2 V (G), therestri
tion of 
 to BG(v; k) is an isomorphism between BG(v; k) and BG0(
(v); k). Su
h a k�
overingis stri
t if G and G0 are not isomorphi
.As before, this notion 
an be extended in a natural way to the 
ase of labelled graphs. Thereader should observe that if G is a k�
overing of G0 then G is also a k0�
overing of G0 for every k0,0 < k0 < k.Example 37 Let Rn and 
m;n be the ring graphs and the mappings de�ned as in Example 27. It isnot diÆ
ult to 
he
k that for every k > 0 and every n, n > min(3; 2k), the graph Rkn is a k�
overingof Rn via the mapping 
kn;n. However, this is no longer true if n � 2k sin
e in that 
ase, for everyvertex v 2 V (Rkn), the balls BRkn(v; k) and BRn(
kn(v); k) are not isomorphi
.Proposition 28 
an naturally be extended to the 
ase of k�
overings and we get:Proposition 38 Let G be a k�
overing of G0 via 
 and let v1; v2 be two distin
t verti
es of V (G). If
(v1) = 
(v2) then BG(v1; k) \BG(v2; k) = ; and thus d(v1; v2) > 2k.Remark 39 From the de�nitions, every k�
overing of a graph G0 is also a 
overing of G0. However,Example 37 shows for instan
e that C6 is a 
overing of C3 by 
6 but not a 1�
overing of C3.



18 Graph relabelling systems and distributed algorithmsThe following proposition states whi
h additional requirements a 
overing mu
h satisfy to be ak�
overing:Proposition 40 Let G and G0 be two graphs, 
 be a surje
tive homomorphism of G onto G0 and kbe a non-negative integer. Then G is a k�
overing of G0 via 
 if and only if G is a 
overing of G0 via
 and for every 
y
le C = (v1; e1; v2; e2; : : : ; ei; vi+1 = v1) of length i � 2k+1 in G0 the inverse image
�1(C) is a disjoint union of 
y
les isomorphi
 to C.Proof. We already observed that every k�
overing is a 
overing. Moreover, if G is a k�
overing ofG0 then every 
y
le C of length at most 2k + 1 in G0 is 
ontained in some 
entered ball of radius k.The proof of the \if" part then follows from Proposition 38.Conversely, suppose G is a 
overing of G0 via 
 verifying the above property. Let v0 2 V (G0),v 2 
�1(v0) and H 0 be a breadth-�rst spanning tree of BG0(v0; k) rooted at v0 (the tree H 0 has depthat most k). By Proposition 30 the inverse image 
�1(H 0) is a disjoint union of graphs isomorphi
to H 0. Let H ' H 0 be the 
onne
ted 
omponent of 
�1(H 0) 
ontaining v (thus H is a tree rootedat v). Every edge e0 = fx0; y0g su
h that x0; y0 2 BG0(v0; k) and e0 =2 E(H 0) belongs to some 
y
leC 0 
ontained in BG0(v0; k) whose all edges ex
ept e0 belong to the spanning tree H 0. Moreover, sin
ejC 0j � 2k+1, 
�1(C 0) is a disjoint union of 
opies of C 0. We thus get that those verti
es x; y 2 V (H)with 
(x) = x0 and 
(y) = y0 are su
h that the edge fx; yg belongs to E(G). Therefore, the subgraphindu
ed by V (H), that is BG(v; k), is isomorphi
 to BG0(v0; k) and G is a k�
overing of G0 via 
. 2The question whether a graph has a non-trivial �nite or in�nite 
onne
ted k�
overing is unde
id-able [20℄. However, we 
an answer positively to this question in the following simple 
ase [21℄:Theorem 41 Let k be a non-negative integer, G0 be a graph and e0 an edge in E(G0) su
h that thegraph G0 � e0 is still 
onne
ted and e0 does not belong to any 
y
le of length at most 2k + 1. Then forevery q � 1 there exists a 
onne
ted q�sheeted k�
overing Gq of G0.Proof. Let e0 = fx; yg and Ge be the graph de�ned as the disjoint union of q 
opies of G0 � e0.Without loss of generality, we may identify V (Ge) with the set V (G0) � f1; : : : ; qg. Let now Gq bethe graph de�ned by V (Gq) = V (Ge) and E(Gq) = E(Ge) [ ff(x; i); (y; i + 1)g; 0 � i < qg (withaddition taken modulo q). The graph Gq is 
learly 
onne
ted and, by Proposition 40, is a q�sheetedk�
overing of G0 via the mapping 
 given by 
(x; i) = x for every (x; i) 2 V (Gq). 27.4 Lo
al Computations and k�CoveringsThe next proposition establishes the 
onne
tion between k�
overings and k�lo
ally generated rela-belling relations: if (G;�) is a k�
overing of (G0; �0) then for every k�lo
ally relabelling relation R,a R�relabelling 
hain starting from (G0; �0) indu
es a R�relabelling 
hain starting from (G;�) whi
h\preserves" the k�
overing relation, as indi
ated in the following diagram:(G;�) �! (G;�)R�k-
ov # # k-
ov(G0; �0) �! (G0; �0)R�Intuitively speaking, it means that every 
omputation on the graph G0 
an be \dupli
ated" on G,by applying the same rules on all the inverse images of the 
orresponding o

urren
es. More formally,we have:
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ally generated relabelling relation and let (G;�) be a k�
overing of(G0; �0) via some mapping 
. Moreover, let (G0; �0) be a labelled graph su
h that (G0; �0) R� (G0; �0).Then there exists a labelling � of G su
h that (G;�) R� (G;�) and (G;�) is a k�
overing of (G0; �0).Proof. It suÆ
es to prove the result for a one-step relabelling 
hain. Thus suppose that(G0; �0) R (G0; �0) and that the 
orresponding relabelling step 
hanges labels only in some ballBG0(v; k), for some vertex v 2 V (G0). We may then apply this relabelling step to ea
h of the (disjoint)labelled balls of 
�1(BG0(v; k)), sin
e they are all isomorphi
 to BG0(v; k). We get in this way therequired labelling �. 28 The Ele
tion ProblemThe aim of an ele
tion in a graph is to 
hoose exa
tly one vertex among the set of all verti
es. Thisvertex be
omes ele
ted and is 
alled the leader of the graph.In our framework, this problem 
an be formalized in the following way. We say that a relabellingrelation R solves the ele
tion problem for a 
lass C of unlabelled graphs if it is noetherian and if thefollowing 
ondition holds : there exist two labels N and T su
h that for every graph G in C whoseverti
es are initially all N�labelled (by some labelling fun
tion �), if (G;�0) 2 IrredR(G;�) thenthere is exa
tly one vertex v 2 V (G) su
h that �0(v) = T (the vertex v is then the ele
ted vertex).We shall �rst give some sample ele
tion algorithms and then dis
uss in the following subse
tionsthe ele
tion problem when verti
es of the graph have, or have not, some knowledge on the graph itself,like its size or its topology.8.1 ExamplesWe give in this subse
tion some examples of graph relabelling systems en
oding an ele
tion algorithm.We �rst 
onsider the 
ase of trees. The following FCGRS (Graph Rewriting System with ForbiddenContext) allows to ele
t a vertex in a tree (re
all that a relabelling rule with forbidden 
ontexts 
anbe applied to some o

urren
e if and only if this o

urren
e is not in
luded in an o

urren
e of someof its forbidden 
ontexts).Example 43 Let R4 = (L4;I4; P4) be the FCGRS de�ned by L4 = fN;F;E, 0g, I4 = fN; 0g andP4 = fR1; R2g where R1, R2 are the following relabelling rules with forbidden 
ontexts:
0

NN
0

NN

N

0

N E

N

0

N

R :1

R :

F N

2

0 , { }

, { }Let us 
all a pendant vertex any N�labelled vertex having exa
tly one N�labelled neighbour. Therule R1 then 
onsists in \
utting" a pendant vertex in the tree (sin
e the forbidden 
ontext ensuresthat this vertex has no other N�labelled neighbour) by giving it a F�label. Thus, if (G;�) is a labelledtree whose all verti
es are N�labelled and all edges are 0�labelled then this 
utting pro
edure leads toa unique N�labelled vertex whi
h be
omes ele
ted thanks to the rule R2. It is not diÆ
ult to observethat every vertex in the tree may be ele
ted by this algorithm.
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AABBAAFigure 5: Ele
tion on a prime oriented ringThe following algorithm is due to Mazurkiewi
z [22℄ and works on oriented rings having a primenumber of verti
es. Let n be the number of verti
es of the ring; vertex labels are all words over thealphabet fA;Bg of length at most n. Initially all labels are set to the empty word ". This algorithmmay be en
oded by the three rules given below.Example 44 The �rst rule is the following:
R :1

Aε ε εIn the next rule we assume that the word m is not the empty word:
R :

ε
2

m m BFor the last rule we assume that 0 < jxj < n and that jxj � jmj. We denote by mjxj the jxjth letterof m.
R :

m m
3

x xm |x|Figure 5 shows a sample 
omputation using these rules (the ele
ted vertex is marked).Mazurkiewi
z has shown that on rings of size n; with n prime, a normal form is always obtained.In this 
ase, verti
es are labelled by words of length n whi
h are all di�erent and 
onjugated (re
allthat two words f and g are 
onjugated if f = uv and g = vu). The vertex whose label is minimal withrespe
t to the lexi
ographi
 ordering is then 
onsidered as ele
ted. Of 
ourse, a vertex labelled by aword of length n knows whether it is ele
ted or not by determining if its labels is minimal within theset of its 
onjugates. Hen
e the ele
ted vertex knows the result. Nevertheless, no vertex 
an lo
allydete
t that the algorithm has terminated. We 
an note that this rewriting system needs to know thesize of the ring. If the size of the ring is not known then there is no ele
tion algorithm in the 
lass ofprime rings [21℄.8.2 Ele
tion without any KnowledgeIn [2℄, Angluin proves the following:Theorem 45 (Angluin, 1980) There exists no ele
tion algorithm for a 
lass of graphs 
ontainingboth a graph H and a stri
t 
overing of H.



I. Litovsky, Y. M�etivier and E. Sopena 21The proof goes as follows. Let G be a stri
t 
overing of H via the morphism 
. If a step isperformed on an edge e of H then the same step 
an be performed on ea
h edge of 
�1(e): Thus, if Hand G have the same uniform initial labelling, every label whi
h appears on
e in H appears at leasttwi
e in G. Hen
e, no algorithm 
an ele
t exa
tly one vertex both in G and H. This argument 
anbe used in the same way for lo
al 
omputations.We will prove in the next subse
tion that the ele
tion problem 
annot be solved for su
h a 
lass ofgraphs by lo
al 
omputations even if the verti
es have some knowledge on the size or on the topologyof the graph.8.3 Ele
tion Knowing the Size or the TopologyIn [22℄, Mazurkiewi
z gave an ele
tion algorithm for the 
lass of rings having a prime size; the ringis oriented, anonymous, and its size is known. In every basi
 
omputation step, two adja
ent verti
esmay ex
hange their labels and then 
ompute new ones. To prove that there exists no ele
tion algorithmwhen the size is 
omposite, the author proves that it is always possible to go from some symmetri

on�guration to another symmetri
 
on�guration. From that, he dedu
es that the algorithm maynever terminate. More pre
isely, let (G;�) be a labelled ring and let n = mk be the size of G. Theverti
es of G are denoted by [0; n � 1℄. The labelling � of G is m�symmetri
 for some m > 0 if�(i) = �(i+m) for every i 2 [0; n� 1℄ (addition is taken modulo n). In that 
ase, any transformation
on
erning verti
es i and i+1 may be applied to verti
es i+jm and i+jm+1, for every j. Therefore,every m�symmetri
 labelling may be transformed in a new m�symmetri
 labelling. Sin
e the initiallabelling is uniform, and thus m�symmetri
 for every m, the algorithm will not terminate if we keepm�symmetri
 
on�gurations.We will generalize this result to the 
ase of general relabelling rules on graphs su
h that everyvertex has an initial knowledge like the size or the topology. Let G be a graph; a vertex v of G knowsthe topology of G if v has an intial label whi
h en
odes a graph G0 isomorphi
 to G but does not allowv to know to whi
h vertex in G0 it 
orresponds. A graph G is 
-minimal if there is no graph H su
hthat G is a stri
t 
overing of H. Let G be a graph whi
h is not 
-minimal, H be a graph su
h that Gis a stri
t 
overing of H via the morphism 
. A subgraph K of G is free modulo 
, or simply 
�free,if 
�1(
(K)) is a 
olle
tion of disjoint subgraphs of G, all of them being isomorphi
 to K. A labelling� is then 
�
oherent if 
(x) = 
(y) =) �(x) = �(y). By saying that an algorithm operates on thelabels of a subgraph we mean that the algorithm only needs the knowledge of this subgraph in orderto modify its labels and that it modi�es nothing else in the graph.Then we have [23℄:Theorem 46 Let G be a graph whi
h is not 
-minimal. Then there exists no algorithm for the ele
tionproblem in G verifying the two following 
onditions:1. ea
h rewriting step operates on labels of a 
�free subgraph,2. the topology of G is known by ea
h vertex of G.This theorem uses the following lemma [23℄:Lemma 47 Let G and H be two graphs su
h that G is a stri
t 
overing of H via some mapping 
.Let � be a 
�
oherent labelling of G. If there exists a rewriting step of some algorithm that modi�esthe labels of some 
�free subgraph K, then there exists a 
�
oherent labelling �0 of G, �0 6= �, that
an be obtained after q steps of the algorithm.In [24℄, the 
lass of non-ambiguous graphs is introdu
ed and an ele
tion algorithm is given forthis 
lass. We will prove that a graph is non-ambiguous if and only if it is 
-minimal. From this,several impossibility results 
an be obtained 
on
erning the ele
tion problem for 
lasses of ambiguousgraphs (e.g. trees or 
omplete graphs). We also dedu
e that there exists no ele
tion algorithm for anambiguous graph even knowing its topology.
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The graph HFigure 6: The graph G is ambiguous, it is a 2-
overing of the graph HLet (G;�) be a labelled graph; the labelling fun
tion � is bije
tive if �(v) = �(v0) =) v = v0 forevery v; v0 2 V (G).De�nition 48 Let (G;�) be a labelled graph. The labelling fun
tion � is lo
ally bije
tive if it satis�esthe two 
onditions:1. 8 v 2 V (G); 8 v0; v00 2 NG(v), �(v0) = �(v00) =) v0 = v00,2. 8 v0; v00 2 V (G); �(v0) = �(v00) =) �(NG(v0)) = �(NG(v00)).De�nition 49 A labelling fun
tion is ambiguous if it is lo
ally bije
tive and not bije
tive. A graph Gis ambiguous if there exists an ambiguous labelling of G.In other words, a graph G is ambiguous if there exists a lo
ally bije
tive labelling � of G su
h thatj�(V )j < jV j.The next lemma gives a link between ambiguity and 
overings [23℄:Lemma 50 A graph G is ambiguous if and only if it is not 
-minimal.Proof. Let G be an ambiguous graph and � be an ambiguous labelling of G. We de�ne the graph Hby V (H) = �(V (G))E(H) = f f�(v); �(v0)g : fv; v0g 2 E(G) gBe
ause of 
ondition 1, there is no self-loop in H. Let 
 be the 
anoni
al mapping given by
(v) = �(v) and 
(fv; v0g) = f�(v); �(v0)g. Now, for every v 2 V (G), 
onditions 1 and 2 imply that 
is a bije
tion from NG(v) to NG(
(v)). Hen
e BG(v) and BG(
(v)) are isomorphi
.Conversely, if G is not 
-minimal then there exists some graph H properly 
overed by G via 
.The labelling � de�ned by �(v) = 
(v) for every v 2 V (G) 
learly satis�es 
onditions 1 and 2 and isnot bije
tive sin
e jV (H)j < jV (G)j. Hen
e the graph G is ambiguous. 2Using this lemma and Theorem 46, we get that there exists no ele
tion algorithm for an ambiguousgraph even knowing its topology.Figure 6 shows an ambiguous graph G whi
h is a 2-
overing of the graph H.9 The Re
ognition ProblemHere we study how lo
al relabelling relations 
an be used to re
ognize graph 
lasses. Let L be any�xed set of labels. All the labelled graphs 
onsidered in this se
tion are supposed to be L�labelled.Re
all that the set of all L�labelled graphs is denoted by GL.
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ognizer is a pair (R;K), where R is a graph relabelling relation and K is a
lass of labelled graphs whose elements are 
alled terminal graphs. The set of labelled graphs re
ognizedby (R;K), denoted by L(R;K) is de�ned byL(R;K) = f G 2 GL : IrredR(G) \ K 6= ; g:De�nition 52 A graph re
ognizer (R;K) is deterministi
 if R is noetherian and for every graph Gwe have either IrredR(G) � K or IrredR(G) \K = ;.Note that if (R;K) is deterministi
 then GL n L(R;K) = L(R;GL n K).These notions apply to unlabelled graphs as follows. A re
ognizer for unlabelled graphs is de�nedby a triple (R;K; l0); where (R;K) is a re
ognizer for labelled graphs and l0 2 L is an initial label. Anunlabelled graph G is re
ognized by (R;K; l0); if the labelled graph (G;�l0) is re
ognized by (R;K)where �l0 denote the labelling assigning the label l0 to all verti
es and edges. We denote by L(R;K; l0)the 
lass of (unlabelled) graphs re
ognized in this way.To be of pra
ti
al use, the set of terminal graphs must be spe
i�ed in a \simple" way. In thesequel we assume that K is spe
i�ed by some spe
ial 
onditions, 
alled �nal 
onditions, de�ned onthe labelling fun
tions. These 
onditions are de�ned by means of propositional formulas de�nedindu
tively in the following way:1. for every label l 2 L, l is a formula,2. if ' and  are formulas then :'; ' _  and ' ^  are formulas.Now, for l 2 L; a labelled graph satis�es the formula l if ��1(l) 6= ;; and by indu
tion it satis�es :' ifit does not satisfy ', it satis�es '_ if it satis�es ' or  , and it satis�es '^ if it satis�es ' and  .Thus, su
h a �nal 
ondition allows only to verify the presen
e or the absen
e of some labels inthe labelling of a graph. For instan
e, the �nal 
ondition N _ :Y is satis�ed by (G;�) if and only if��1(N) 6= ; _ ��1(Y ) = ;, that is if (G;�) 
ontains no Y�labelled vertex or at least one N�labelledvertex. Similarly, the fa
t that the labelling � of G 
ontains exa
tly all the labels of some subset U ofL 
an be spe
i�ed by the �nal 
ondition Vl2U l ^Vl02LnU :l0.The reader should observe that su
h �nal 
onditions does not allow to 
ount verti
es or edges withgiven labels, nor to verify their relative positions. For instan
e, it is not possible to spe
ify that agraph 
ontains exa
tly one T�labelled vertex or two adja
ent T�labelled verti
es.De�nition 53 Let ' be a �nal 
ondition; the set of terminal graphs K(') is de�ned byK(') = f(G;�) : (G;�) satis�es 'g:From now on we assume that every set of terminal graphs is of the form K(') for some propositionalformula '.The reader should noti
e that our notion of re
ognizability does not 
oin
ide with the algebrai
notion of re
ognizability introdu
ed by Mezei and Wright.9.1 ExamplesWe give in this subse
tion examples of graph relabelling systems whi
h allow us to re
ognize the treesand the 
omplete graphs.Example 54 Let R5 = (L5;I5; P5; >5) be the PGRS de�ned by L5 = f"; I; F; 0g, I5 = f"; 0g andP5 = fR1; R2; R3; R4; R5g with the following rules:



24 Graph relabelling systems and distributed algorithms
R :

εI
2

ε ε II

R :
Iε

3

IIII

R :
ε ε F

5

I

R :1

ε εI

R :4

ε ε ε

ε Fε ε

0 0

00

0 0

0

0 0

0

0 0

00

0 0

and the priority relation: fR1; R2; R3g >5 fR4; R5g.Let now ' be the �nal 
ondition ' = :I. It 
an be shown that if (G;�) is a labelled graph whose allverti
es are "�labelled and all edges are 0�labelled then every labelled graph (G;�0) in IrredR5(G;�)has no I�labelled vertex, and thus satis�es ', if and only if G has no 
y
le. Hen
e, the pair (R5;K('))is a deterministi
 re
ognizer for the 
lass of trees.Example 55 Let R6 = (L6;I6; P6) be the FCGRS de�ned by L6 = fN;Y; 0g, I6 = fN; 0g andP6 = fR1; R2g with the following relabelling rules with forbidden 
ontexts:
0 0

Y

Y Y

0 0

Y

Y Y

0
N Y

R :1 0 0

N

N N

, { }
0

R :2
0

N N
, { }It 
an be shown that if (G;�) is a labelled graph whose all verti
es are Y�labelled and all edges are0�labelled then (G;�) is irredu
ible if and only if G is a 
omplete graph. If G is not 
omplete thenthe rule R1 
an be applied and, thanks to the rule R2, all the verti
es of G will be
ome N�labelled.Thus, if ' denotes the �nal 
ondition ' = :N , (R6;K(') is a deterministi
 re
ognizer for the 
lassof 
omplete graphs.9.2 Re
ognition without any KnowledgeWe say that a 
lass of graphs is 
losed under k�
overings (resp. 
onne
ted k�
overings), if it 
ontainsall k�
overings (resp. 
onne
ted k�
overings) of its elements. We �rst prove that a 
lass of graphsre
ognized by a k�lo
ally generated relabelling relation is 
losed under k�
overings.Proposition 56 If a graph G is a k�
overing of a graph H via some mapping 
 then every re
ognizer(R;K) su
h that R is a k�lo
ally generated relabelling relation whi
h re
ognizes H re
ognizes G aswell. Moreover, if (R;K) is deterministi
 then the inverse also holds, that is G is re
ognized if andonly if H is re
ognized.Proof. Let C be a relabelling 
hain a

eptingH, that is a relabelling 
hain leading to some (H;�) 2 K.Assume that G is a q�sheeted 
overing of H. For ea
h relabelling step of C on the graph H thereexists a ball BH(v; k) su
h that only labels of BH(v; k) are modi�ed during this step. This relabellingstep may thus be applied to the q disjoint balls of 
�1(BH(v; k)). In this way, via 
�1, we 
onstru
tfrom C a relabelling 
hain a

epting the graph G. Note that this is due to the fa
t that a �nal
ondition may only 
he
k the presen
e or the absen
e of labels and that a label appears in H if andonly if it appears in G during the simulation of the 
omputation on H.
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. Then H =2 L(R;K) if there exists a relabelling 
hainreje
ting H. As previously, this 
hain 
an be simulated on G, giving a relabelling 
hain reje
ting G.But sin
e (R;K) is deterministi
, if G is reje
ted by one relabelling 
hain then it is reje
ted by allrelabelling 
hains and thus G =2 L(R;K). 2We then get:Corollary 57 Let R be a k�lo
ally generated relabelling relation and (R;K) a deterministi
 re
-ognizer. If two graphs G and H have a 
ommon k�
overing then G 2 L(R;K) if and only ifH 2 L(R;K).In the following, we will use these fa
ts to derive impossibility proofs for the re
ognition problem bymeans of lo
ally generated 
omputations. In parti
ular, we shall prove that the 
lass of graphs havingexa
tly one `�labeled vertex (for some label `), the 
lass of graphs having an odd number of verti
es,the 
lass of series-parallel graphs, and some minor-
losed 
lasses of graphs 
annot be re
ognized bylo
ally generated relabelling relations.Our �rst result shows that 
ounting 
onditions are not in general k�lo
ally veri�able.Proposition 58 Let ` be a label. There exists no lo
ally generated relabelling relation whi
h re
ognizes(in a deterministi
 or non-deterministi
 way) the 
lass of labelled graphs having exa
tly one `�labelledvertex.Proof. Let (G;�) be a labelled ring with exa
tly one `�labelled vertex. We know (see Example 37)that G admits a 
onne
ted stri
t k�
overing (G0; �0). By Proposition 29 (G0; �0) 
ontains at least two`�labelled verti
es and, by Proposition 56, is re
ognized (in a deterministi
 or non-deterministi
 way)whenever (G;�) is re
ognized. 2This result 
an easily be extended to any 
lass of labelled graphs whi
h 
ontains at least one graphwith a 
y
le and to the 
ase where the 
ondition \having exa
tly one `�labelled vertex" is repla
edby \with at most i `�labelled verti
es" where i is any non-negative integer.From Example 37, we also get that a ring having an odd number of verti
es always admits ak�
overing with an even number of verti
es; from this fa
t and Proposition 56 we get:Proposition 59 There exists no lo
ally generated relabelling relation whi
h re
ognizes (in a deter-ministi
 or non-deterministi
 way) the 
lass of graphs having an odd number of verti
es.This result easily be extended to any 
lass of graphs having an odd number of verti
es whi
h
ontains at least one graph with a 
y
le.In [25℄ it has been proved that 
lass of graphs having an even number of verti
es is non-deterministi
ally re
ognizable by a Graph Relabelling System, thus:Proposition 60 For every k, the 
lasses of unlabelled graphs non-deterministi
ally re
ognized byk�lo
ally generated relabelling relations does not form a boolean algebra and does not 
oin
ide withthe 
lasses of graphs deterministi
ally re
ognized by k�lo
ally generated relabelling relations.Consider the series-parallel graph S and the graph C, whi
h is not series-parallel, depi
ted byFigure 7. These two graphs are not regular but they have the same degree partition, 
onsisting of twoblo
ks f3; 5g and f1; 2; 4; 6g: The 
orresponding degree re�nement is  0 21 2 !. Thus, by Theorem 32,C and S share a 
ommon �nite 
overing and we get:Proposition 61 No lo
ally generated relabelling relation deterministi
ally re
ognizes series-parallelgraphs.
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The graph S The graph CFigure 7: Two graphs having the same degree partitionA graph G is a minor of a graph H, denoted by G�H, if G 
an be obtained from a subgraph of Hby a sequen
e of edge 
ontra
tions (
ontra
ting an edge linking verti
es v and v0 
onsists in identifyingv and v0, deleting the resulting loop, and simplifying, by deleting the multiple edges, the graph thusobtained). A 
lass of graphs is minor-
losed if it 
ontains all minors of its elements. By a minor-
losed
lass of 
onne
ted graphs we mean a 
lass of 
onne
ted graphs 
ontaining all 
onne
ted minors of itselements. Minor-
losed 
lasses of 
onne
ted graphs 
an be 
hara
terized by �nite sets of 
onne
tedforbidden minors, also 
alled obstru
tions [26, 27℄. Then we have [28℄:Theorem 62 No minor-
losed 
lass of 
onne
ted graphs, whi
h is not the 
lass of all 
onne
ted graphsand 
ontains at least one graph with at least two 
y
les, 
an be re
ognized by lo
ally generated relabellingrelations.Before proving this result, we need two te
hni
al lemmas.Lemma 63 For every planar 
onne
ted graph G, for every 
onne
ted graph H having at least two
y
les, there exists a 
onne
ted 
overing K of H that 
ontains G as minor.Proof. A torus is a graph of the form G(m;n) with set of verti
es V (G(m;n)) = [0;m�1℄� [0; n�1℄,and all edges of the form f(x1; y1); (x2; y2)g where either x1 = x2 and y2 = y1 + 1 (mod n) or y1 = y2and x2 = x1 + 1 (mod m). Sin
e the graph G is planar, there exist m and n su
h that G �G(m;n).Sin
e H has at least 2 
y
les, there exist two edges e = fx; yg and e0 = fx0; y0g in H, with possiblyy = x0, su
h that H n fe; e0g is 
onne
ted. Let H 0 be the graph obtained from H by deleting e and e0.We shall 
onstru
t a 
onne
ted graph K su
h that G�K and K is a 
overing of H.For every (i; j) 2 V (m;n) we let H 0(i; j) be an isomorphi
 
opy of H 0 su
h that V (H 0(i; j)) \V (H 0(i0; j0)) = ; if (i; j) 6= (i0; j0). We denote by w(i; j); the vertex in H 0(i; j) 
orresponding tothe vertex w of H 0: Let now K 
onsists of the union of the graphs H 0(i; j) together with the edgesfx(i; j); y(i; j+1 (mod n))g and fz(i; j); u(i+1 (modm); j)g for every i; j, 0 � i � m�1, 0;� j � n�1.It is not diÆ
ult to observe that, by 
ontra
ting simultaneously all edges of the subgraphs H 0(i; j) ofK, we get G(m;n). Hen
e G � G(m;n) �K. Moreover, K is a 
overing of H via the mapping thatassigns w to every vertex w(i; j) in H 0(i; j). 2Lemma 64 For every 
onne
ted graph G, for every 
onne
ted graph H having at least three 
y
les,there exists a 
onne
ted 
overing K of H that 
ontains G as minor.Proof. The proof is an easy extension of that of the previous lemma. Instead of embedding G as aminor in a torus, we embed it as a minor in a large enough \toroidal" parallelepiped P (`;m; n) withset of verti
es V (P (`;m; n)) = [0; ` � 1℄ � [0;m � 1℄ � [0; n � 1℄ and edges f(i; j; k); (i0 ; j0; k0)g withi = i0, j = j0, k0 = k + 1 (mod n), or i = i0, j0 = j + 1 (mod m), k = k0, or i0 = i+ 1 (mod `), j = j0,k = k0.
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t three edges e = fx; yg; e0 = fx0; y0g; e00 = fx00; y00g su
h that the graph H 0 ob-tained from H by deleting e; e0 and e00 is 
onne
ted. We 
onstru
t K as the union of disjoint 
opiesH 0(i; j; k) of H 0 for (i; j; k) 2 V (P (`;m; n)) together with the edges fx(i; j; k); y(i; j; k + 1 (mod n))g,fz(i; j; k); u(i; j + 1 (mod m); k)g and fv(i; j; k); w(i + 1 (mod `); j; k)g.Similarly, we get G� P (l;m; n)�K and K is a 
overing of H. 2Re
all that a k�tree is a graph that 
an be obtained by starting with a 
omplete graph on kverti
es and repeatedly adding a new vertex linked to k existing verti
es whi
h indu
e a 
ompletegraph. We then say that a graph has tree-width at most k if and only if it is a partial subgraph ofsome k�tree. We 
an now prove Theorem 62.Proof of Theorem 62 Let C be a minor-
losed 
lass of 
onne
ted graphs that is not the 
lass ofall 
onne
ted graphs and 
ontains at least one graph with at least two 
y
les. We have two 
ases to
onsider:Case 1. The 
lass C has bounded tree-width. It follows from Robertson and Seymour [29℄ that some
onne
ted planar graph G is not in C. Let H 2 C with at least two 
y
les. By Lemma 63, thereexists a 
overing K of H su
h that G �K. We 
annot have K 2 C, be
ause we would have G 2 C,
ontradi
ting the 
hoi
e of G. Hen
e C is not 
losed under 
onne
ted 
overings.Case 2. The 
lass C has unbounded tree-width. Let G be a 
onne
ted graph not in C. Sin
e everygraph with at most two 
y
les has tree-width at most 2, there is in C a graph H with at least three
y
les. By Lemma 64 we 
on
lude as in Case 1 that C is not 
losed under 
onne
ted 
overings. 2In [30℄, we study some properties of the Krone
ker produ
t in relation with graphs minors, planargraphs, graphs with 
ut-verti
es or 
ut-edges, and graphs having non-trivial automorphism groups.In parti
ular, we prove that for every 
onne
ted graph G, the graph G ^ K2 is a bipartite graphwith a non-trivial automorphism group. By Proposition 34, the graph G ^ K2 is a 
overing of G.Moreover, we give a graph with a 
ut-vertex (resp. 
ut-edge) su
h that its Krone
ker produ
t by K2 iswithout 
ut-vertex (resp. 
ut-edge). We �nd a nonplanar graph obtained fromK3;3 whi
h has a planarKrone
ker produ
t by K2: Using previous 
onstru
tions we get results 
on
erning lo
al 
omputationsand re
ognizability: the 
lasses of graphs having a 
ut-vertex or a 
ut-edge are not re
ognizable, the
lass of graphs with trivial automorphism group, the 
lass of nonbipartite graphs and the 
lass ofnonplanar graphs are not re
ognizable by lo
ally generated relabelling relations in a deterministi
 ornondeterministi
 way.9.3 Re
ognition Knowing the SizeThe results presented in this subse
tion have been established in [23℄. Let � be a label. We say that anunlabelled graph G is ��re
ognized by some graph re
ognizer (R;K) if, starting from the uniformlylabelled graph (G;�) (that is all verti
es and edges have the same label �), R leads to some �nallabelling of G belonging to the 
lass K, that is if IrredR(G;�) \ K 6= ;.The set of labelled graphs re
ognized without initial knowledge (re
ognized for short) by (R;K) isthen de�ned as the set of unlabelled graphs "�re
ognized by (R;K), where " is the empty word. Weare also interested in lo
ally re
ognizing graphs whi
h have 
ertain initial knowledge en
oded in thelabel �. For example, we de�ne an en
oding of the size of the graph to be a fun
tion � assigning toevery graph a label su
h that for every graph G and H,(�(G) = �(H)), (jV (G)j = jV (H)j) :We say that a graph G is re
ognized knowing the size if it is �(G)�re
ognized. We say that a set G of
onne
ted graphs is re
ognizable knowing the size (s-re
ognizable for short) if there exist a relabellingrelation R and a �nal 
ondition K su
h that the set of graphs re
ognized by (R;K) knowing the sizeis exa
tly the set G.
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hniqueIn [31℄ it was shown that lo
ally re
ognizable 
lasses of graphs must be 
losed under k�
overingsfor some k and, as a 
orollary, that 
ertain 
lasses of graphs were not re
ognizable without initialknowledge (sin
e they are not 
losed under k�
overing). On the other hand, if G is a stri
t 
overingof H then the size of G is stri
tly greater than the size of H. Hen
e, s-re
ognizable 
lasses of graphsare not ne
essarily 
losed under k�
overings. Using these 
onstru
tions, it is thus not possible tointrodu
e in proofs parameters like the size of the graphs. In this part, we give a very simple relationbetween graph re
ognizers and k�
overings from whi
h we derive results on graph re
ognizers forgraphs having some initial knowledge. Some sample appli
ations will be given.We �rst have:Lemma 65 Let (R;K) be a deterministi
 graph re
ognizer, where R is k�lo
ally generated and K isde�ned by some �nal 
ondition. Suppose the graph G is a k�
overing of a graph K, and let � be anylabel. Then, G is ��re
ognized by (R;K) if and only if K is ��re
ognized by (R;K):From that we get:Corollary 66 Let (R;K) be a deterministi
 graph re
ognizer, where R is k�lo
ally generated and Kis de�ned by a �nal 
ondition. Suppose G and H are k�
overings of a graph K, and let � be anylabel. Then G is ��re
ognized by (R;K) if and only if H is ��re
ognized by (R;K):What is interesting in applying the previous very simple result is that � 
an en
ode some 
ommon
hara
teristi
s of G and H su
h as the number of verti
es and/or edges. Thus, if G and H arek�
overings of the same graph K and have the same size, then G is re
ognized knowing the size if andonly if H is re
ognized knowing the size. Note that we 
annot extend this fa
t to K sin
e � en
odesthe number of verti
es of G and not the number of verti
es of K. In the next proposition we applythis te
hnique to some parti
ular 
lasses of graphs:Proposition 67 The following graph 
lasses are not deterministi
ally lo
ally s-re
ognizable: the 
lassof bipartite graphs, the 
lass of graphs having a 
ut-edge, the 
lass of graphs having a 
ut-vertex, the
lass of hamiltonian graphs.Remark 68 Note that using Lemma 30, we get that if G and H are both 
overings of some graph Kand have the same number of verti
es then they have the same number of edges and thus their 
y
lespa
es have the same dimension.9.5 MinorsEven knowing the size, minor 
losed 
lasses of graphs are not re
ognizable in general. The proof ofthat is based on some spe
ial 
onstru
tion whi
h, starting from two graphs G and H su
h that G isnot a minor of H, allows us to obtain a graph K su
h that (i) K is a 
overing of H and (ii) G is aminor a K:For the s�re
ognizability we 
annot use this 
onstru
tion be
ause the sizes of K and H aredi�erent. For that, we use another 
onstru
tion whi
h, starting from two graphs G and H su
h thatG is not a minor of H, allows us to obtain a graph K and a graph H 0 su
h that (i) G is a minor of K;(ii) K is a q�sheeted 
overing of H; (iii) H 0 is a q�sheeted 
overing of H; and (v) G is not a minorof H 0:This 
onstru
tion enables us to prove that, even knowing the size, we 
annot de
ide in generalby using lo
al 
omputations whether a given graph is minor of a graph or not. In other words, thisproves that some minor 
losed 
lasses of graphs are not s-re
ognizable.The main result here is the following:
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losed 
lass of 
onne
ted graphs that is 
losed under homeomorphism,whi
h does not 
ontain all 
onne
ted graphs and su
h that there exists a graph with at least three 
y
lesadmitting an in�nite number of 
overings in G. Then G is not s-re
ognizable.From that we get:Corollary 70 The 
lass of 
onne
ted planar graphs is not re
ognizable knowing the size.9.6 Comparison with Logi
al LanguagesIn this se
tion we 
ompare our notion of graph re
ognition with three main logi
al languages whi
hallow to express graph properties: First-Order Logi
 (FOL), Monadi
 Se
ond-Order Logi
 (MSOL)and Se
ond-Order Logi
 (SOL) (see [32℄ for links between graph properties and graph propertiesexpressible using logi
al languages).For short, we will say that \a graph property is lo
ally re
ognizable" instead of \the 
lass of
onne
ted (labelled) graphs verifying a property is re
ognizable by a lo
ally generated relabellingrelation". Similarly, we will speak about a FOL-, MSOL- or SOL-property to say that this propertyis expressible using the logi
al language FOL, MSOL or SOL.In [25℄, it is proved that the following FOL-properties of a graph G are re
ognizable by a PGRS:G is simple, G is k�regular, G is of degree at most k. On the other hand, we have shown inProposition 58 that the property of having exa
tly one given label, whi
h is a FOL-property, is notlo
ally re
ognizable.The following properties are not expressible in FOL but are expressible in MSOL:G is 2�
oloriable,G is a tree, G is planar. From the result of [25℄ we dedu
e that the �rst two properties are lo
allyre
ognizable. On the other hand, we dedu
e from Theorem 62 that the 
lass of planar graphs is notlo
ally re
ognizable.The three following properties are not expressible in MSOL and are expressible in SOL: G hasan even number of verti
es, G has as many `1�labelled verti
es as `2�labelled verti
es, G has anodd number of verti
es. The two �rst properties are lo
ally re
ognizable and the last one is not.Therefore, 
lasses of graphs lo
ally re
ognizable are in
omparable with 
lasses of graphs expressiblein FOL, MSOL and SOL.In the 
ase of words and trees, re
ognizability is equivalent with de�nability in monadi
 se
ondorder logi
. This equivalen
e does not hold any more for graphs with the notion of re
ognizabilityused in our paper. This fa
t underlines the di�eren
e between words and trees on the one hand andgeneral graphs on the other hand. In the 
ase of words and trees, the notion of de�nability in MSOLand the notion of re
ognizability by �nite automata, whi
h work lo
ally by their very nature, 
oin
ide.In the 
ase of graphs, in general, some global 
omputation is ne
essary. Su
h global 
omputations ongraphs were proposed by Thomas [33℄, who 
onje
tured that they a

ept exa
tly monadi
 se
ond orderde�nable graphs. In fa
t, he allows the 
ounting of labels. Thus, ea
h �nal 
ondition with 
ountingis a boolean 
ombination of atomi
 
onditions of the form X > k, where X 2 L and k is an �xedinteger. This atomi
 
ondition is satis�ed by (G;�) if 
ard(��1(X)) > k. The satis�ability relation forboolean 
ombinations of atomi
 
ounting 
onditions is de�ned indu
tively in the usual way. The onlydi�eren
e is that, in [33℄, graphs have a degree uniformely bounded by some 
onstant and the �nallabelling of a graph is not lo
ally 
al
ulated, but is des
ribed in terms of tilings of graphs. However, itis not diÆ
ult to see that a tiling exists if it 
an be 
al
ulated by a non-deterministi
 lo
ally generatedrelabelling relation whi
h rewrites exa
tly on
e ea
h vertex. Thus non-deterministi
 re
ognition bylo
ally generated relations with 
ounting �nal 
onditions 
aptures the Thomas's re
ognition.However, we reje
t 
ounting �nal 
onditions sin
e they are not lo
ally veri�able. Roughly speaking,a �nal 
ondition } is k�lo
ally veri�able if there exists a k�lo
al 
omputation Rf su
h that (G;�)satis�es } if and only if in the irredu
ible graph obtained from (G;�), all verti
es are labelled by somelabel Y . Intuitively, to re
ognize in a distributed way a graph G by a k�lo
ally generated relabellingrelation R, we �rst apply R to (G;�N ) (whose all verti
es are N�labelled) to get some graph (G;�)irredu
ible for R. Next, we should be able to verify if (G;�) satis�es a �nal 
ondition by means of
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al 
omputation Rf whi
h will notify this fa
t to all verti
es by assigning to them aspe
ial label Y if and only if (G;�) satis�es }. It is easy to see that �nal 
onditions used in Se
tion 9are k�lo
ally veri�able.10 The Termination Dete
tion ProblemWhen designing a distributed algorithm, one of the main goals is to ensure that the algorithm has theproperty of termination dete
tion [6℄. Intuitively speaking, this property means that some node in thenetwork is able to dete
t that the whole algorithm has terminated. This property ensures in parti
ularthat it will be possible to exe
ute some algorithm after another algorithm without any \interferen
es"between them.In this se
tion, we study this property in the framework of lo
ally generated relabelling relations.Roughly speaking, it means that every vertex v in a graph G, by looking at some ball BG(v; k), willbe able to de
ide whether the graph is irredu
ible or not.In the �rst subse
tion we formally introdu
e this property. We then show how this property isrelated to the notion of k�
overings and, from that, dedu
e some impossibility results. We thenintrodu
e the notion of quasi k�
overings whi
h allows us to derive more impossibility results. We�nally dis
uss the links between the lo
al dete
tion of the global termination problem, the ele
tionproblem and the problem of determining the size of a graph.The results presented in this se
tion have been established in [21℄.10.1 The Lo
al Dete
tion of the Global TerminationLet L be any �xed alphabet. We denote by G = GL the set of all L�labelled graphs. In this se
tion, westudy lo
al 
omputations su
h that normal forms 
an be 
hara
terized by a set of lo
al 
on�gurations:De�nition 71 Let R be a k�lo
ally generated relabelling relation. Let I be a subset of G 
alled the
lass of initial graphs and let T be a subset of 
onne
ted elements of G. We say that T 
hara
terizesthe normal forms obtained from I if for every (G;�) 2 I with (G;�) R� (G;�0), (G;�0) is a normalform if and only if (G;�0) 
ontains a subgraph isomorphi
 to some (K;�) 2 T . In that 
ase we alsosay that (G;�0) is (K;�)�
hara
terized.Let r be a positive integer. We say that normal forms are r�lo
ally (or lo
ally) 
hara
terized ifall the elements of T have radius at most r.10.2 Appli
ations of k�Coverings to Termination Dete
tionIn this subse
tion we how we 
an use the notion of k�
overings to derive some impossibility results
on
erning the lo
al dete
tion of the global termination.Proposition 72 Let I � G be a 
lass of 
onne
ted labelled graphs and let R be a k�lo
ally gen-erated relabelling relation. If I 
ontains two graphs (G;�) and (G0; �0) su
h that (G;�) is a stri
tk�
overing of (G0; �0) via some mapping 
 then the normal forms obtained from I 
annot be r�lo
ally
hara
terized, for every r � k.Proof. Suppose that (G0; �0) Rn�1 (G01; �01) R (G02; �02). By Proposition 42, we 
an 
onstru
t a newlabelling of G, say (G;�1), su
h that (G;�1) is a k�
overing of (G0; �01) (via the mapping 
) and(G;�) R� (G;�1). Suppose that (G0; �01) R (G0; �02) holds and 
on
erns some ball B(G0;�01)(v; k). Thenwe may apply this relabelling step to exa
tly one of the 
onne
ted 
omponents of 
�1(B(G0;�01)(v; k))(being isomorphi
 to B(G0;�01)(v; k)) and obtain the labelled graph (G;�2). Now, if the normal formsare r�lo
ally 
hara
terized for some r � k, then (G0; �02) is (K;�)�
hara
terized for some (K;�) 2 T .This implies that (G;�2) is also (K;�)�
hara
terized, whi
h 
ontradi
ts the fa
t that (G;�2) is not anormal form. 2



I. Litovsky, Y. M�etivier and E. Sopena 31Proposition 72 
an easily be generalized in the following way:Proposition 73 Let I � G be a 
lass of labelled graphs, and let R be a k�lo
ally generated relabellingrelation. Assume that I 
ontains two labelled graphs (G;�) and (G0; �0) su
h that (G;�) is a 
onne
ted,stri
t q�sheeted k�
overing of (G0; �0) via some mapping 
. Then the normal forms obtained from(G;�) 
annot be (K;�)�
hara
terized if the labelled graph (K;�) is su
h that 
�1(K;�) is a disjointunion of graphs isomorphi
 to (K;�).From Theorem 41 and Proposition 72 we get a more general result:Theorem 74 Let I be a 
lass of 
onne
ted labelled graphs 
losed under 
onne
ted k�
overings andlet R be a k�lo
ally generated relabelling relation. Assume that there exist a graph (G;�) 2 I and anedge e 2 E(G) su
h that (V (G); E(G) n feg) is 
onne
ted, but e belongs to no 
y
le of length at most2k + 1. Then normal forms obtained from I 
annot be r�lo
ally 
hara
terized, for every r � k.Re
all that a graph G is a homeomorphi
 image of a graph G0 if G 
an be obtained from G0 by asequen
e of edge subdivisions. Then we have:Corollary 75 Let I be a 
lass of 
onne
ted labelled graphs 
losed under 
onne
ted k�
overings andunder homeomorphisms, and 
ontaining at least one graph with a 
y
le. Let R be a k�lo
ally generatedrelabelling relation. Then normal forms obtained from I 
annot be r�lo
ally 
hara
terized, for everyr � k.This result is quite powerful: lo
al 
omputations are very general, they in
lude relabelling withan in�nite number of labels and an in�nite number of rules, provided that the diameter of the rulesis uniformly bounded by some 
onstant. The relabelling relation may be deterministi
 or not. ForProposition 72 and Theorem 74, T may be in�nite provided that the diameter of the graphs is uniformlybounded.As an illustration, we give some 
on
rete appli
ations [6℄. Re
all that the majority problem 
onsistsin determining, in a graph with A� or B�labelled verti
es, whether the number of A�labelled verti
esis greater than the number of B�labelled verti
es or not. Then we have:Corollary 76 There is no lo
al 
omputation system allowing the lo
al dete
tion of termination whi
hsolves one of the following problems on uniformly labelled graphs: 
omputing the size of a graph,
omputing the sum, the produ
t, the minimum or maximum of the vertex labels of a graph, solving themajority problem.10.3 Quasi k�Coverings and Lo
al Dete
tion of Normal Forms: the Case ofT�prime GraphsIn this subse
tion we introdu
e the notion of quasi k�
overings, whi
h allows to extend the resultsof the previous subse
tion to 
ertain 
lasses of graphs, as the 
lass of T�prime graphs de�ned asfollows. Let G be a 
onne
ted graph of size n, and let r be an integer dividing n. We say that G isr�fa
torizable if G admits a spanning forest whose all trees have size r: The graph G is said to beT�prime if it is not r�fa
torizable for every integer r, 1 < r < n.In [34℄, an ele
tion algorithm is given for the 
lass of T�prime graphs. The main idea of thealgorithm is to 
onstru
t a partition of the graph into 
onne
ted subgraphs. Ea
h subgraph is de�nedby a spanning tree and has a leader (root) with weight equal to the size of the subgraph; all otherverti
es of the subgraph have weight zero. Initially we 
onsider a partition su
h that every subgraph
onsists of a single vertex. We assume that at least one pro
essor starts the 
omputation. Then, thereis at least one duel between two adja
ent verti
es from whi
h we obtain a new partition, with at leastone element 
ontaining two verti
es (in this 
ase we say that the algorithm has started). A leader Lwith weight w looks for an adja
ent subgraph having a leader L0 with weight w0 su
h that w > w0. Inthis 
ase, their spanning trees (that is the two 
orresponding subgraphs) are 
ombined and L remains



32 Graph relabelling systems and distributed algorithmsthe leader with the weight w +w0, whereas the weight of L0 be
omes zero. The algorithm terminateswhen only one tree is left. Clearly, the ele
ted vertex knows that it has been ele
ted if it knows the sizeof the graph. From results obtained in this subse
tion we will dedu
e that this knowledge is ne
essary.De�nition 77 Let (G;�) and (G0; �0) be two labelled graphs, 
:V (G)! V (G0) be a graph homomor-phism and k be a non-negative integer. The graph (G;�) is a quasi k�
overing of (G0; �0) of size s ifthere exist a �nite or in�nite k�
overing (G0; �0) of (G0; �0) via some mapping Æ, verti
es v0 2 V (G0),v 2 V (G), and an integer r > 0 su
h that :1. B(G;�)(v; r) is isomorphi
 to B(G0;�0)(v0; r) via ',2. Card(V (B(G;�)(v; r))) � s,3. 
 = Æ Æ ' when restri
ted to V (B(G;�)(v; r)).The idea behind the notion of quasi k�
overings is to enable the simulation of lo
al 
omputationson a given graph in a restri
ted area of a larger graph, su
h that the simulation 
an lead to false
on
lusions. The restri
ted area where we 
an perform the simulation will shrink while the number ofsimulated steps in
reases.Consider a quasi k�
overing (G;�) of (G0; �0) via some mapping 
. This means that there exista vertex z 2 V (G) and an integer r > 0 su
h that B(G;�)(z; r) is isomorphi
 to a subgraph of somek�
overing (G0; �0) of (G0; �0):More pre
isely, B(G;�)(z; r) is isomorphi
 via ' to B(G0;�0)(z0; r), where(G0; �0) is some k�
overing of (G0; �0) via some mapping Æ. Moreover, Card(V (B(G;�)(z; r))) � s and
 = ÆÆ' on V (B(G;�)(z; r)). Fix now a spanning tree T of G0; then Æ�1(T ) � V (G0) is a disjoint unionof 
opies of T: Let J = fT0; T1; : : : ; Tqg � 
�1(T ) � V (G) be su
h that for all verti
es u 2 V (Ti),0 � i � q, the ball B(G;�)(u; k) is in
luded in B(G;�)(z; r). Suppose also, without loss of generality,that z 2 V (T0).We 
onsider in the following the undire
ted graph H = ([0; q℄; F ) with fi; jg 2 F if and onlyif for some x 2 V (Ti), y 2 V (Tj) there is an edge fx; yg 2 E(G). By means of H we obtain adistan
e d on J given by d(Ti; Tj) = dH(i; j). Note that the degree of verti
es of H is bounded byCard(E(G0)) � Card(V (G0)) + 1. Hen
e, for ea
h d � 1, by 
hoosing s suÆ
iently large (dependingon G0; k and d) we obtain d(T0; Ti) � d for some Ti 2 J .Then we have:Theorem 78 Let (G;�), (G0; �0), 
, J and d be as above, with d(T0; Ti) � ` for some Ti 2 J , ` � 2k.Let R be a k�lo
ally generated relabelling relation and suppose (G0; �0) R (G0; �01). Moreover, assumethat for every Ti 2 J with d(T0; Ti) � ` and for every vertex u 2 V (Ti) the labelled balls B(G;�)(u; k)and B(G0;�0)(
(u); k) are isomorphi
 via 
.Then there exists a labelled graph (G;�1) su
h that (G;�) R� (G;�1) holds. Moreover, for everyTi 2 J with d(T0; Ti) � ` � 2k and for every vertex v 2 V (Ti) the labelled balls B(G;�1)(v; k) andB(G0;�01)(
(v); k) are isomorphi
 via 
.Proof. Let (G0; �0) R (G0; �01) hold via a relabelling step whi
h 
hanges only the relabelling ofB(G0;�0)(v0; k). We 
an simulate this step on ea
h v 2 
�1(v0) with v 2 V (Ti) and d(T0; Ti) � `.Let (G;�1) denote the graph obtained in this way.Suppose that w 2 V (Ti) and d(T0; Ti) � ` � 2k holds and let w0 = 
(w). If B(G0;�0)(v0; k) \B(G0;�0)(w0; k) = ; then B(G;�)(v; k) \B(G;�)(w; k) = ; holds for all v 2 
�1(v0) \ [T2J V (T ), and theresult follows by indu
tion. Hen
e assume that B(G0;�0)(v0; k) \ B(G0;�0)(w0; k) 6= ; and let v be theunique vertex in 
�1(v0) su
h that B(G;�)(v; k) \ B(G;�)(w; k) 6= ;. Moreover, let v 2 V (Tj) and notethat d(T0; Tj) � d(T0; Ti) + 2k � `. Therefore, the labelled balls B(G;�1)(w; k) and B(G;�1)(w0; k) areisomorphi
. 2Theorem 78 yields a more general result on the impossibility of lo
ally dete
ting the termination:
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lass of 
onne
ted labelled graphs and let R be a k�lo
ally generated rela-belling relation. Suppose that some (G0; �0) 2 I has 
onne
ted quasi k�
overings in I of arbitrarylarge size. Then normal forms obtained from I 
annot be r�lo
ally 
hara
terized, for every r � k.Proof. Let C = ((G0; �0) = (G0; �00); (G0; �01); : : : ; (G0; �0n)) be a relabelling 
hain of length n su
h that(G0; �0n) is a normal form. Let (G;�) be a quasi k�
overing of (G0; �0) of size s. For s suÆ
iently largewe have for some Ti 2 J that d(T0; Ti) � 2k(n+1) (re
all the de�nition of J and d from Theorem 78).We 
an apply Theorem 78 with ` = 2k(n + 1 � m) for the m�th relabelling step of C. Wethus obtain a relabelling (G;�n) of (G;�) with (G;�) R� (G;�n) su
h that (G;�n) is a normal form.However, we have simulated no step of C on verti
es belonging to V (Ti) with d(T0; Ti) = 2k(n + 1)(re
all that su
h verti
es still have balls of radius k isomorphi
 to their image by 
). Hen
e, this
ontradi
ts the fa
t that (G;�n) is a normal form. 2Clearly, we 
annot use the results of the previous se
tion for the 
lass of T�prime graphs, be
auseno 
onne
ted non-isomorphi
 k�
overing of a T�prime graph is T�prime, but we 
an apply The-orem 79. For this, suppose that G0 is a 
onne
ted T�prime graph 
ontaining an edge e0 su
h that(V (G0); E(G0) n fe0g) is still 
onne
ted, but e0 belongs to no 
y
le of length at most 2k + 1. The 
on-stru
tion from Proposition 41 
an be easily modi�ed in su
h a way that we obtain a quasi k�
overingof size at least (q � 2)Card(V (G0)) whi
h is also T�prime. For this, it suÆ
es to subdivide theedge fxq�1; y0g until the size of the graph obtained is prime (hen
e, the graph obtained is T�prime).Therefore we get:Corollary 80 There is no lo
al 
omputation system with lo
al dete
tion of termination where all inputgraphs are uniformly labelled by the same label, whi
h solves one of the following problems: 
omputingthe size of T�prime graphs, 
omputing the sum, the produ
t, the minimum or maximum of the vertexlabels of a T�prime graph, solving the majority problem for the 
lass of T�prime graphs.Remark 81 Re
all that there exists an ele
tion algorithm for T�prime graphs whi
h uses the sizeof the graph as additional knowledge [34℄. The natural question whi
h then arises is whether thisknowledge is ne
essary or not. Theorem 79 provides an indire
t positive answer to this question.More pre
isely, suppose that the ele
tion problem 
ould be solved with lo
al dete
tion of terminationon uniformly labelled T�prime graphs (i.e. labelled by a �xed label). Then we 
ould 
ompute after theele
tion the size of the graph, thus 
ontradi
ting the previous 
orollary.Moreover, note that the 
onstru
tion used in Theorem 79 
an be slightly modi�ed in order to obtainthe impossibility result for the ele
tion problem for T�prime graphs dire
tly. For this, it suÆ
esto in
rease the size of the quasi k�
overing in su
h a way that there exists two verti
es v1; v2 inB(G;�)(v; r) and integers r1; r2 > 0 with B(G;�)(vi; ri) � B(G;�)(v; r0) and Card(V (B(G;�)(vi; ri))) � sfor i = 1; 2. Moreover, we require that B(G;�)(v1; r1) and B(G;�)(v2; r2) are disjoint. Clearly, we
an apply the simulation on ea
h B(G;�)(vi; ri) in parallel, obtaining therefore two ele
ted verti
es, a
ontradi
tion.10.4 Comparison with Others ProblemsWe 
onsider in this last subse
tion the following three problems: the ele
tion problem (Ele
t), theproblem of lo
ally dete
ting of termination (Ldt) and the problem of 
omputing the size of the graph(Size).We note that Ele
t and Ldt are equivalent with respe
t to lo
al 
omputations: if we 
an solvethe ele
tion problem for a 
lass of graphs I, then we 
an also lo
ally dete
t the termination of a lo
al
omputation system on I. Conversely, if we have a 
lass of uniformly labelled graphs I and a lo
al
omputation system with lo
al termination dete
tion su
h that every element of I is redu
ible, thenwe 
an solve Ele
t on I.



34 Graph relabelling systems and distributed algorithmsThe �rst assertion is easily seen by letting the ele
ted vertex 
ompute a spanning tree and 
he
kwhether a normal form has been rea
hed. For the other dire
tion assume that normal forms obtainedfrom I with respe
t to a lo
al 
omputation system of radius k are 
hara
terized by a set of labelledgraphs T . Moreover, suppose that every graph in I is redu
ible and let r be an upper bound for theradius of ea
h element of T . Consider a normal form (G;�n) obtained from (G;�) 2 I and two verti
esu; v su
h that both B(G;�n)(u; r) and B(G;�n)(v; r) 
ontain a subgraph isomorphi
 to an element of T .Sin
e T 
hara
terizes exa
tly normal forms the balls B(G;�n)(u; r) and B(G;�n)(v; r) 
ontain ea
h asubgraph from T due to the last step of the relabelling 
hain from (G;�) to (G;�n). Hen
e, thedistan
e between u and v is at most 4r. A simple relabelling system with forbidden 
ontexts of radius2r 
an now be used in order to ele
t one of the verti
es u having the property that B(G;�n)(u; r)
ontains a subgraph isomorphi
 to an element of T (thus labelled by T ): every path of length less orequal 2r with extremities labelled by T 
hanges the label of one of its extremities into N . A vertexlabelled by T with no further neighbours labelled by T at distan
e less or equal 4r be
omes ele
ted.On the other hand, there is also an easy redu
tion from Size to Ele
t, sin
e the size of the graph
an be 
omputed along a rooted spanning tree. However, Ele
t is more diÆ
ult than Size, a fa
twhi
h 
an be seen by 
onsidering the 
lass of hyper
ubes. Clearly, ea
h vertex in a hyper
ube 
an
ompute lo
ally its degree n, thus also the size 2n of the graph. However, by symmetry arguments it
an be easily shown that no lo
al 
omputation system 
an solve Ele
t for the 
lass of hyper
ubes.To see this, assume R is a relabelling system of radius k and let Hn be the hyper
ube with 2n nodes,n > 2k. Then we 
an de�ne a mapping f2k on Hn by letting f2k(b1 : : : bn) = �b1 : : :�b2kb2k+1 : : : bn(bi 2 f0; 1g). Clearly, for ea
h vertex x the balls BHn(x; k) and BHn(f2k(x); k) are disjoint andisomorphi
. We 
an simulate ea
h relabelling step of R on both balls in parallel. This simulationsatis�es the 
ondition that the labelled balls of radius k with 
enter y, resp. f2k(y), are isomorphi
via f2k. This 
an be summarized as follows:Proposition 82 Ele
t is equivalent to Ldt. Size is redu
ible to Ele
t but Ele
t is not redu
ibleto Size.Referen
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