
LaBRI Researh Report No. Compiled on April 18, 2001The �nal version of this paper has been published in Handbook of graph grammars and omputing by graphtransformation, vol. III, World Sienti�, H. Ehrig, H.-J. Kreowski, U. Montanari and G. Rozenberg eds (1999),1{56.GRAPH RELABELLING SYSTEMSAND DISTRIBUTED ALGORITHMSIgor Litovsky,ESSI, Sophia Antipolis, BP 132, 06561 Valbonne CEDEX, FraneYves M�etivier and �Eri SopenaLaBRI, Universit�e Bordeaux I - ENSERB, 351 Cours de la Lib�eration, 33405 Talene, FraneAbstrat. Graph relabelling systems have been introdued as a suitable model for expressing and studyingdistributed algorithms on a network of ommuniating proessors. We reall the basi ideas underlying thatmodel and we present the main questions that have been onsidered and the main results that have beenobtained in that framework.Keywords. Models for distributed systems, Graph relabelling systems, Distributed algorithms, Loal ompu-tations, Coverings, Eletion problem, Termination detetion.1 IntrodutionGraph relabelling systems and, more generally, loal omputations in graphs are powerful modelswhih provide general tools for enoding distributed algorithms, for proving their orretness andfor understanding their power. We onsider a network of proessors with arbitrary topology. It isrepresented as a onneted, undireted graph where verties denote proessors, and edges denotediret ommuniation links. An algorithm is enoded by means of loal relabelings. Labels attahedto verties and edges are modi�ed loally, that is on a subgraph of �xed radius k of the given graph,aording to ertain rules depending on the subgraph only (k�loal omputations). The relabellingis performed until no more transformation is possible. The orresponding on�guration is said to bein normal form. Two sequential relabelling steps are said to be independent if they are applied ondisjoint subgraphs. In this ase they may be applied in any order or even onurrently.The present ontribution reets lassial topis inluding basi properties of loal omputations.Among paradigms assoiated with loal omputations, we present the eletion problem, the reognitionproblem and the loal detetion of the termination problem.For these three problems, we onsider graphs whih are uniformly labelled by some initial label(whih may enode some knowledge on the graph as, for instane, the number of verties and/or edges).For the reognition problem, the presene or the absene of ertain �nal labels determines whether Gis aepted or not. The aim of an eletion algorithm is to hoose exatly one element among the setof verties. The more general assumption used in the paper is as follows. We suppose that initiallyevery vertex and every edge has the same label whih enodes some knowledge on the graph. Then weonsider loal omputation systems suh that for eah irreduible graph there is a given vertex labelwhih appears exatly one in the graph. A distributed algorithm terminates whenever it reahes aterminal on�guration, that is a on�guration in whih no step of the algorithm an be applied. Weare interested in the question whether the global termination of a system of loal omputations an bedeteted also loally. This means that for every terminal on�guration there is a vertex in the graphsuh that its neighbourhood of a given radius r determines that a normal form has been reahed. Inthis ase, we say that global termination is r�loally deteted. We use overings as a fundamental tool1



2 Graph relabelling systems and distributed algorithmswhih enable to understand the borderline between positive and negative results about distributedomputations. We are partiularly interested in the question whether ertain additional knowledgeabout the network, whih is used in spei� distributed algorithms, is really needed for solving thegiven problem or not. For lak of spae, some results about the omparison with the power of logiformulas will not be given, see [25, 31℄.Among models related to our model there are loal omputations systems, as de�ned by Rosensthielet al. [1℄, Angluin [2℄ or Yamashita and Kameda [3, 4℄. In [1℄ a synhronous model is onsidered,where all verties are equipped with a deterministi �nite automata (the same for all verties). Abasi omputation step onsists then in omputing the next state of eah proessor aording to itsown state and to the states of its neighbours. In [2℄ an asynhronous model is onsidered: duringa basi omputation step, two adjaent verties exhange their labels and then ompute new labels.In [3, 4℄ an asynhronous model is also onsidered where during a basi omputation step a proessoreither hanges its state and sends a message or reeives a message.Introdution to distributed algorithms and main topis of the �eld are presented in [5, 6℄.2 GraphsAll graphs we onsider are �nite, undireted, with no multiple edges nor self-loops. A graph G is thusa pair (V (G); E(G)); where V (G) is a �nite set of verties and E(G) � ffv; v0g j v; v0 2 V (G); v0 6= vgis the set of edges. The number of verties in a graph G is alled the size of G.Let e = fv; v0g be an edge; we say that e is inident with v and v0 and that v0 is a neighbour of v.The set of neighbours of a vertex v, together with v itself, is denoted NG(v). Two edges are adjaentif they share a ommon vertex. The degree of a vertex v, denoted by d(v), is the number of edgesinident with v. Verties of degree 1 are alled leafs, other verties are internal verties. A path Pfrom v1 to vi in G is a sequene P = v1; e1; v2; e2; : : : ; ei�1; vi of alternating verties and edges suhthat for every j, 1 � j < i, ej is an edge inident with verties vj and vj+1; i � 1 is the length of P .If v1 = vi then P is a yle. A path P is simple if no vertex ours twie in P . Two verties v andw are onneted if there exists a path from v to w. A graph is onneted if every two verties areonneted. Let v and v0 be two onneted verties; the distane between v and v0, denoted by d(v; v0),is the minimum length of a (simple) path from v to v0. The maximal distane d(v; v0), taken over allpairs of verties fv; v0g of a onneted graph G, is the diameter of G and is denoted by D(G). A treeis a onneted graph ontaining no yle. In a tree, every two verties are thus onneted by preiselyone simple path.Let G and G0 be two graphs; G0 is a subgraph of G if V (G0) � V (G) and E(G0) � E(G). LetV 0 be a subset of V (G); the subgraph of G indued by V 0, denoted by G[V 0℄, has vertex set V 0 andontains all edges of G whose both endpoints belong to V 0. Let v be a vertex and k a positive integer;the ball of radius k with enter v, denoted by BG(v; k), is the subgraph of G indued by the set ofverties V 0 = fv0 2 V j d(v; v0) � kg. A homomorphism of a graph G to a graph H is a mapping : V (G) �! V (H) suh that if fu; vg is an edge of G then f(u); (v)g is an edge of H. Sine wedeal with graphs having no self-loop, we neessarily have (u) 6= (v) if fu; vg is an edge of G. Notealso that (NG(u)) � NH((u)) for every vertex u. We say that  is an isomorphism if  is bijetiveand �1 is also a homomorphism. Two graphs G and H are isomorphi, denoted by G ' H, if thereexists an isomorphism from G to H. A lass of graphs is any olletion of graphs losed under theisomorphism relation.Notation. For every integers i and j, i � j, we shall denote by [i; j℄ the set fi; i+ 1; : : : ; jg.Remark 1 In the following, we will only onsider onneted graphs and will simply all them \graphs".3 First ExamplesThe aim of this setion is to illustrate, in an intuitive way, the notion of graph relabelling systems byshowing how some algorithms on networks of proessors may be enoded within our framework [7℄.
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Figure 1: Sequential omputation of a spanning treeAs usual, suh a network is represented by a graph whose verties stand for proessors and edges for(bidiretional) links between proessors. At every time, eah vertex and eah edge is in some partiularstate and this state will be enoded by a vertex or edge label. Aording to its own state and to thestates of its neighbours, eah vertex may deide to realize an elementary omputation step. After thisstep, the states of this vertex, of its neighbours and of the orresponding edges may have hangedaording to some spei� omputation rules.3.1 Sequential Computation of a Spanning TreeWe onsider here the problem of building a spanning tree in a graph using the depth-�rst searhalgorithm.Suppose that all the verties are initially in some neutral state (with label N) exept exatly onevertex whih is in an ative state (with label A) and that all edges have label 0. The algorithm willrun in suh a way that at every time exatly one vertex will be A-labelled.At eah step of the omputation, the A-labelled vertex, say u, will at as follows:1. If u has a N-labelled neighbour v, then u will ativate this neighbour: u beomes marked (withlabel M), v beomes ative (with label A) and the edge fu; vg beomes 1-labelled.2. If u has no N-labelled neighbour and has a (unique) M-labelled neighbour w then u will reativatethis neighbour: u enters a �nal state (with label F) and w beomes A-labelled.The omputation stops as soon as none of the above omputation rules may be applied (in that ase,all the neighbours of the A-labelled vertex are F-labelled). The spanning tree is then given by the setof all 1-labelled edges.Figure 1 desribes a sample omputation using this algorithm (edges with label 1 are drawn asthik edges).3.2 Distributed Computation of a Spanning Tree Without Loal Detetion of theGlobal TerminationIn the previous example, the spanning tree is omputed in a stritly sequential way sine at any timeat most one vertex is ative (with label A). We will give here a seond version of this algorithm thatwill run in a more distributed way.



4 Graph relabelling systems and distributed algorithms
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Figure 2: Distributed omputation of a spanning tree
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FFigure 3: Distributed omputation of a spanning tree with loal detetion of the global terminationAs before, we assume that a unique vertex has initially label A, all other verties having label Nand all edges having label 0.At eah step of the omputation, an A-labelled vertex u may ativate any of its neutral neighbours,say v. In that ase, u keeps its label, v beomes A-labelled and the edge fu; vg beomes 1-labelled.Hene, several verties may be ative at the same time. Conurrent steps will be allowed providedthat two suh steps involve distint verties. The omputation stops as soon as all the verties havebeen ativated. As before, the spanning tree is given by the 1-labelled edges.Figure 2 desribes a sample omputation using this algorithm. Aording to the previous disus-sion, the reader should keep in mind that some of the relabelling steps may be applied onurrently.3.3 Distributed Computation of a Spanning Tree with Loal Detetion of theGlobal TerminationThe sequential algorithm desribed before is suh that the ative vertex is able to loally detet theglobal termination of the algorithm: if all the neighbours of the ative vertex are F-labelled, then theomputation is terminated. However, it is not diÆult to observe that the distributed version of thisalgorithm does not have this property. We will give here a new distributed version of this algorithm



I. Litovsky, Y. M�etivier and E. Sopena 5having the property of loal detetion of the global termination.As before, we assume that a unique vertex has initially label A, all other verties having label Nand all edges having label 0. The main idea is that the unique initially A-labelled vertex will keep itslabel until the end of the omputation, while other ativated verties will be A'-labelled. As soon asan A'-labelled vertex is no longer \useful" for the omputation, it will reah its �nal state (with labelF). More preisely, we will use the following omputation rules:At eah step of the omputation, an ative vertex (with label A or A'), say u, will at as follows:1. If u has a N-labelled neighbour v, then u will ativate this neighbour: u keeps its label, v beomesative (with label A') and the edge fu; vg beomes 1-labelled.2. If u is A'-labelled, has no N-labelled neighbour and is suh that all its neighbours to whih itis linked by a 1-labelled edge exept one of these neighbours are F-labelled, then u beomesF-labelled.At any time, the subgraph indued by the 1-labelled edges and the A- or A'-labelled verties is a tree.Intuitively speaking, the seond rule means that the vertex u is a leaf in this tree.Thus, this algorithm runs in two phases (that may overlap): in the �rst phase, the tree is growinguntil all verties are reahed; in the seond phase, it will derease (by loosing its leaves) until it isredued to the initially A-labelled vertex. This vertex is then able to detet that the algorithm hasterminated sine all its neighbours are F-labelled.Figure 3 desribes a sample omputation using this algorithm.4 Graph Relabelling Systems4.1 Labelled GraphsWe onsider now L�labelled graphs, that is graphs whose verties and edges are labelled with labelsfrom a possibly in�nite alphabet L. A L�labelled graph will be denoted by (G;�), where G is a graphand �:V (G) [ E(G) ! L is the labelling funtion. The graph G is alled the underlying graph of(G;�), and � is a labelling of G. The lass of L�labelled graphs will be denoted by GL, or simply G ifthe alphabet L is lear from the ontext.Let (G;�) and (G0; �0) be two labelled graphs; (G;�) is a subgraph of (G0; �0), denoted by (G;�) �(G0; �0), if G is a subgraph of G0 and � is the restrition of �0 to V (G) [E(G).A mapping ':V (G) [ E(G) ! V (G0) [ E(G0) is a homomorphism of (G;�) to (G0; �0) if ' is ahomomorphism of G to G0 whih preserves the labelling, that is suh that �0('(x)) = �(x) holds forevery x 2 V (G) [ E(G). An ourrene of (G;�) in (G0; �0) is an isomorphism ' between (G;�) andsome subgraph (H; �) of (G0; �0).4.2 Graph Relabelling SystemsWe introdue in this setion the formal notion of graph relabelling systems.De�nition 2 A (graph) relabelling rule is a triple R = (GR; �R; �0R) suh that (GR; �R) and (GR; �0R)are two labelled graphs. The labelled graph (GR; �R) is the left-hand side and the labelled graph (GR; �0R)is the right-hand side of R.De�nition 3 A graph relabelling system (GRS for short) is a triple R = (L; I; P ) where L is a setof labels, I a subset of L alled the set of initial labels and P a �nite set of relabelling rules.The intuitive notion of omputation step will then orrespond to the notion of relabelling step:De�nition 4 A R�relabelling step is a 5-tuple (G;�;R; '; �0) suh that R is a relabelling rule in Pand ' is both an ourrene of (GR; �R) in (G;�) and an ourrene of (GR; �0R) in (G;�0).



6 Graph relabelling systems and distributed algorithmsIntuitively speaking, the labelling �0 of G is obtained from � by modifying all the labels of theelements of '(GR; �R) aording to the labelling �0R. Suh a relabelling step will be denoted by(G;�) �!R;' (G;�0).The notion of omputation then orresponds to the notion of relabelling sequene:De�nition 5 A R�relabelling sequene is a tuple (G,�0,R0,'0,�1,R1,'1,�2,: : :, �n�1, Rn�1,'n�1,�n) suh that for every i, 0 � i < n, (G;�i; Ri; 'i; �i+1) is a R�relabelling step. The exis-tene of suh a relabelling sequene will be denoted by (G;�0) �!�R (G;�n).The omputation stops when the graph is labelled in suh a way that no relabelling rule an beapplied:De�nition 6 A labelled graph (G;�) is said to be R�irreduible if there exists no ourrene of(GR; �R) in (G;�) for every relabelling rule R in P .For every labelled graph (G;�) in GI we denote by IrredR(G;�) the set of all R�irreduiblelabelled graphs (G;�0) suh that (G;�) �!�R (G;�0). Intuitively speaking, the set IrredR(G;�)ontains all the �nal labellings that an be obtained from a I�labelled graph (G;�) by applyingrelabelling rules in P and may be viewed as the set of all the possible results of the omputationenoded by the system R.Example 7 The algorithm introdued in Subsetion 3.2 may be enoded by the graph relabelling systemR1 = (L1; I1; P1) de�ned by L1 = fN;A; 0; 1g, I1 = fN;A; 0g, and P1 = fRg where R is the followingrelabelling rule:
0 1

R :
A N A AFigure 1 thus desribes a sample R1�relabelling sequene.4.3 Loal Control MehanismsIn order to reah a satisfatory expressive power, we introdue some loal ontrol mehanisms. Thesemehanisms allow us to restrit in some sense the appliability of relabelling rules.4.3.1 Graph Relabelling Systems with PrioritiesThe �rst mehanism we will onsider is obtained by introduing some priority relation on the set ofrelabelling rules:De�nition 8 A graph relabelling system with priorities (PGRS for short) is a 4-tuple R = (L; I; P;>)suh that (L; I; P ) is a graph relabelling system and > is a partial order de�ned on the set P , alledthe priority relation.A R�relabelling step is then de�ned as a 5-tuple (G;�;R; '; �0) suh that R is a relabelling rulein P , ' is both an ourrene of (GR; �R) in (G;�) and an ourrene of (GR; �0R) in (G;�0) and thereexists no ourrene '0 of a relabelling rule R0 in P with R0 > R suh that '(GR) and '(GR0) intersetin G (that is V ('(GR)) \ V ('(GR0)) = ;).The notion of relabelling sequene is de�ned as previously.Example 9 The algorithm introdued in Subsetion 3.2 may be enoded by the PGRS R2 =(L2; I2; P2; >2) de�ned by L2 = fN;A;M; F; 0; 1g, I2 = fN;A; 0g, P2 = fR1; R2g where R1 andR2 are the following relabelling rules:
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with the priority relation: R1 >2 R2.Figure 1 thus desribes a sample R2�relabelling sequene.4.3.2 Graph Relabelling Systems with Forbidden ContextsThe idea we develop here is to prevent the appliation of a relabelling rule whenever the orrespondingourrene is \inluded" in some speial on�guration, alled a ontext. More formally, we have:De�nition 10 Let (G;�) be a labelled graph. A ontext of (G;�) is a triple (H;�;  ) suh that (H;�)is a labelled graph and  an ourrene of (G;�) in (H;�).De�nition 11 A relabelling rule with forbidden ontexts is a 4-tuple R = (GR; �R; �0R; FR) suh that(GR; �R; �0R) is a relabelling rule and FR is a �nite set of ontexts of (GR; �R).De�nition 12 A graph relabelling system with forbidden ontexts (FCGRS for short) is a tripleR = (L; I; P ) de�ned as a GRS exept that the set P is a set of relabelling rules with forbiddenontexts.A relabelling rule with forbidden ontexts may be applied on some ourrene if and only if thisourrene is not \inluded" in an ourrene of some of its forbidden ontexts. More formally:De�nition 13 A R�relabelling step is a 5-tuple (G;�;R; '; �0) suh that R is a relabelling rule withforbidden ontexts in P , ' is both an ourrene of (GR; �R) in (G;�) and an ourrene of (GR; �0R)in (G;�0), and for every ontext (Hi; �i;  i) of (GR; �R), there is no ourrene 'i of (Hi; �i) in (G;�)suh that 'i( i(GR; �R)) = '(GR; �R).Example 14 The algorithm introdued in Subsetion 3.3 may be enoded by the FCGRS R3 =(L3; I3; P3) de�ned by L3 = fN;A;M; F; 0; 1g, I3 = fN;A; 0g, P3 = fR1; R2; R3g where R1, R2and R3 are the following relabelling rules with forbidden ontexts:
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, }{The unique vertex of the left-hand side of the rule R3 is assoiated with the top vertex of itsforbidden ontexts.Figure 3 thus desribes a sample R3�relabelling sequene.



8 Graph relabelling systems and distributed algorithms4.3.3 PGRS's versus FCGRS'sDue to the ontrol mehanism on the appliability of relabelling rules in PGRS's and FCGRS's,only relabelling steps onerning \far enough" ourrenes may be applied onurrently [8℄. Roughlyspeaking, in order to hek whether a relabelling rule may be applied on a given ourrene or notit is neessary to onsider some \ontrol area" surrounding this ourrene. Two relabelling stepsare then \independant" if their orresponding ontrol areas do not interset. The reader should notehere that the diameter of this ontrol area is bounded by some onstant only depending on the graphrelabelling system.The omparison between the expressive power of PGRS's and FCGRS's, together with some othertypes of GRS's (where the ourrenes are de�ned as indued subgraphs), has been done in [8℄. Themain result is the following:Theorem 15 PGRS's and FCGRS's are equivalent.By \equivalent" we mean that for every PGRS (resp. FCGRS) R there exists a FCGRS (resp.PGRS) R0 suh that for every labelled graph (G;�), the sets IrredR(G;�) and IrredR0(G;�) oinide.Outline of the proof. For any PGRSR, it is not diÆult to onstrut an equivalent FCGRSR0. Thebasi idea is to transform every relabelling rule R of R into a relabelling rule with forbidden ontextsR0 whose forbidden ontexts are all possible on�gurations orresponding to some \overlapping" of Rwith some relabelling rule R0 whith highest priority.The diÆult part of the proof is to provide for every FCGRS R an equivalent PGRS R0. Themain idea is to onstrut a PGRS R0 that will \simulate" the behaviour of R. Roughly speaking,this simulation is obtained by the \omposition" of several PGRS's orresponding to the following\phases" of the simulation:Phase 1. The k-eletion onstrution.The eletion problem, disussed in Setion 8, onsists in distinguishing (eleting) in a graph aunique vertex (by means of some speial label). This problem is known to be unsolvable in the generalase. We de�ne here a \weak" version of this problem, namely the k�eletion problem, whih onsistsin eleting several verties, alled apitals, in suh a way that:1. Every apital is the root of some tree whose depth is at most d, where d is the maximal diameterof a forbidden ontext in a rule of R.2. Every vertex belongs to suh a tree.3. The distane between every two apitals is at least d+ 1.This �rst phase allows us to partition the graph into several ountries orrespnding to the abovedesribed trees. Every ountry has a apital whih will organize the simulation.Phase 2. Ativation of verties.Eah apital will generate a token and send it along its own tree (using a depth-�rst searhtraversal). A vertex is ativated when it owns the token.Phase 3. Looking for appliability of relabelling rules.When a vertex x is ative, it �rst builds a spanning tree of the ballB(x; d). For every relabelling rulewith forbidden ontexts R whose left-hand side has p verties, the vertex x enumerates all possiblep�tuples in B(x; d), in order to hek whether the rule R is appliable or not (in partiular, itis neessary to verify that the orresponding ourrene is not inluded in some of the forbiddenontexts). When a rule is found to be appliable then, undeterministially, the rule is applied or not(in order to simulate all possible behaviours of R).The main diÆulty is to orretly \oordonate" the ativity of the apitals. In partiular, it isneessary to ensure that two \near" apitals are not ative at the same time to prevent two vertiesto proess the third phase on overlapping balls. 2



I. Litovsky, Y. M�etivier and E. Sopena 95 Proof TehniquesA major interest of the graph rewriting formalism for expressing distributed algorithms is that we anuse proof tehniques issued from lassial Rewriting Theory to prove properties of these algorithms.The properties whih are of speial interest are for instane: orretness, termination, terminationdetetion or time omplexity. The aim of this setion is to illustrate, on the previously introduedexamples, how these tehniques an be used to prove suh properties.Roughly speaking, the orrespondane between properties of distributed algorithms and graphrelabelling systems will be the following. Let A be a distributed algorithm enoded by some graphrelabelling system R (indi�erently, R may be a GRS, a PGRS or a FCGRS). Then :� The algorithm A is \orret" if for every labelled graph (G;�) every labelled graph inIrredR(G;�) orresponds to a valid solution 1.� The algorithm A always terminates if and only if there exists no in�nite R�relabelling hain or,equivalently, if the system R is noetherian.� A measure of the time omplexity of the algorithm A an be obtained by onsidering the maxi-mum length of a R�relabelling hain.� The algorithm A has the property of \loal detetion of the global termination" if there existsa property P and a positive integer k suh that every labelled graph ontaining a vertex v suhthat the ball B(v; k) satis�es P is R�irreduible (in that ase, the vertex v is able to detet thetermination of A).The tehnique we use to prove the orretness of a given algorithm or, equivalently, of a givenrelabelling system, is the following: we exhibit a set of invariant properties, whih are satis�ed byevery initially labelled graph and that are preserved by every relabelling step. Then, onsidering anR�irreduible graph (G;�) (and in partiular the fat that no rule an be applied to (G;�)), this setof invariant properties allows to onlude.In order to prove that a given relabelling system is noetherian we will use the following usefulnotion:De�nition 16 Let R be a binary relation on a set X, R0 be a binary relation on the set X 0 and ' beany mapping from X to X 0. The relation R0 is ompatible with the relation R via ' if:8 a; b 2 X; a R b =) '(a) R0 '(b):The interest of this notion is given by the following obvious lemma:Lemma 17 Let R be a binary relation on a set X, R0 be a binary relation on the set X 0 and ' beany mapping from X to X 0 suh that the relation R0 is ompatible with the relation R via '. If therelation R0 is noetherian, then so is the relation R.The relation R0 will generally be hosen as an ayli and transitive relation and we will say inthat ase that R0 is a ompatible order. The set X 0 will generally be the set Np , p > 0, of p-tuples ofpositives integers. In this latter ase, we will use the following lassial lexiographi order:De�nition 18 Let p be a non-negative integer. The ordering relation >p on Np is de�ned as follows:(x1; x2; : : : ; xp) >p (y1; y2; : : : ; yp) if and only if there exists some i, 1 � i � p, suh that x1 = y1,: : :, xi�1 = yi�1 and xi > yi.Observe that the ordering relation >p is noetherian for every p. In the following we will often dropthe subsript and <p will be simply denoted <.We now turn to the study of the previously introdued sample relabelling systems.1We will say that an algorithm A, undeterministially solves a given problem if for every labelled graph (G; �), thereexists a labelled graph (G0; �0) in IrredR(G; �) whih orresponds to a valid solution.



10 Graph relabelling systems and distributed algorithms5.1 The graph relabelling system R1Reall �rst that the GRS R1 is de�ned by R1 = (L1; I1; P1) with L1 = fN;A; 0; 1g, I1 = fN;A; 0g,and P1 = fRg where R is the following relabelling rule:
0 1

R :
A N A AThen we have:Theorem 19 1. The system R1 is noetherian.2. Let (G;�) be an I1�labelled graph suh that exatly one vertex is A�labelled, and (G;�0) beany L1�labelled graph in IrredR1(G;�). Then the set of 1-labelled edges in (G;�0) indues aspanning tree of G. Moreover, the length of a maximal R1�relabelling hain starting from (G;�)is at most jV (G)j � 1.Proof. Let ' : GL1 ! N be the mapping whih assoiates with eah L1�labelled graph the numberof its N�labelled verties. The usual ordering relation > on N is learly ompatible with R1 sineevery appliation of the rule R stritly dereases the number of N�labelled verties. Thus the systemR1 is noetherian.To prove the seond part of the theorem, we use the following invariant properties:P1 Every edge inident with an N�labelled vertex is 0-labelled.P2 Every A�labelled vertex is inident with at least one 1-labelled edge exept when there is no1-labelled edge at all.P3 The subgraph indued by the set of 1-labelled edges is a tree.These three properties are learly satis�ed for the initial graph (G;�) and preserved by the appliationof the rule R.Let now (G;�0) be any labelled graph in IrredR1(G;�). Sine (G;�0) is irreduible, it ontainsno N�labelled vertex. Thus, thanks to properties P2 and P3, the subgraph of (G;�0) indued by the1-labelled edges is a spanning tree of G.Moreover, the maximal length of an R1�relabelling hain starting from (G;�) is equal to thenumber of N�labelled verties in (G;�), that is jV (G)j � 1, sine eah appliation of the rule Rreplaes an N�label by an A�label. This onludes the proof. 2Moreover, the maximal length of an R1�relabelling hain starting from (G;�) is equal to thenumber of N�labelled verties in (G;�), that is jV (G)j � 1, sine eah appliation of the rule Rreplaes an N�label by an A�label.The reader should observe that if the initial graph has several A�labelled verties, say p, then thesystem R1 onstruts a spanning forest of G ontaining exatly p trees.5.2 The graph relabelling system with priorities R2Reall that the PGRS R2 is de�ned by R2 = (L2; I2; P2; >2) with L2 = fN;A;M; F; 0; 1g, I2 =fN;A; 0g, P2 = fR1; R2g where R1 and R2 are the following relabelling rules:
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I. Litovsky, Y. M�etivier and E. Sopena 11with the priority relation: R1 >2 R2.Then we have:Theorem 20 1. The system R2 is noetherian.2. Let (G;�) be an I2�labelled graph suh that exatly one vertex is A�labelled, and (G;�0) beany L2�labelled graph in IrredR2(G;�). Then the set of 1-labelled edges in (G;�0) indues aspanning tree of G. Moreover, the length of a maximal R1�relabelling hain starting from (G;�)is at most 2(jV (G)j � 1).3. For every R2�relabelling hain from (G;�) to some labelled graph (G;�00), the graph (G;�00) isirreduible if and only if it ontains an A�labelled vertex whose all neighbours are F�labelled.Proof. Let ' : GL2 ! N2 be the mapping whih assoiates with eah L2�labelled graph (H; �) theouple (�N ; �M ), where for every label X, �X denotes the ardinal of the set ��1(X). The orderingrelation > on N2 is learly ompatible with R2 sine every appliation of the rules R1 or R2 stritlydereases the ouple (�N ; �M ). Thus the system R2 is noetherian.To prove the seond part of the theorem, we use the following invariant properties:P1 Every edge inident with an N�labelled vertex is 0-labelled.P2 Every A�, M� or F�labelled vertex is inident with at least one 1-labelled edge exept whenthere is no 1-labelled edge at all.P3 The subgraph indued by the set of 1-labelled edges is a tree.P4 There is exatly one A�labelled vertex.P5 The subgraph indued by the A� and M�labelled verties and the 1-labelled edges is a pathsuh that one of its endpoints is A�labelled.P6 Every F�labelled vertex has no N�labelled neighbour.These properties are learly satis�ed for the initial graph (G;�). Let us hek that all of them andpreserved by the appliation of the rules R1 and R2:P1 : Only the rule R1 reates 1-labelled edges and in that ase none of its endpoints is N�labelled.P2 : Every time an A�, M� or F�labelled vertex appears, thanks to the rule R1 or R2, it is learlyinident with a 1-labelled edge.P3 : Only the rule R1 reates a 1�labelled edge. One of the endpoints of this edge was N�labelledand, by P1, had no other 1-labelled inident edge. Thus this new edge annot reate a yle.The other endpoint was A�labelled and, by P2, it was already adjaent to at least one 1-labellededge. Thus the subgraph indued by the set of 1-labelled edges is still onneted.P4 : Obvious, sine no A�labelled vertex is reated.P5 : This is learly preserved by the rule R1 (a vertex is added to the path) and by the rule R2 (avertex is removed from the path) thanks to the indution hypothesis and property P3.P6 : This follows from the priority mehanism: if an A�labelled vertex has an N�labelled neighbourthen the rule R2 annot be applied.



12 Graph relabelling systems and distributed algorithmsLet now (G;�0) be any labelled graph in IrredR2(G;�). Sine (G;�0) is irreduible, it ontains noM�labelled vertex (otherwise, by property P5, the rule R2 would be appliable). Thus it ontains anA�labelled vertex and all other verties may only be F� or N�labelled. By property P6 and by theirreduibility of (G;�0) other verties are neessarily F�labelled. Finally, thanks to properties P2 andP3, the subgraph of (G;�0) indued by the 1-labelled edges is a spanning tree of G.Moreover, it is easy to observe that every 1-labelled edge in an irreduible graph has been relabelledtwie, one time with the rule R1, one time with the rule R2. The maximal length of an R2�relabellinghain is thus twie the number of suh edges, that is exatly 2(jV (G) � 1j).We already observed that all the verties of every irreduible graph are F�labelled exept onevertex whih is A�labelled. To omplete the proof of the third assertion of the theorem, it suÆesto observe that if the A�labelled vertex (this vertex is unique by property P4) has only F�labelledneighbours then no rule is appliable. This onludes the proof. 25.3 The graph relabelling system with forbidden ontexts R3Reall that the FCGRSR3 is de�ned byR3 = (L3; I3; P3) with L3 = fN;A;M; F; 0; 1g, I3 = fN;A; 0g,P3 = fR1; R2; R3g where R1, R2 and R3 are the following relabelling rules with forbidden ontexts:
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, }{The unique vertex of the left-hand side of the rule R3 is assoiated with the top vertex of itsforbidden ontexts.Then we have:Theorem 21 1. The system R3 is noetherian.2. Let (G;�) be an I3�labelled graph suh that exatly one vertex is A�labelled, and (G;�0) beany L3�labelled graph in IrredR3(G;�). Then the set of 1-labelled edges in (G;�0) indues aspanning tree of G. Moreover, the length of a maximal R3�relabelling hain starting from (G;�)is at most 2(jV (G)j � 1).3. For every R3�relabelling hain from (G;�) to some labelled graph (G;�00), the graph (G;�00) isirreduible if and only if it ontains an A�labelled vertex whose all neighbours are F�labelled.Proof. Let ' : GL3 ! N2 be the mapping whih assoiates with eah L3�labelled graph (H; �) theouple (�N ; �A0). The ordering relation > on N2 is learly ompatible with R3 sine every appliationof the rules R1 or R2 stritly dereases the ouple (�N ; �A0). Thus the system R3 is noetherian.To prove the seond part of the theorem, we use the following invariant properties:P1 Every edge inident with an N�labelled vertex is 0-labelled.P2 Every A�, A0� or F�labelled vertex is inident with at least one 1-labelled edge exept whenthere is no 1-labelled edge at all.P3 The subgraph indued by the set of 1-labelled edges is a tree.



I. Litovsky, Y. M�etivier and E. Sopena 13P4 There is exatly one A�labelled vertex.P5 The subgraph indued by the A� and A0�labelled verties and the 1-labelled edges is a tree.P6 Every F�labelled vertex has no N�labelled neighbour.These properties are learly satis�ed for the initial graph (G;�). Let us hek that all of them andpreserved by the appliation of the rules R1, R2 and R3:P1 : Only the rules R1 and R2 reate 1-labelled edges and in that ase none of its endpoints isN�labelled.P2 : Every time an A� or A0�labelled vertex appears, thanks to the rule R1 or R2, it is learlyinident with a 1-labelled edge. Every F�labelled vertex was previously A0�labelled and inthat ase the result follows from the indution hypothesis.P3 : Only the rules R1 and R2 reate a 1�labelled edge. One of the endpoints of this edge wasN�labelled and, by P1, had no other 1-labelled inident edge. Thus this new edge annot reatea yle. The other endpoint was A� or A0�labelled and, by P2, it was already adjaent toat least one 1-labelled edge. Thus the subgraph indued by the set of 1-labelled edges is stillonneted.P4 : Obvious, sine no A�labelled vertex is reated.P5 : This is learly preserved by the rules R1 and R2 (a leaf is added to the tree) and by the rule R3 (aleaf is removed from the tree sine, thanks to the forbidden ontexts mehanism, the A0�labelledvertex has exatly one A� or A0�labelled neighbour) thanks to the indution hypothesis andproperty P3.P6 : This follows from the forbidden ontexts mehanism: if an A0�labelled vertex has an N�labelledneighbour then the rule R2 annot be applied.Let now (G;�0) be any labelled graph in IrredR3(G;�). Sine (G;�0) is irreduible, it ontains noA0�labelled vertex (otherwise, by property P5, the rule R3 would be appliable on some leaf). Thusit ontains an A�labelled vertex and all other verties may only be F� or N�labelled. By propertyP6 and by the irreduibility of (G;�0) other verties are neessarily F�labelled. Finally, thanks toproperties P2 and P3, the subgraph of (G;�0) indued by the 1-labelled edges is a spanning tree of G.Moreover, it is easy to observe that every 1-labelled edge in an irreduible graph has been relabelledone, either with the rule R1 or with the rule R2. Then, every A0�labelled vertex is relabelled onewith the rule R3. The maximal length of an R2�relabelling hain is thus the number of 1-labellededges plus the number of initially N�labelled verties, that is exatly 2(jV (G)� 1j).We already observed that all the verties of every irreduible graph are F�labelled exept onevertex whih is A�labelled. To omplete the proof of the third assertion of the theorem, it suÆesto observe that if the A�labelled vertex (this vertex is unique by property P4) has only F�labelledneighbours then no rule is appliable. This onludes the proof. 26 Loal Computations6.1 De�nitionsGraph relabelling systems, as introdued in the previous setion, are in fat an illustration of a moregeneral mehanism alled loal omputations. Loal omputations as onsidered here an be desribedin the following general framework. Reall that GL stands for the lass of L�labelled graphs.De�nition 22 A graph rewriting relation is a binary relation R � GL � GL losed under iso-morphism. The transitive losure of R is denoted R�. A R�rewriting hain is a sequene(G1; �1); (G2; �2); : : : ; (Gn; �n) suh that for every i, 1 � i < n, (Gi; �i) R (Gi+1; �i+1).



14 Graph relabelling systems and distributed algorithmsBy \losed under isomorphism" we mean that if (G1; �1) ' (G;�) and (G;�) R (G0; �0), then thereexists a labelled graph (G01; �01) suh that (G1; �1) R (G01; �01) and (G01; �01) ' (G0; �0).De�nition 23 Let R � GL � GL be a graph rewriting relation and k be a non-negative integer.1. R is a relabelling relation if whenever two labelled graphs are in relation then their underlyinggraphs are equal (not only isomorphi):(G;�) R (H;�0) =) G = H:When R is a relabelling relation we will speak about R�relabelling hains instead of R�rewritinghains.2. A relabelling relation R is k�loal if whenever (G;�) R (G;�0), the labellings � and �0 onlydi�er on some ball of radius k:9 v 2 V (G) suh that 8 x =2 V (BG(v; k)) [E(BG(v; k)); �(x) = �0(x):The relation R is loal if it is k�loal for some k > 0.3. An R�normal form of (G;�) 2 GL is a graph (G;�0) suh that (G;�) R� (G;�0), and(G;�0) R (G;�00) holds for no (G;�00) in GL. We say that R is noetherian if for every graph(G;�) in GL there exists no in�nite R�relabelling hain starting from (G;�). Thus, if a rela-belling relation R is noetherian, then every labelled graph has an R�normal form.We now de�ne the notion of k�loally generated relabelling relation. Roughly speaking, a rela-belling relation R is k�loally generated if the knowledge of its restrition on entered balls of radiusk suÆes to ompletely determine R. In other words, the relabelling of a ball of radius k does notdepend on the rest of the graph:De�nition 24 Let R be a relabelling relation and k be a non-negative integer. The relation R isk�loally generated if for every labelled graphs (G;�), (G;�0), (H; �), (H; �0) and every verties v 2V (G), w 2 V (H) suh that the balls BG(v; k) and BH(w; k) are isomorphi via ':V (BG(v; k)) �!V (BH(w; k)) and '(v) = w, the following three onditions:1. 8 x 2 V (BG(v; k)) [E(BG(v; k)); �(x) = �('(x)) and �0(x) = �0('(x));2. 8 x =2 V (BG(v; k)) [E(BG(v; k)); �(x) = �0(x),3. 8 x =2 V (BH(w; k)) [E(BH(w; k)); �(x) = �0(x),imply that (G;�) R (G;�0) if and only if (H; �) R (H; �0).The relation R is loally generated if it is k�loally generated for some k > 0.6.2 Distributed Computations of Loal ComputationsThe notion of relabelling sequene de�ned above obviously orresponds to a notion of sequentialomputation. Let us also note that a k�loally generated relabelling relation allows parallel rewritings,sine non-overlapping k�balls may be relabelled independently. Thus we an de�ne a distributed wayof omputing by saying that two onseutive relabelling steps onerning non-overlapping k�ballsmay be applied in any order. We say that suh relabelling steps ommute and they may be appliedonurrently. More generally, every two relabelling sequenes suh that the latter one may be obtainedfrom the former one by a suession of suh ommutations lead to the same resulting labelled graph.Hene, our notion of relabelling sequene may be regarded as a serialization [9℄ of some distributedomputation. This model is learly asynhronous: several relabelling steps may be done at the sametime but we do not require that all of them have to be performed. In the sequel we will essentially dealwith sequential relabelling sequenes but the reader should keep in mind that suh sequenes may bedone in a distributed way.



I. Litovsky, Y. M�etivier and E. Sopena 157 Coverings and k�CoveringsThe notion of overing is well-known in algebrai topology [10℄ and has also been studied in GraphTheory [11, 12℄ where it is in partiular related to the notion of uniform emulation [13, 14℄. Conerningthe theory of distributed omputations, overings of graphs have been used in partiular for derivingimpossibility results [2, 15℄.In the �rst subsetion we introdue this notion of overing and give some basi properties. Wethen present some standard onstrution, the Kroneker produt, whih allows to build overings ofgraphs. In order to be used within our framework this notion needs to be partiularized to that ofk-overings. This will be done in the third subsetion and we will �nally show how k�overings arerelated to loal omputations.7.1 CoveringsDe�nition 25 A graph G is a overing of a graph G0 if there exists a surjetive homomorphism from G onto G0 suh that for every vertex v of V (G) the restrition of  to NG(v) is a bijetion ontoNG0((v)). Suh a overing is strit if G and G0 are not isomorphi.From this de�nition, we easily get the following:Observation 26 If  is a surjetive homomorphism of G to G0 and for every vertex v in V (G) wehave dG(v) = dG0((v)) then G is a overing of G0 via .Example 27 Let Rn, n > 2, denote the ring on n verties de�ned by V (Rn) = [0; n�1℄ and E(Rn) =ffx; yg : y = x + 1 (mod n)g. Let now m � n and m;n : [0;m℄ �! [0; n℄ be the mapping de�ned bym;n(i) = i (mod n), for every i 2 [0;m℄. It is then easy to hek that for every n > 2, the ring R2nis a overing of the ring Rn via the mapping 2n;n.The notion of overing is extended in a natural way to labelled graphs. A labelled graph (G;�) isa overing of (G0; �0) via  if G is a overing of G0 via  and  preserves the vertex and edge labels.From the de�nition, we may observe that if a vertex v in V (G) has two distint neighbours v1 andv2 then these two neighbours must have distint images in G0 by the mapping . Thus we have:Proposition 28 Let G be a overing of G0 via  and let v1; v2 be two distint verties of V (G). If(v1) = (v2) then NG(v1) \NG(v2) = ; and thus d(v1; v2) > 2.Moreover, we have:Proposition 29 Let G0 be a onneted graph and let G be a overing of G0 via . Then there existsan integer q suh that 8 v 2 V (G0); Card(�1(v)) = q:Proof. Let v 2 V (G0), v0 2 NG0(v) and q = ard(�1(v)). By Proposition 28 we get that the inverseimage of NG0(v) is a family of q pairwise disjoint sets in G suh that there is a bijetion between eahof these sets and NG0(v). Thus q = ard(�1(v)) = ard(�1(v0)). Now let w 2 V (G0) be any vertexof G0. Sine G0 is onneted there exists a simple path v = v1,...,vi = w from v to w in G0. From theprevious onsiderations it follows that for every j, 1 � j < i, ard(�1(vj)) = ard(�1(vj+1)), whihyields the desired result. 2The integer q is alled the number of sheets of the overing G. In this ase we say that G is aq�sheeted overing of G0. The reader should observe that if q = 1 then G and G0 are isomorphi.The following proposition states that the struture of trees is preserved by the mapping �1:Proposition 30 Let G be a q�sheeted overing of G0 via  and T be a subgraph of G0. If T is a treethen �1(T ) is a set of q disjoint trees, eah being isomorphi to T .



16 Graph relabelling systems and distributed algorithmsThe proof of this result an be obtained using a simple indutive argument on the size of T . Ifwe onsider now a spanning tree T of G0 then �1(T ) is a spanning forest of G, whose all onnetedomponents are trees isomorphi to T . The inverse image of an edge fx0; y0g of G0 whih does notbelong to T is a set of distint edges of the form fxi; yig suh that (xi) = x and (yi) = y. Hene,all the xi's (resp. all the yi's) belong to distint omponents of the spanning forest of G. In [16℄,Reidemeister proved that all the overings of G0 an be obtained in this way:Theorem 31 (Reidemeister, 1932) Let G0 be a graph and T a spanning tree of G0. A graph G is aovering of G0 if and only if there exist a non-negative integer q and a set � = f�e; e 2 E(G0)nE(T )gof permutations on [1; q℄ suh that G is isomorphi to the graph G0T;� de�ned by:V (G0T;�) = f (x; i) : x 2 V (G0); i 2 [1; q℄ g;E(G0T;�) = f f(x; i); (y; i)g : fx; yg 2 E(T ); i 2 [1; q℄ g [f f(x; i); (y; �fx;yg(i))g : fx; yg 2 E(G0) n E(T ); i 2 [1; q℄ g:Proof. Let  : V (G0T;�) �! V (G) be the mapping de�ned by (x; i) = x for every (x; i) 2 V (G0T;�).It is not diÆult to hek that G0T;� is a overing of G0 via the mapping .Conversely, let G be a q�sheeted overing of G0 via some mapping . We will �rst onstrut therequired set of permutations � and then show that there exists an isomorphism ' from G to G0T;�.By Proposition 30 we know that �1(T ) is a disjoint union of q trees, denoted by T1; T2; : : : ; Tq, whihovers the graph G. Let fx; yg be any edge of G0 not belonging to T . The inverse image of fx; yg isa disjoint set of q edges, denoted by fx1; y1g; : : : ; fxq; yqg. Sine we have (xi) = x and (yi) = y forevery i 2 [1; q℄, no two distint xi's (resp. yi's) an belong to the same tree Tj . For every vertex vin V (G), let us denote by t(v) the index suh that v belongs to Tt(v). The permutation �fx;yg is thende�ned by �fx;yg(t(xi)) = t(yi), for every i 2 [1; q℄. Consider now the orresponding graph G0T;� andlet ' : V (G) �! V (G0T;�) be the mapping de�ned by '(v) = ((v); t(v)) for every v 2 V (G). It isthen not diÆult to hek that ' is an isomorphism from G to G0T;�, whih onludes the proof. 2Leighton onsidered in [17℄ the problem of deiding whether two graphs admit a ommon overingor not. The degree partition of a graph G is the partition of the verties of G into the minimal numberof bloks B0; B1; � � � ; Bt�1 for whih there are onstants ri;j, 0 � i; j < t, suh that every vertex v inBi is inident to ri;j edges linking v to verties in Bj. The degree re�nement of G is then the t � tmatrix R = (ri;j). Two degree re�nements R1 and R2 are onsidered to be the same if they have thesame size and if there is a permutation matrix P suh that R1 = P TR2P . Then we have:Theorem 32 (Leighton, 1982) Given any two �nite onneted graphs G and H, G and H share aommon �nite overing if and only if they have the same degree re�nement.This result will be used in subsetion 9.2 for deriving some impossibility results.7.2 The Kroneker ProdutAmong methods for produing overings of a given graph, the Kroneker produt by K2 (the ompletegraph of size 2) is a standard onstrution. The Kroneker produt was �rstly de�ned on matries.We deal here with its natural extension to graphs as it was onsidered in [18℄.De�nition 33 Let G and H be two onneted graphs. The Kroneker produt of G by H, denotedG ^H, is the graph de�ned by:V (G ^H) = V (G)� V (H)E(G ^H) = f f(v; w); (v0 ; w0)g : fv; v0g 2 E(G); fw;w0g 2 E(H) g
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The graph G The graph GThe graphFigure 4: The kroneker produt by K2The Kroneker produt of graphs is a ommutative and assoiative operation through isomor-phisms. It has been used in [19℄ as a simple way of getting overings of graphs sine we have:Proposition 34 For every onneted graph G, G ^K2 is a overing of G.Proof. Let  be the mapping from V (G ^ K2) to V (G) de�ned by (v; i) = v for every (v; i) 2V (G^K2). From the de�nition of the Kroneker produt,  is a surjetive homomorphism of G^K2onto G. Furthermore, the degree of every vertex (v; i) in G^K2 is equal to the degree of (v; i) in G.Therefore, by Observation 26, G ^K2 is a overing of G via . 2Example 35 Figure 4 shows a sample graph G and the orresponding graph G ^K2.7.3 k�CoveringsIn this setion, we partiularize the notion of overings to that of k�overings by requiring isomor-phisms between balls of radius k:De�nition 36 Let G and G0 be two graphs,  be a surjetive homomorphism of G onto G0 and k bea non-negative integer. The graph G is a k�overing of G0 via  if for every vertex v 2 V (G), therestrition of  to BG(v; k) is an isomorphism between BG(v; k) and BG0((v); k). Suh a k�overingis strit if G and G0 are not isomorphi.As before, this notion an be extended in a natural way to the ase of labelled graphs. Thereader should observe that if G is a k�overing of G0 then G is also a k0�overing of G0 for every k0,0 < k0 < k.Example 37 Let Rn and m;n be the ring graphs and the mappings de�ned as in Example 27. It isnot diÆult to hek that for every k > 0 and every n, n > min(3; 2k), the graph Rkn is a k�overingof Rn via the mapping kn;n. However, this is no longer true if n � 2k sine in that ase, for everyvertex v 2 V (Rkn), the balls BRkn(v; k) and BRn(kn(v); k) are not isomorphi.Proposition 28 an naturally be extended to the ase of k�overings and we get:Proposition 38 Let G be a k�overing of G0 via  and let v1; v2 be two distint verties of V (G). If(v1) = (v2) then BG(v1; k) \BG(v2; k) = ; and thus d(v1; v2) > 2k.Remark 39 From the de�nitions, every k�overing of a graph G0 is also a overing of G0. However,Example 37 shows for instane that C6 is a overing of C3 by 6 but not a 1�overing of C3.



18 Graph relabelling systems and distributed algorithmsThe following proposition states whih additional requirements a overing muh satisfy to be ak�overing:Proposition 40 Let G and G0 be two graphs,  be a surjetive homomorphism of G onto G0 and kbe a non-negative integer. Then G is a k�overing of G0 via  if and only if G is a overing of G0 via and for every yle C = (v1; e1; v2; e2; : : : ; ei; vi+1 = v1) of length i � 2k+1 in G0 the inverse image�1(C) is a disjoint union of yles isomorphi to C.Proof. We already observed that every k�overing is a overing. Moreover, if G is a k�overing ofG0 then every yle C of length at most 2k + 1 in G0 is ontained in some entered ball of radius k.The proof of the \if" part then follows from Proposition 38.Conversely, suppose G is a overing of G0 via  verifying the above property. Let v0 2 V (G0),v 2 �1(v0) and H 0 be a breadth-�rst spanning tree of BG0(v0; k) rooted at v0 (the tree H 0 has depthat most k). By Proposition 30 the inverse image �1(H 0) is a disjoint union of graphs isomorphito H 0. Let H ' H 0 be the onneted omponent of �1(H 0) ontaining v (thus H is a tree rootedat v). Every edge e0 = fx0; y0g suh that x0; y0 2 BG0(v0; k) and e0 =2 E(H 0) belongs to some yleC 0 ontained in BG0(v0; k) whose all edges exept e0 belong to the spanning tree H 0. Moreover, sinejC 0j � 2k+1, �1(C 0) is a disjoint union of opies of C 0. We thus get that those verties x; y 2 V (H)with (x) = x0 and (y) = y0 are suh that the edge fx; yg belongs to E(G). Therefore, the subgraphindued by V (H), that is BG(v; k), is isomorphi to BG0(v0; k) and G is a k�overing of G0 via . 2The question whether a graph has a non-trivial �nite or in�nite onneted k�overing is undeid-able [20℄. However, we an answer positively to this question in the following simple ase [21℄:Theorem 41 Let k be a non-negative integer, G0 be a graph and e0 an edge in E(G0) suh that thegraph G0 � e0 is still onneted and e0 does not belong to any yle of length at most 2k + 1. Then forevery q � 1 there exists a onneted q�sheeted k�overing Gq of G0.Proof. Let e0 = fx; yg and Ge be the graph de�ned as the disjoint union of q opies of G0 � e0.Without loss of generality, we may identify V (Ge) with the set V (G0) � f1; : : : ; qg. Let now Gq bethe graph de�ned by V (Gq) = V (Ge) and E(Gq) = E(Ge) [ ff(x; i); (y; i + 1)g; 0 � i < qg (withaddition taken modulo q). The graph Gq is learly onneted and, by Proposition 40, is a q�sheetedk�overing of G0 via the mapping  given by (x; i) = x for every (x; i) 2 V (Gq). 27.4 Loal Computations and k�CoveringsThe next proposition establishes the onnetion between k�overings and k�loally generated rela-belling relations: if (G;�) is a k�overing of (G0; �0) then for every k�loally relabelling relation R,a R�relabelling hain starting from (G0; �0) indues a R�relabelling hain starting from (G;�) whih\preserves" the k�overing relation, as indiated in the following diagram:(G;�) �! (G;�)R�k-ov # # k-ov(G0; �0) �! (G0; �0)R�Intuitively speaking, it means that every omputation on the graph G0 an be \dupliated" on G,by applying the same rules on all the inverse images of the orresponding ourrenes. More formally,we have:



I. Litovsky, Y. M�etivier and E. Sopena 19Proposition 42 Let R be a k�loally generated relabelling relation and let (G;�) be a k�overing of(G0; �0) via some mapping . Moreover, let (G0; �0) be a labelled graph suh that (G0; �0) R� (G0; �0).Then there exists a labelling � of G suh that (G;�) R� (G;�) and (G;�) is a k�overing of (G0; �0).Proof. It suÆes to prove the result for a one-step relabelling hain. Thus suppose that(G0; �0) R (G0; �0) and that the orresponding relabelling step hanges labels only in some ballBG0(v; k), for some vertex v 2 V (G0). We may then apply this relabelling step to eah of the (disjoint)labelled balls of �1(BG0(v; k)), sine they are all isomorphi to BG0(v; k). We get in this way therequired labelling �. 28 The Eletion ProblemThe aim of an eletion in a graph is to hoose exatly one vertex among the set of all verties. Thisvertex beomes eleted and is alled the leader of the graph.In our framework, this problem an be formalized in the following way. We say that a relabellingrelation R solves the eletion problem for a lass C of unlabelled graphs if it is noetherian and if thefollowing ondition holds : there exist two labels N and T suh that for every graph G in C whoseverties are initially all N�labelled (by some labelling funtion �), if (G;�0) 2 IrredR(G;�) thenthere is exatly one vertex v 2 V (G) suh that �0(v) = T (the vertex v is then the eleted vertex).We shall �rst give some sample eletion algorithms and then disuss in the following subsetionsthe eletion problem when verties of the graph have, or have not, some knowledge on the graph itself,like its size or its topology.8.1 ExamplesWe give in this subsetion some examples of graph relabelling systems enoding an eletion algorithm.We �rst onsider the ase of trees. The following FCGRS (Graph Rewriting System with ForbiddenContext) allows to elet a vertex in a tree (reall that a relabelling rule with forbidden ontexts anbe applied to some ourrene if and only if this ourrene is not inluded in an ourrene of someof its forbidden ontexts).Example 43 Let R4 = (L4;I4; P4) be the FCGRS de�ned by L4 = fN;F;E, 0g, I4 = fN; 0g andP4 = fR1; R2g where R1, R2 are the following relabelling rules with forbidden ontexts:
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, { }Let us all a pendant vertex any N�labelled vertex having exatly one N�labelled neighbour. Therule R1 then onsists in \utting" a pendant vertex in the tree (sine the forbidden ontext ensuresthat this vertex has no other N�labelled neighbour) by giving it a F�label. Thus, if (G;�) is a labelledtree whose all verties are N�labelled and all edges are 0�labelled then this utting proedure leads toa unique N�labelled vertex whih beomes eleted thanks to the rule R2. It is not diÆult to observethat every vertex in the tree may be eleted by this algorithm.
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AABBAAFigure 5: Eletion on a prime oriented ringThe following algorithm is due to Mazurkiewiz [22℄ and works on oriented rings having a primenumber of verties. Let n be the number of verties of the ring; vertex labels are all words over thealphabet fA;Bg of length at most n. Initially all labels are set to the empty word ". This algorithmmay be enoded by the three rules given below.Example 44 The �rst rule is the following:
R :1

Aε ε εIn the next rule we assume that the word m is not the empty word:
R :

ε
2

m m BFor the last rule we assume that 0 < jxj < n and that jxj � jmj. We denote by mjxj the jxjth letterof m.
R :

m m
3

x xm |x|Figure 5 shows a sample omputation using these rules (the eleted vertex is marked).Mazurkiewiz has shown that on rings of size n; with n prime, a normal form is always obtained.In this ase, verties are labelled by words of length n whih are all di�erent and onjugated (reallthat two words f and g are onjugated if f = uv and g = vu). The vertex whose label is minimal withrespet to the lexiographi ordering is then onsidered as eleted. Of ourse, a vertex labelled by aword of length n knows whether it is eleted or not by determining if its labels is minimal within theset of its onjugates. Hene the eleted vertex knows the result. Nevertheless, no vertex an loallydetet that the algorithm has terminated. We an note that this rewriting system needs to know thesize of the ring. If the size of the ring is not known then there is no eletion algorithm in the lass ofprime rings [21℄.8.2 Eletion without any KnowledgeIn [2℄, Angluin proves the following:Theorem 45 (Angluin, 1980) There exists no eletion algorithm for a lass of graphs ontainingboth a graph H and a strit overing of H.



I. Litovsky, Y. M�etivier and E. Sopena 21The proof goes as follows. Let G be a strit overing of H via the morphism . If a step isperformed on an edge e of H then the same step an be performed on eah edge of �1(e): Thus, if Hand G have the same uniform initial labelling, every label whih appears one in H appears at leasttwie in G. Hene, no algorithm an elet exatly one vertex both in G and H. This argument anbe used in the same way for loal omputations.We will prove in the next subsetion that the eletion problem annot be solved for suh a lass ofgraphs by loal omputations even if the verties have some knowledge on the size or on the topologyof the graph.8.3 Eletion Knowing the Size or the TopologyIn [22℄, Mazurkiewiz gave an eletion algorithm for the lass of rings having a prime size; the ringis oriented, anonymous, and its size is known. In every basi omputation step, two adjaent vertiesmay exhange their labels and then ompute new ones. To prove that there exists no eletion algorithmwhen the size is omposite, the author proves that it is always possible to go from some symmetrion�guration to another symmetri on�guration. From that, he dedues that the algorithm maynever terminate. More preisely, let (G;�) be a labelled ring and let n = mk be the size of G. Theverties of G are denoted by [0; n � 1℄. The labelling � of G is m�symmetri for some m > 0 if�(i) = �(i+m) for every i 2 [0; n� 1℄ (addition is taken modulo n). In that ase, any transformationonerning verties i and i+1 may be applied to verties i+jm and i+jm+1, for every j. Therefore,every m�symmetri labelling may be transformed in a new m�symmetri labelling. Sine the initiallabelling is uniform, and thus m�symmetri for every m, the algorithm will not terminate if we keepm�symmetri on�gurations.We will generalize this result to the ase of general relabelling rules on graphs suh that everyvertex has an initial knowledge like the size or the topology. Let G be a graph; a vertex v of G knowsthe topology of G if v has an intial label whih enodes a graph G0 isomorphi to G but does not allowv to know to whih vertex in G0 it orresponds. A graph G is -minimal if there is no graph H suhthat G is a strit overing of H. Let G be a graph whih is not -minimal, H be a graph suh that Gis a strit overing of H via the morphism . A subgraph K of G is free modulo , or simply �free,if �1((K)) is a olletion of disjoint subgraphs of G, all of them being isomorphi to K. A labelling� is then �oherent if (x) = (y) =) �(x) = �(y). By saying that an algorithm operates on thelabels of a subgraph we mean that the algorithm only needs the knowledge of this subgraph in orderto modify its labels and that it modi�es nothing else in the graph.Then we have [23℄:Theorem 46 Let G be a graph whih is not -minimal. Then there exists no algorithm for the eletionproblem in G verifying the two following onditions:1. eah rewriting step operates on labels of a �free subgraph,2. the topology of G is known by eah vertex of G.This theorem uses the following lemma [23℄:Lemma 47 Let G and H be two graphs suh that G is a strit overing of H via some mapping .Let � be a �oherent labelling of G. If there exists a rewriting step of some algorithm that modi�esthe labels of some �free subgraph K, then there exists a �oherent labelling �0 of G, �0 6= �, thatan be obtained after q steps of the algorithm.In [24℄, the lass of non-ambiguous graphs is introdued and an eletion algorithm is given forthis lass. We will prove that a graph is non-ambiguous if and only if it is -minimal. From this,several impossibility results an be obtained onerning the eletion problem for lasses of ambiguousgraphs (e.g. trees or omplete graphs). We also dedue that there exists no eletion algorithm for anambiguous graph even knowing its topology.
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The graph HFigure 6: The graph G is ambiguous, it is a 2-overing of the graph HLet (G;�) be a labelled graph; the labelling funtion � is bijetive if �(v) = �(v0) =) v = v0 forevery v; v0 2 V (G).De�nition 48 Let (G;�) be a labelled graph. The labelling funtion � is loally bijetive if it satis�esthe two onditions:1. 8 v 2 V (G); 8 v0; v00 2 NG(v), �(v0) = �(v00) =) v0 = v00,2. 8 v0; v00 2 V (G); �(v0) = �(v00) =) �(NG(v0)) = �(NG(v00)).De�nition 49 A labelling funtion is ambiguous if it is loally bijetive and not bijetive. A graph Gis ambiguous if there exists an ambiguous labelling of G.In other words, a graph G is ambiguous if there exists a loally bijetive labelling � of G suh thatj�(V )j < jV j.The next lemma gives a link between ambiguity and overings [23℄:Lemma 50 A graph G is ambiguous if and only if it is not -minimal.Proof. Let G be an ambiguous graph and � be an ambiguous labelling of G. We de�ne the graph Hby V (H) = �(V (G))E(H) = f f�(v); �(v0)g : fv; v0g 2 E(G) gBeause of ondition 1, there is no self-loop in H. Let  be the anonial mapping given by(v) = �(v) and (fv; v0g) = f�(v); �(v0)g. Now, for every v 2 V (G), onditions 1 and 2 imply that is a bijetion from NG(v) to NG((v)). Hene BG(v) and BG((v)) are isomorphi.Conversely, if G is not -minimal then there exists some graph H properly overed by G via .The labelling � de�ned by �(v) = (v) for every v 2 V (G) learly satis�es onditions 1 and 2 and isnot bijetive sine jV (H)j < jV (G)j. Hene the graph G is ambiguous. 2Using this lemma and Theorem 46, we get that there exists no eletion algorithm for an ambiguousgraph even knowing its topology.Figure 6 shows an ambiguous graph G whih is a 2-overing of the graph H.9 The Reognition ProblemHere we study how loal relabelling relations an be used to reognize graph lasses. Let L be any�xed set of labels. All the labelled graphs onsidered in this setion are supposed to be L�labelled.Reall that the set of all L�labelled graphs is denoted by GL.



I. Litovsky, Y. M�etivier and E. Sopena 23De�nition 51 A graph reognizer is a pair (R;K), where R is a graph relabelling relation and K is alass of labelled graphs whose elements are alled terminal graphs. The set of labelled graphs reognizedby (R;K), denoted by L(R;K) is de�ned byL(R;K) = f G 2 GL : IrredR(G) \ K 6= ; g:De�nition 52 A graph reognizer (R;K) is deterministi if R is noetherian and for every graph Gwe have either IrredR(G) � K or IrredR(G) \K = ;.Note that if (R;K) is deterministi then GL n L(R;K) = L(R;GL n K).These notions apply to unlabelled graphs as follows. A reognizer for unlabelled graphs is de�nedby a triple (R;K; l0); where (R;K) is a reognizer for labelled graphs and l0 2 L is an initial label. Anunlabelled graph G is reognized by (R;K; l0); if the labelled graph (G;�l0) is reognized by (R;K)where �l0 denote the labelling assigning the label l0 to all verties and edges. We denote by L(R;K; l0)the lass of (unlabelled) graphs reognized in this way.To be of pratial use, the set of terminal graphs must be spei�ed in a \simple" way. In thesequel we assume that K is spei�ed by some speial onditions, alled �nal onditions, de�ned onthe labelling funtions. These onditions are de�ned by means of propositional formulas de�nedindutively in the following way:1. for every label l 2 L, l is a formula,2. if ' and  are formulas then :'; ' _  and ' ^  are formulas.Now, for l 2 L; a labelled graph satis�es the formula l if ��1(l) 6= ;; and by indution it satis�es :' ifit does not satisfy ', it satis�es '_ if it satis�es ' or  , and it satis�es '^ if it satis�es ' and  .Thus, suh a �nal ondition allows only to verify the presene or the absene of some labels inthe labelling of a graph. For instane, the �nal ondition N _ :Y is satis�ed by (G;�) if and only if��1(N) 6= ; _ ��1(Y ) = ;, that is if (G;�) ontains no Y�labelled vertex or at least one N�labelledvertex. Similarly, the fat that the labelling � of G ontains exatly all the labels of some subset U ofL an be spei�ed by the �nal ondition Vl2U l ^Vl02LnU :l0.The reader should observe that suh �nal onditions does not allow to ount verties or edges withgiven labels, nor to verify their relative positions. For instane, it is not possible to speify that agraph ontains exatly one T�labelled vertex or two adjaent T�labelled verties.De�nition 53 Let ' be a �nal ondition; the set of terminal graphs K(') is de�ned byK(') = f(G;�) : (G;�) satis�es 'g:From now on we assume that every set of terminal graphs is of the form K(') for some propositionalformula '.The reader should notie that our notion of reognizability does not oinide with the algebrainotion of reognizability introdued by Mezei and Wright.9.1 ExamplesWe give in this subsetion examples of graph relabelling systems whih allow us to reognize the treesand the omplete graphs.Example 54 Let R5 = (L5;I5; P5; >5) be the PGRS de�ned by L5 = f"; I; F; 0g, I5 = f"; 0g andP5 = fR1; R2; R3; R4; R5g with the following rules:
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and the priority relation: fR1; R2; R3g >5 fR4; R5g.Let now ' be the �nal ondition ' = :I. It an be shown that if (G;�) is a labelled graph whose allverties are "�labelled and all edges are 0�labelled then every labelled graph (G;�0) in IrredR5(G;�)has no I�labelled vertex, and thus satis�es ', if and only if G has no yle. Hene, the pair (R5;K('))is a deterministi reognizer for the lass of trees.Example 55 Let R6 = (L6;I6; P6) be the FCGRS de�ned by L6 = fN;Y; 0g, I6 = fN; 0g andP6 = fR1; R2g with the following relabelling rules with forbidden ontexts:
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, { }It an be shown that if (G;�) is a labelled graph whose all verties are Y�labelled and all edges are0�labelled then (G;�) is irreduible if and only if G is a omplete graph. If G is not omplete thenthe rule R1 an be applied and, thanks to the rule R2, all the verties of G will beome N�labelled.Thus, if ' denotes the �nal ondition ' = :N , (R6;K(') is a deterministi reognizer for the lassof omplete graphs.9.2 Reognition without any KnowledgeWe say that a lass of graphs is losed under k�overings (resp. onneted k�overings), if it ontainsall k�overings (resp. onneted k�overings) of its elements. We �rst prove that a lass of graphsreognized by a k�loally generated relabelling relation is losed under k�overings.Proposition 56 If a graph G is a k�overing of a graph H via some mapping  then every reognizer(R;K) suh that R is a k�loally generated relabelling relation whih reognizes H reognizes G aswell. Moreover, if (R;K) is deterministi then the inverse also holds, that is G is reognized if andonly if H is reognized.Proof. Let C be a relabelling hain aeptingH, that is a relabelling hain leading to some (H;�) 2 K.Assume that G is a q�sheeted overing of H. For eah relabelling step of C on the graph H thereexists a ball BH(v; k) suh that only labels of BH(v; k) are modi�ed during this step. This relabellingstep may thus be applied to the q disjoint balls of �1(BH(v; k)). In this way, via �1, we onstrutfrom C a relabelling hain aepting the graph G. Note that this is due to the fat that a �nalondition may only hek the presene or the absene of labels and that a label appears in H if andonly if it appears in G during the simulation of the omputation on H.



I. Litovsky, Y. M�etivier and E. Sopena 25Suppose now that (R;K) is deterministi. Then H =2 L(R;K) if there exists a relabelling hainrejeting H. As previously, this hain an be simulated on G, giving a relabelling hain rejeting G.But sine (R;K) is deterministi, if G is rejeted by one relabelling hain then it is rejeted by allrelabelling hains and thus G =2 L(R;K). 2We then get:Corollary 57 Let R be a k�loally generated relabelling relation and (R;K) a deterministi re-ognizer. If two graphs G and H have a ommon k�overing then G 2 L(R;K) if and only ifH 2 L(R;K).In the following, we will use these fats to derive impossibility proofs for the reognition problem bymeans of loally generated omputations. In partiular, we shall prove that the lass of graphs havingexatly one `�labeled vertex (for some label `), the lass of graphs having an odd number of verties,the lass of series-parallel graphs, and some minor-losed lasses of graphs annot be reognized byloally generated relabelling relations.Our �rst result shows that ounting onditions are not in general k�loally veri�able.Proposition 58 Let ` be a label. There exists no loally generated relabelling relation whih reognizes(in a deterministi or non-deterministi way) the lass of labelled graphs having exatly one `�labelledvertex.Proof. Let (G;�) be a labelled ring with exatly one `�labelled vertex. We know (see Example 37)that G admits a onneted strit k�overing (G0; �0). By Proposition 29 (G0; �0) ontains at least two`�labelled verties and, by Proposition 56, is reognized (in a deterministi or non-deterministi way)whenever (G;�) is reognized. 2This result an easily be extended to any lass of labelled graphs whih ontains at least one graphwith a yle and to the ase where the ondition \having exatly one `�labelled vertex" is replaedby \with at most i `�labelled verties" where i is any non-negative integer.From Example 37, we also get that a ring having an odd number of verties always admits ak�overing with an even number of verties; from this fat and Proposition 56 we get:Proposition 59 There exists no loally generated relabelling relation whih reognizes (in a deter-ministi or non-deterministi way) the lass of graphs having an odd number of verties.This result easily be extended to any lass of graphs having an odd number of verties whihontains at least one graph with a yle.In [25℄ it has been proved that lass of graphs having an even number of verties is non-deterministially reognizable by a Graph Relabelling System, thus:Proposition 60 For every k, the lasses of unlabelled graphs non-deterministially reognized byk�loally generated relabelling relations does not form a boolean algebra and does not oinide withthe lasses of graphs deterministially reognized by k�loally generated relabelling relations.Consider the series-parallel graph S and the graph C, whih is not series-parallel, depited byFigure 7. These two graphs are not regular but they have the same degree partition, onsisting of twobloks f3; 5g and f1; 2; 4; 6g: The orresponding degree re�nement is  0 21 2 !. Thus, by Theorem 32,C and S share a ommon �nite overing and we get:Proposition 61 No loally generated relabelling relation deterministially reognizes series-parallelgraphs.
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The graph S The graph CFigure 7: Two graphs having the same degree partitionA graph G is a minor of a graph H, denoted by G�H, if G an be obtained from a subgraph of Hby a sequene of edge ontrations (ontrating an edge linking verties v and v0 onsists in identifyingv and v0, deleting the resulting loop, and simplifying, by deleting the multiple edges, the graph thusobtained). A lass of graphs is minor-losed if it ontains all minors of its elements. By a minor-losedlass of onneted graphs we mean a lass of onneted graphs ontaining all onneted minors of itselements. Minor-losed lasses of onneted graphs an be haraterized by �nite sets of onnetedforbidden minors, also alled obstrutions [26, 27℄. Then we have [28℄:Theorem 62 No minor-losed lass of onneted graphs, whih is not the lass of all onneted graphsand ontains at least one graph with at least two yles, an be reognized by loally generated relabellingrelations.Before proving this result, we need two tehnial lemmas.Lemma 63 For every planar onneted graph G, for every onneted graph H having at least twoyles, there exists a onneted overing K of H that ontains G as minor.Proof. A torus is a graph of the form G(m;n) with set of verties V (G(m;n)) = [0;m�1℄� [0; n�1℄,and all edges of the form f(x1; y1); (x2; y2)g where either x1 = x2 and y2 = y1 + 1 (mod n) or y1 = y2and x2 = x1 + 1 (mod m). Sine the graph G is planar, there exist m and n suh that G �G(m;n).Sine H has at least 2 yles, there exist two edges e = fx; yg and e0 = fx0; y0g in H, with possiblyy = x0, suh that H n fe; e0g is onneted. Let H 0 be the graph obtained from H by deleting e and e0.We shall onstrut a onneted graph K suh that G�K and K is a overing of H.For every (i; j) 2 V (m;n) we let H 0(i; j) be an isomorphi opy of H 0 suh that V (H 0(i; j)) \V (H 0(i0; j0)) = ; if (i; j) 6= (i0; j0). We denote by w(i; j); the vertex in H 0(i; j) orresponding tothe vertex w of H 0: Let now K onsists of the union of the graphs H 0(i; j) together with the edgesfx(i; j); y(i; j+1 (mod n))g and fz(i; j); u(i+1 (modm); j)g for every i; j, 0 � i � m�1, 0;� j � n�1.It is not diÆult to observe that, by ontrating simultaneously all edges of the subgraphs H 0(i; j) ofK, we get G(m;n). Hene G � G(m;n) �K. Moreover, K is a overing of H via the mapping thatassigns w to every vertex w(i; j) in H 0(i; j). 2Lemma 64 For every onneted graph G, for every onneted graph H having at least three yles,there exists a onneted overing K of H that ontains G as minor.Proof. The proof is an easy extension of that of the previous lemma. Instead of embedding G as aminor in a torus, we embed it as a minor in a large enough \toroidal" parallelepiped P (`;m; n) withset of verties V (P (`;m; n)) = [0; ` � 1℄ � [0;m � 1℄ � [0; n � 1℄ and edges f(i; j; k); (i0 ; j0; k0)g withi = i0, j = j0, k0 = k + 1 (mod n), or i = i0, j0 = j + 1 (mod m), k = k0, or i0 = i+ 1 (mod `), j = j0,k = k0.



I. Litovsky, Y. M�etivier and E. Sopena 27We now selet three edges e = fx; yg; e0 = fx0; y0g; e00 = fx00; y00g suh that the graph H 0 ob-tained from H by deleting e; e0 and e00 is onneted. We onstrut K as the union of disjoint opiesH 0(i; j; k) of H 0 for (i; j; k) 2 V (P (`;m; n)) together with the edges fx(i; j; k); y(i; j; k + 1 (mod n))g,fz(i; j; k); u(i; j + 1 (mod m); k)g and fv(i; j; k); w(i + 1 (mod `); j; k)g.Similarly, we get G� P (l;m; n)�K and K is a overing of H. 2Reall that a k�tree is a graph that an be obtained by starting with a omplete graph on kverties and repeatedly adding a new vertex linked to k existing verties whih indue a ompletegraph. We then say that a graph has tree-width at most k if and only if it is a partial subgraph ofsome k�tree. We an now prove Theorem 62.Proof of Theorem 62 Let C be a minor-losed lass of onneted graphs that is not the lass ofall onneted graphs and ontains at least one graph with at least two yles. We have two ases toonsider:Case 1. The lass C has bounded tree-width. It follows from Robertson and Seymour [29℄ that someonneted planar graph G is not in C. Let H 2 C with at least two yles. By Lemma 63, thereexists a overing K of H suh that G �K. We annot have K 2 C, beause we would have G 2 C,ontraditing the hoie of G. Hene C is not losed under onneted overings.Case 2. The lass C has unbounded tree-width. Let G be a onneted graph not in C. Sine everygraph with at most two yles has tree-width at most 2, there is in C a graph H with at least threeyles. By Lemma 64 we onlude as in Case 1 that C is not losed under onneted overings. 2In [30℄, we study some properties of the Kroneker produt in relation with graphs minors, planargraphs, graphs with ut-verties or ut-edges, and graphs having non-trivial automorphism groups.In partiular, we prove that for every onneted graph G, the graph G ^ K2 is a bipartite graphwith a non-trivial automorphism group. By Proposition 34, the graph G ^ K2 is a overing of G.Moreover, we give a graph with a ut-vertex (resp. ut-edge) suh that its Kroneker produt by K2 iswithout ut-vertex (resp. ut-edge). We �nd a nonplanar graph obtained fromK3;3 whih has a planarKroneker produt by K2: Using previous onstrutions we get results onerning loal omputationsand reognizability: the lasses of graphs having a ut-vertex or a ut-edge are not reognizable, thelass of graphs with trivial automorphism group, the lass of nonbipartite graphs and the lass ofnonplanar graphs are not reognizable by loally generated relabelling relations in a deterministi ornondeterministi way.9.3 Reognition Knowing the SizeThe results presented in this subsetion have been established in [23℄. Let � be a label. We say that anunlabelled graph G is ��reognized by some graph reognizer (R;K) if, starting from the uniformlylabelled graph (G;�) (that is all verties and edges have the same label �), R leads to some �nallabelling of G belonging to the lass K, that is if IrredR(G;�) \ K 6= ;.The set of labelled graphs reognized without initial knowledge (reognized for short) by (R;K) isthen de�ned as the set of unlabelled graphs "�reognized by (R;K), where " is the empty word. Weare also interested in loally reognizing graphs whih have ertain initial knowledge enoded in thelabel �. For example, we de�ne an enoding of the size of the graph to be a funtion � assigning toevery graph a label suh that for every graph G and H,(�(G) = �(H)), (jV (G)j = jV (H)j) :We say that a graph G is reognized knowing the size if it is �(G)�reognized. We say that a set G ofonneted graphs is reognizable knowing the size (s-reognizable for short) if there exist a relabellingrelation R and a �nal ondition K suh that the set of graphs reognized by (R;K) knowing the sizeis exatly the set G.



28 Graph relabelling systems and distributed algorithms9.4 Double k�Covering TehniqueIn [31℄ it was shown that loally reognizable lasses of graphs must be losed under k�overingsfor some k and, as a orollary, that ertain lasses of graphs were not reognizable without initialknowledge (sine they are not losed under k�overing). On the other hand, if G is a strit overingof H then the size of G is stritly greater than the size of H. Hene, s-reognizable lasses of graphsare not neessarily losed under k�overings. Using these onstrutions, it is thus not possible tointrodue in proofs parameters like the size of the graphs. In this part, we give a very simple relationbetween graph reognizers and k�overings from whih we derive results on graph reognizers forgraphs having some initial knowledge. Some sample appliations will be given.We �rst have:Lemma 65 Let (R;K) be a deterministi graph reognizer, where R is k�loally generated and K isde�ned by some �nal ondition. Suppose the graph G is a k�overing of a graph K, and let � be anylabel. Then, G is ��reognized by (R;K) if and only if K is ��reognized by (R;K):From that we get:Corollary 66 Let (R;K) be a deterministi graph reognizer, where R is k�loally generated and Kis de�ned by a �nal ondition. Suppose G and H are k�overings of a graph K, and let � be anylabel. Then G is ��reognized by (R;K) if and only if H is ��reognized by (R;K):What is interesting in applying the previous very simple result is that � an enode some ommonharateristis of G and H suh as the number of verties and/or edges. Thus, if G and H arek�overings of the same graph K and have the same size, then G is reognized knowing the size if andonly if H is reognized knowing the size. Note that we annot extend this fat to K sine � enodesthe number of verties of G and not the number of verties of K. In the next proposition we applythis tehnique to some partiular lasses of graphs:Proposition 67 The following graph lasses are not deterministially loally s-reognizable: the lassof bipartite graphs, the lass of graphs having a ut-edge, the lass of graphs having a ut-vertex, thelass of hamiltonian graphs.Remark 68 Note that using Lemma 30, we get that if G and H are both overings of some graph Kand have the same number of verties then they have the same number of edges and thus their ylespaes have the same dimension.9.5 MinorsEven knowing the size, minor losed lasses of graphs are not reognizable in general. The proof ofthat is based on some speial onstrution whih, starting from two graphs G and H suh that G isnot a minor of H, allows us to obtain a graph K suh that (i) K is a overing of H and (ii) G is aminor a K:For the s�reognizability we annot use this onstrution beause the sizes of K and H aredi�erent. For that, we use another onstrution whih, starting from two graphs G and H suh thatG is not a minor of H, allows us to obtain a graph K and a graph H 0 suh that (i) G is a minor of K;(ii) K is a q�sheeted overing of H; (iii) H 0 is a q�sheeted overing of H; and (v) G is not a minorof H 0:This onstrution enables us to prove that, even knowing the size, we annot deide in generalby using loal omputations whether a given graph is minor of a graph or not. In other words, thisproves that some minor losed lasses of graphs are not s-reognizable.The main result here is the following:



I. Litovsky, Y. M�etivier and E. Sopena 29Theorem 69 Let G be a minor-losed lass of onneted graphs that is losed under homeomorphism,whih does not ontain all onneted graphs and suh that there exists a graph with at least three ylesadmitting an in�nite number of overings in G. Then G is not s-reognizable.From that we get:Corollary 70 The lass of onneted planar graphs is not reognizable knowing the size.9.6 Comparison with Logial LanguagesIn this setion we ompare our notion of graph reognition with three main logial languages whihallow to express graph properties: First-Order Logi (FOL), Monadi Seond-Order Logi (MSOL)and Seond-Order Logi (SOL) (see [32℄ for links between graph properties and graph propertiesexpressible using logial languages).For short, we will say that \a graph property is loally reognizable" instead of \the lass ofonneted (labelled) graphs verifying a property is reognizable by a loally generated relabellingrelation". Similarly, we will speak about a FOL-, MSOL- or SOL-property to say that this propertyis expressible using the logial language FOL, MSOL or SOL.In [25℄, it is proved that the following FOL-properties of a graph G are reognizable by a PGRS:G is simple, G is k�regular, G is of degree at most k. On the other hand, we have shown inProposition 58 that the property of having exatly one given label, whih is a FOL-property, is notloally reognizable.The following properties are not expressible in FOL but are expressible in MSOL:G is 2�oloriable,G is a tree, G is planar. From the result of [25℄ we dedue that the �rst two properties are loallyreognizable. On the other hand, we dedue from Theorem 62 that the lass of planar graphs is notloally reognizable.The three following properties are not expressible in MSOL and are expressible in SOL: G hasan even number of verties, G has as many `1�labelled verties as `2�labelled verties, G has anodd number of verties. The two �rst properties are loally reognizable and the last one is not.Therefore, lasses of graphs loally reognizable are inomparable with lasses of graphs expressiblein FOL, MSOL and SOL.In the ase of words and trees, reognizability is equivalent with de�nability in monadi seondorder logi. This equivalene does not hold any more for graphs with the notion of reognizabilityused in our paper. This fat underlines the di�erene between words and trees on the one hand andgeneral graphs on the other hand. In the ase of words and trees, the notion of de�nability in MSOLand the notion of reognizability by �nite automata, whih work loally by their very nature, oinide.In the ase of graphs, in general, some global omputation is neessary. Suh global omputations ongraphs were proposed by Thomas [33℄, who onjetured that they aept exatly monadi seond orderde�nable graphs. In fat, he allows the ounting of labels. Thus, eah �nal ondition with ountingis a boolean ombination of atomi onditions of the form X > k, where X 2 L and k is an �xedinteger. This atomi ondition is satis�ed by (G;�) if ard(��1(X)) > k. The satis�ability relation forboolean ombinations of atomi ounting onditions is de�ned indutively in the usual way. The onlydi�erene is that, in [33℄, graphs have a degree uniformely bounded by some onstant and the �nallabelling of a graph is not loally alulated, but is desribed in terms of tilings of graphs. However, itis not diÆult to see that a tiling exists if it an be alulated by a non-deterministi loally generatedrelabelling relation whih rewrites exatly one eah vertex. Thus non-deterministi reognition byloally generated relations with ounting �nal onditions aptures the Thomas's reognition.However, we rejet ounting �nal onditions sine they are not loally veri�able. Roughly speaking,a �nal ondition } is k�loally veri�able if there exists a k�loal omputation Rf suh that (G;�)satis�es } if and only if in the irreduible graph obtained from (G;�), all verties are labelled by somelabel Y . Intuitively, to reognize in a distributed way a graph G by a k�loally generated relabellingrelation R, we �rst apply R to (G;�N ) (whose all verties are N�labelled) to get some graph (G;�)irreduible for R. Next, we should be able to verify if (G;�) satis�es a �nal ondition by means of



30 Graph relabelling systems and distributed algorithmsanother k�loal omputation Rf whih will notify this fat to all verties by assigning to them aspeial label Y if and only if (G;�) satis�es }. It is easy to see that �nal onditions used in Setion 9are k�loally veri�able.10 The Termination Detetion ProblemWhen designing a distributed algorithm, one of the main goals is to ensure that the algorithm has theproperty of termination detetion [6℄. Intuitively speaking, this property means that some node in thenetwork is able to detet that the whole algorithm has terminated. This property ensures in partiularthat it will be possible to exeute some algorithm after another algorithm without any \interferenes"between them.In this setion, we study this property in the framework of loally generated relabelling relations.Roughly speaking, it means that every vertex v in a graph G, by looking at some ball BG(v; k), willbe able to deide whether the graph is irreduible or not.In the �rst subsetion we formally introdue this property. We then show how this property isrelated to the notion of k�overings and, from that, dedue some impossibility results. We thenintrodue the notion of quasi k�overings whih allows us to derive more impossibility results. We�nally disuss the links between the loal detetion of the global termination problem, the eletionproblem and the problem of determining the size of a graph.The results presented in this setion have been established in [21℄.10.1 The Loal Detetion of the Global TerminationLet L be any �xed alphabet. We denote by G = GL the set of all L�labelled graphs. In this setion, westudy loal omputations suh that normal forms an be haraterized by a set of loal on�gurations:De�nition 71 Let R be a k�loally generated relabelling relation. Let I be a subset of G alled thelass of initial graphs and let T be a subset of onneted elements of G. We say that T haraterizesthe normal forms obtained from I if for every (G;�) 2 I with (G;�) R� (G;�0), (G;�0) is a normalform if and only if (G;�0) ontains a subgraph isomorphi to some (K;�) 2 T . In that ase we alsosay that (G;�0) is (K;�)�haraterized.Let r be a positive integer. We say that normal forms are r�loally (or loally) haraterized ifall the elements of T have radius at most r.10.2 Appliations of k�Coverings to Termination DetetionIn this subsetion we how we an use the notion of k�overings to derive some impossibility resultsonerning the loal detetion of the global termination.Proposition 72 Let I � G be a lass of onneted labelled graphs and let R be a k�loally gen-erated relabelling relation. If I ontains two graphs (G;�) and (G0; �0) suh that (G;�) is a stritk�overing of (G0; �0) via some mapping  then the normal forms obtained from I annot be r�loallyharaterized, for every r � k.Proof. Suppose that (G0; �0) Rn�1 (G01; �01) R (G02; �02). By Proposition 42, we an onstrut a newlabelling of G, say (G;�1), suh that (G;�1) is a k�overing of (G0; �01) (via the mapping ) and(G;�) R� (G;�1). Suppose that (G0; �01) R (G0; �02) holds and onerns some ball B(G0;�01)(v; k). Thenwe may apply this relabelling step to exatly one of the onneted omponents of �1(B(G0;�01)(v; k))(being isomorphi to B(G0;�01)(v; k)) and obtain the labelled graph (G;�2). Now, if the normal formsare r�loally haraterized for some r � k, then (G0; �02) is (K;�)�haraterized for some (K;�) 2 T .This implies that (G;�2) is also (K;�)�haraterized, whih ontradits the fat that (G;�2) is not anormal form. 2



I. Litovsky, Y. M�etivier and E. Sopena 31Proposition 72 an easily be generalized in the following way:Proposition 73 Let I � G be a lass of labelled graphs, and let R be a k�loally generated relabellingrelation. Assume that I ontains two labelled graphs (G;�) and (G0; �0) suh that (G;�) is a onneted,strit q�sheeted k�overing of (G0; �0) via some mapping . Then the normal forms obtained from(G;�) annot be (K;�)�haraterized if the labelled graph (K;�) is suh that �1(K;�) is a disjointunion of graphs isomorphi to (K;�).From Theorem 41 and Proposition 72 we get a more general result:Theorem 74 Let I be a lass of onneted labelled graphs losed under onneted k�overings andlet R be a k�loally generated relabelling relation. Assume that there exist a graph (G;�) 2 I and anedge e 2 E(G) suh that (V (G); E(G) n feg) is onneted, but e belongs to no yle of length at most2k + 1. Then normal forms obtained from I annot be r�loally haraterized, for every r � k.Reall that a graph G is a homeomorphi image of a graph G0 if G an be obtained from G0 by asequene of edge subdivisions. Then we have:Corollary 75 Let I be a lass of onneted labelled graphs losed under onneted k�overings andunder homeomorphisms, and ontaining at least one graph with a yle. Let R be a k�loally generatedrelabelling relation. Then normal forms obtained from I annot be r�loally haraterized, for everyr � k.This result is quite powerful: loal omputations are very general, they inlude relabelling withan in�nite number of labels and an in�nite number of rules, provided that the diameter of the rulesis uniformly bounded by some onstant. The relabelling relation may be deterministi or not. ForProposition 72 and Theorem 74, T may be in�nite provided that the diameter of the graphs is uniformlybounded.As an illustration, we give some onrete appliations [6℄. Reall that the majority problem onsistsin determining, in a graph with A� or B�labelled verties, whether the number of A�labelled vertiesis greater than the number of B�labelled verties or not. Then we have:Corollary 76 There is no loal omputation system allowing the loal detetion of termination whihsolves one of the following problems on uniformly labelled graphs: omputing the size of a graph,omputing the sum, the produt, the minimum or maximum of the vertex labels of a graph, solving themajority problem.10.3 Quasi k�Coverings and Loal Detetion of Normal Forms: the Case ofT�prime GraphsIn this subsetion we introdue the notion of quasi k�overings, whih allows to extend the resultsof the previous subsetion to ertain lasses of graphs, as the lass of T�prime graphs de�ned asfollows. Let G be a onneted graph of size n, and let r be an integer dividing n. We say that G isr�fatorizable if G admits a spanning forest whose all trees have size r: The graph G is said to beT�prime if it is not r�fatorizable for every integer r, 1 < r < n.In [34℄, an eletion algorithm is given for the lass of T�prime graphs. The main idea of thealgorithm is to onstrut a partition of the graph into onneted subgraphs. Eah subgraph is de�nedby a spanning tree and has a leader (root) with weight equal to the size of the subgraph; all otherverties of the subgraph have weight zero. Initially we onsider a partition suh that every subgraphonsists of a single vertex. We assume that at least one proessor starts the omputation. Then, thereis at least one duel between two adjaent verties from whih we obtain a new partition, with at leastone element ontaining two verties (in this ase we say that the algorithm has started). A leader Lwith weight w looks for an adjaent subgraph having a leader L0 with weight w0 suh that w > w0. Inthis ase, their spanning trees (that is the two orresponding subgraphs) are ombined and L remains



32 Graph relabelling systems and distributed algorithmsthe leader with the weight w +w0, whereas the weight of L0 beomes zero. The algorithm terminateswhen only one tree is left. Clearly, the eleted vertex knows that it has been eleted if it knows the sizeof the graph. From results obtained in this subsetion we will dedue that this knowledge is neessary.De�nition 77 Let (G;�) and (G0; �0) be two labelled graphs, :V (G)! V (G0) be a graph homomor-phism and k be a non-negative integer. The graph (G;�) is a quasi k�overing of (G0; �0) of size s ifthere exist a �nite or in�nite k�overing (G0; �0) of (G0; �0) via some mapping Æ, verties v0 2 V (G0),v 2 V (G), and an integer r > 0 suh that :1. B(G;�)(v; r) is isomorphi to B(G0;�0)(v0; r) via ',2. Card(V (B(G;�)(v; r))) � s,3.  = Æ Æ ' when restrited to V (B(G;�)(v; r)).The idea behind the notion of quasi k�overings is to enable the simulation of loal omputationson a given graph in a restrited area of a larger graph, suh that the simulation an lead to falseonlusions. The restrited area where we an perform the simulation will shrink while the number ofsimulated steps inreases.Consider a quasi k�overing (G;�) of (G0; �0) via some mapping . This means that there exista vertex z 2 V (G) and an integer r > 0 suh that B(G;�)(z; r) is isomorphi to a subgraph of somek�overing (G0; �0) of (G0; �0):More preisely, B(G;�)(z; r) is isomorphi via ' to B(G0;�0)(z0; r), where(G0; �0) is some k�overing of (G0; �0) via some mapping Æ. Moreover, Card(V (B(G;�)(z; r))) � s and = ÆÆ' on V (B(G;�)(z; r)). Fix now a spanning tree T of G0; then Æ�1(T ) � V (G0) is a disjoint unionof opies of T: Let J = fT0; T1; : : : ; Tqg � �1(T ) � V (G) be suh that for all verties u 2 V (Ti),0 � i � q, the ball B(G;�)(u; k) is inluded in B(G;�)(z; r). Suppose also, without loss of generality,that z 2 V (T0).We onsider in the following the undireted graph H = ([0; q℄; F ) with fi; jg 2 F if and onlyif for some x 2 V (Ti), y 2 V (Tj) there is an edge fx; yg 2 E(G). By means of H we obtain adistane d on J given by d(Ti; Tj) = dH(i; j). Note that the degree of verties of H is bounded byCard(E(G0)) � Card(V (G0)) + 1. Hene, for eah d � 1, by hoosing s suÆiently large (dependingon G0; k and d) we obtain d(T0; Ti) � d for some Ti 2 J .Then we have:Theorem 78 Let (G;�), (G0; �0), , J and d be as above, with d(T0; Ti) � ` for some Ti 2 J , ` � 2k.Let R be a k�loally generated relabelling relation and suppose (G0; �0) R (G0; �01). Moreover, assumethat for every Ti 2 J with d(T0; Ti) � ` and for every vertex u 2 V (Ti) the labelled balls B(G;�)(u; k)and B(G0;�0)((u); k) are isomorphi via .Then there exists a labelled graph (G;�1) suh that (G;�) R� (G;�1) holds. Moreover, for everyTi 2 J with d(T0; Ti) � ` � 2k and for every vertex v 2 V (Ti) the labelled balls B(G;�1)(v; k) andB(G0;�01)((v); k) are isomorphi via .Proof. Let (G0; �0) R (G0; �01) hold via a relabelling step whih hanges only the relabelling ofB(G0;�0)(v0; k). We an simulate this step on eah v 2 �1(v0) with v 2 V (Ti) and d(T0; Ti) � `.Let (G;�1) denote the graph obtained in this way.Suppose that w 2 V (Ti) and d(T0; Ti) � ` � 2k holds and let w0 = (w). If B(G0;�0)(v0; k) \B(G0;�0)(w0; k) = ; then B(G;�)(v; k) \B(G;�)(w; k) = ; holds for all v 2 �1(v0) \ [T2J V (T ), and theresult follows by indution. Hene assume that B(G0;�0)(v0; k) \ B(G0;�0)(w0; k) 6= ; and let v be theunique vertex in �1(v0) suh that B(G;�)(v; k) \ B(G;�)(w; k) 6= ;. Moreover, let v 2 V (Tj) and notethat d(T0; Tj) � d(T0; Ti) + 2k � `. Therefore, the labelled balls B(G;�1)(w; k) and B(G;�1)(w0; k) areisomorphi. 2Theorem 78 yields a more general result on the impossibility of loally deteting the termination:



I. Litovsky, Y. M�etivier and E. Sopena 33Theorem 79 Let I be a lass of onneted labelled graphs and let R be a k�loally generated rela-belling relation. Suppose that some (G0; �0) 2 I has onneted quasi k�overings in I of arbitrarylarge size. Then normal forms obtained from I annot be r�loally haraterized, for every r � k.Proof. Let C = ((G0; �0) = (G0; �00); (G0; �01); : : : ; (G0; �0n)) be a relabelling hain of length n suh that(G0; �0n) is a normal form. Let (G;�) be a quasi k�overing of (G0; �0) of size s. For s suÆiently largewe have for some Ti 2 J that d(T0; Ti) � 2k(n+1) (reall the de�nition of J and d from Theorem 78).We an apply Theorem 78 with ` = 2k(n + 1 � m) for the m�th relabelling step of C. Wethus obtain a relabelling (G;�n) of (G;�) with (G;�) R� (G;�n) suh that (G;�n) is a normal form.However, we have simulated no step of C on verties belonging to V (Ti) with d(T0; Ti) = 2k(n + 1)(reall that suh verties still have balls of radius k isomorphi to their image by ). Hene, thisontradits the fat that (G;�n) is a normal form. 2Clearly, we annot use the results of the previous setion for the lass of T�prime graphs, beauseno onneted non-isomorphi k�overing of a T�prime graph is T�prime, but we an apply The-orem 79. For this, suppose that G0 is a onneted T�prime graph ontaining an edge e0 suh that(V (G0); E(G0) n fe0g) is still onneted, but e0 belongs to no yle of length at most 2k + 1. The on-strution from Proposition 41 an be easily modi�ed in suh a way that we obtain a quasi k�overingof size at least (q � 2)Card(V (G0)) whih is also T�prime. For this, it suÆes to subdivide theedge fxq�1; y0g until the size of the graph obtained is prime (hene, the graph obtained is T�prime).Therefore we get:Corollary 80 There is no loal omputation system with loal detetion of termination where all inputgraphs are uniformly labelled by the same label, whih solves one of the following problems: omputingthe size of T�prime graphs, omputing the sum, the produt, the minimum or maximum of the vertexlabels of a T�prime graph, solving the majority problem for the lass of T�prime graphs.Remark 81 Reall that there exists an eletion algorithm for T�prime graphs whih uses the sizeof the graph as additional knowledge [34℄. The natural question whih then arises is whether thisknowledge is neessary or not. Theorem 79 provides an indiret positive answer to this question.More preisely, suppose that the eletion problem ould be solved with loal detetion of terminationon uniformly labelled T�prime graphs (i.e. labelled by a �xed label). Then we ould ompute after theeletion the size of the graph, thus ontraditing the previous orollary.Moreover, note that the onstrution used in Theorem 79 an be slightly modi�ed in order to obtainthe impossibility result for the eletion problem for T�prime graphs diretly. For this, it suÆesto inrease the size of the quasi k�overing in suh a way that there exists two verties v1; v2 inB(G;�)(v; r) and integers r1; r2 > 0 with B(G;�)(vi; ri) � B(G;�)(v; r0) and Card(V (B(G;�)(vi; ri))) � sfor i = 1; 2. Moreover, we require that B(G;�)(v1; r1) and B(G;�)(v2; r2) are disjoint. Clearly, wean apply the simulation on eah B(G;�)(vi; ri) in parallel, obtaining therefore two eleted verties, aontradition.10.4 Comparison with Others ProblemsWe onsider in this last subsetion the following three problems: the eletion problem (Elet), theproblem of loally deteting of termination (Ldt) and the problem of omputing the size of the graph(Size).We note that Elet and Ldt are equivalent with respet to loal omputations: if we an solvethe eletion problem for a lass of graphs I, then we an also loally detet the termination of a loalomputation system on I. Conversely, if we have a lass of uniformly labelled graphs I and a loalomputation system with loal termination detetion suh that every element of I is reduible, thenwe an solve Elet on I.



34 Graph relabelling systems and distributed algorithmsThe �rst assertion is easily seen by letting the eleted vertex ompute a spanning tree and hekwhether a normal form has been reahed. For the other diretion assume that normal forms obtainedfrom I with respet to a loal omputation system of radius k are haraterized by a set of labelledgraphs T . Moreover, suppose that every graph in I is reduible and let r be an upper bound for theradius of eah element of T . Consider a normal form (G;�n) obtained from (G;�) 2 I and two vertiesu; v suh that both B(G;�n)(u; r) and B(G;�n)(v; r) ontain a subgraph isomorphi to an element of T .Sine T haraterizes exatly normal forms the balls B(G;�n)(u; r) and B(G;�n)(v; r) ontain eah asubgraph from T due to the last step of the relabelling hain from (G;�) to (G;�n). Hene, thedistane between u and v is at most 4r. A simple relabelling system with forbidden ontexts of radius2r an now be used in order to elet one of the verties u having the property that B(G;�n)(u; r)ontains a subgraph isomorphi to an element of T (thus labelled by T ): every path of length less orequal 2r with extremities labelled by T hanges the label of one of its extremities into N . A vertexlabelled by T with no further neighbours labelled by T at distane less or equal 4r beomes eleted.On the other hand, there is also an easy redution from Size to Elet, sine the size of the graphan be omputed along a rooted spanning tree. However, Elet is more diÆult than Size, a fatwhih an be seen by onsidering the lass of hyperubes. Clearly, eah vertex in a hyperube anompute loally its degree n, thus also the size 2n of the graph. However, by symmetry arguments itan be easily shown that no loal omputation system an solve Elet for the lass of hyperubes.To see this, assume R is a relabelling system of radius k and let Hn be the hyperube with 2n nodes,n > 2k. Then we an de�ne a mapping f2k on Hn by letting f2k(b1 : : : bn) = �b1 : : :�b2kb2k+1 : : : bn(bi 2 f0; 1g). Clearly, for eah vertex x the balls BHn(x; k) and BHn(f2k(x); k) are disjoint andisomorphi. We an simulate eah relabelling step of R on both balls in parallel. This simulationsatis�es the ondition that the labelled balls of radius k with enter y, resp. f2k(y), are isomorphivia f2k. This an be summarized as follows:Proposition 82 Elet is equivalent to Ldt. Size is reduible to Elet but Elet is not reduibleto Size.ReferenesReferenes[1℄ J.-R. Fiksel, A. Holliger, and P. Rosensthiel. Intelligent graphs. In R. Read, editor, Graph theoryand omputing, pages 219{265. Aademi Press (New York), 1972.[2℄ D. Angluin. Loal and global properties in networks of proessors. In Proeedings of the 12thSymposium on theory of omputing, pages 82{93, 1980.[3℄ T. Kameda and M. Yamashita. Computing on anonymous networks: Part i - haraterizing thesolvable ases. IEEE Transations on parallel and distributed systems, 7(1):69{89, 1996.[4℄ T. Kameda and M. Yamashita. Computing on anonymous networks: Part ii - deision andmembership problems. IEEE Transations on parallel and distributed systems, 7(1):90{96, 1996.[5℄ N. A. Lynh. Distributed algorithms. Morgan Kaufman, 1996.[6℄ G. Tel. Introdution to distributed algorithms. Cambridge University Press, 1994.[7℄ I. Litovsky and Y. M�etivier. Computing trees with graph rewriting systems with priorities. Treeautomata and languages, pages 115{139, 1992.[8℄ I. Litovsky, Y. M�etivier, and E. Sopena. Di�erent loal ontrols for graph relabelling systems.Math. Syst. Theory, 28:41{65, 1995.
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