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Abstract

In this paper, we study homomorphisms of 2-edge-coloregigahat is graphs with edges
colored with two colors. We consider various graph classage(planar graphs, partial 2-
trees, partial 3-trees, planar graphs) and the problemfiadpfor each class, the smallest
number of vertices of a 2-edge-colored graphsuch that each graph of the considered
class admits a homomorphismki
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Our general aim is to study homomorphismgiefm)-mixed graphs. This notion
was introduced by NeSetfil and Raspaud [8] as a genetializaf the notion of
homomorphisms of edge-colored graphs (see e.g. [1]) anddtien of oriented
coloring (see e.g. [13]).

A mixed graph Gs a graph in which some pair of vertices are linked by edges
and some are linked by arcs, and such that the underlyinghgsapimple (no
multiple edges/arcs or loops). A mixed gra@hs usually denoted by an ordered
triple G = (V(G);A(G),E(G)) with V(G) its vertex setE(G) its edge set, and
A(G) its arc set. Oriented and undirected graphs are speciad chseixed graphs.

An (n,m)-mixed graph Gs a generalisation of a mixed graph where vertices are
linked by arcsA(G) and edge<$(G) such that the arcs are colored withcol-
ors and the edges are colored withcolors. In other words, there is a partition
A(G) = A1(G) U...UAR(G) of the set of arcs o5, wereA;(G) contains all arcs
with colori and a partitiorE(G) = E1(G) U... UEn(G) of the edges o6, where
E;(G) contains all edges with colgt Therefore, there existi2- m possibilities of
adjacency between two vertices®fFor a vertexu € V(G), we defineN.™ (u) (resp.
N~ (u)) to be the set of verticasof G such thativ € A(G) (resp.vu € Ai(G)). Sim-
ilarly, we defineN;(u) to be the set of verticesof G such thatuv € E;(G). Then,
for two adjacent vertices andv, we can define thadjacency typef the ordered
pair (u,v) as:

iT if ve N (u)

t(u,v) =i~ if ve N (u)
i if ve Ni(u)
Let u~vdenote thati andv are adjacent i, that is eitheuve E(G), oruve A(G),
orvu € A(G).

A k-coloring of a (n,m)-mixed graphG is a mappingf from V(G) to a set ofk
colors such thatl) f(u) # f(v) wheneveu~v, and(2) f(u) # f(x) wheneveu~v
andx~y with f(v) = f(y) andt(u,v) # t(x,y). In other word, &-coloring ofG is a
partition of the vertices o into k stable set$;, S, . .., S such that there are only
edges of the same color, or only arcs of the same orientatidritee same color
between any pair of stable s&§sandS;.

LetG= (V(G);UL1A(G),UL1Ej(G)) andH = (V(H); UL  A(H), UL, Ej(H))
be two (n,m)-mixed graphs. Ahomomorphisnfrom G to H is a mappingh :
V(G) — V(H) such thath(u),h(v) € Aj(H) wheneveruv € A(G) (for everyi €
{1,...n}), andh(u)h(v) € E;(H) whenevewuv € Ej(G) (for everyj € {1,...m}).

A k-coloring of G can be equivalently viewed as a homomorphism fi@ro H,
whereH is a (n,m)-mixed graph of ordek (the order of a graph is its number
of vertices). The existence of such a homomorphism férto H is denoted by
G — H. The vertices oH are calledcolors, and we say thaG is H-colorable



Given an(n,m)-mixed graphG, the problem is to find the smallest number of col-
ors needed to colds, or, in other words, to find the smallest number of vertices of
(n,m)-mixed grapiH such thatG — H. This number is denoted ky, m (G) and is
called thechromatic numbeof the (n,m)-mixed graphG. For a simple grapls, the
(n,m)-mixed chromatic numbes the maximum of the chromatic numbers taken
over all the possiblén, m)-mixed graphs havin® as underlying graph. Note that
X(0,1)(G) is the ordinary chromatic numbg(G), andx10)(G) is the oriented chro-
matic numberxo(G). Given a familyd of simple graphs, we denote Ixy, m) (F)

the maximum o, m) (G) taken over all membeiG in F.

In this paper, we mainly study three particular classé9&)-mixed graphs: outer-
planar graphs, parti&ttrees, and planar graphs. This paper is organised as fallow
The next section is dedicated to state some known resultioagide some prelim-
inary results on thén, m)-mixed chromatic number of parti&itrees. In Section 3,
we describe the constructions of the target graphs we useeindxt sections. In
Section 4, we give the complete classification for tbg)-mixed chromatic num-
ber of outerplanar graphs for every girth. Section 5 is deyad partial 2-trees with
given girth and partial 3-trees. Finally, we obtain uppeuns for theg0, 2)-mixed
chromatic number of planar graphs with given girth in Setto

Note that a complexity result of Edwards and McDiarmid [4]tbe harmonious
chromatic number implies that to find tii@ 2)-mixed chromatic number of a graph
is in general an NP-complete problem.

Notation We use the following notions. L&b be a(n,m)-mixed graph. For a
vertexv of G, we denote bydg(v) its degree (subscripts are omitted when the
considered graph is clearly identified from the context) eitex of degreé (resp.
at leastk, at mosk) is called ak-vertex(resp.Zk-vertex <k-vertey. We denote by
0(G) the smallest degree of a vertex@ A pathP = [u,v1,...,Vk_1,W| of length
k (i.e. formed byk edges) is called &-path If all internal verticesv; of B are
vertices of degred, thenF is a(k,d)-path If two graphsG andH are isomorphic,
we denote it byG = H.

We denote by (resp.F, 9, T, P) the class ofn, m)-mixed paths (resp. forests,
outerplanar graphs, partikitrees, planar graphs).

Drawing conventions In Sections 5 and 6, we adopt the following drawing con-
ventions for aconfiguration Ccontained in a grapks. If u andv are two vertices

of C, then they are adjacent (@ if and only if they are adjacent i@. Moreover,
the neighbors of avhitevertex inG are exactly its neighbors i@, whereas &lack
vertex may have neighbors outside®fTwo or more black vertices i@ may coin-
cide in a single vertex i, provided they do not share a common white neighbor.



Finally, an edge between two verticesandv will mean thatu~v (i.e. u andv are
linked by either an edge or an arc of any type).

2 Preiminary results

In this section, we state some known lower and upper boundaddn, m)-mixed
chromatic number of outerplanar graphs, pakitilees, and planar graphs, for ev-
ery nonnegativa andm. We then improve lower bounds for tie, m)-mixed chro-
matic number of partidk-trees and planar graphs for eveneven.

Recall that amacyclic coloringof a simple grapltG, is a proper vertex-coloring
satisfying that every cycle @ receives at least three colors. Tdyclic chromatic
numberof G, denoted byxa(G), is the smallesk such thatG admits an acyclic
vertex-coloring. The class of graphs with acyclic chromatiimber at mosk is
denoted byAy. NeSetfil and Raspaud [8] proved that the families of ggawith
bounded acyclic chromatic number have boun@ed)-mixed chromatic number.
More precisely:

Theorem 1 [8] X (nm)(Ak) < k(2n+m)k1,

Remark that this result implies the result of Raspaud aneé&afl1] for oriented
graphs 1,0y (Ak) < k- 21y and the result of Alon and Marshall [1] for the-

edge-colored graph (o,m)(Ak) < k- m—1). Recently, Huemer et al. [6] proved
that this bound is tight fok > 3: X (nm) (Ak) = k(2n+m)*1,

Combining Theorem 1 with the well-known result of Borodin] [Rvery planar
graph has an acyclic chromatic number at most five), we getdkeresult:

Corollary 2 [8] X(nm)(P) <5(2n+m)*.

A k-treeis a simple graph obtained from the complete gré&phby repeatedly
inserting new vertices adjacent to an existing clique oé kizA partial k-treeis

a subgraph of &-tree. It is not difficult to see that every partlatree has acyclic
chromatic number at mosk+ 1): starting with a propek-coloring of the complete
graphKy, every newly inserted vertex has exackiyneighbors and can be thus
colored using gk + 1)-st color. Moreover, this coloring is clearly acyclic siralé
the neighbors of a newly inserted vertex have pairwiserdistolors. Therefore,
by Theorem 1 we get:

Corollary 3 For every n> 0, m> 0, and k> 1, X(nm) (TW) < (k+1)(2n+m)k,
Concerning the class of partial 1-trees (which are usuaktsyj, the previous theo-

rem givesy inm () < 2(2n+m). NeSetfil and Raspaud [8] gave the exatim)-
mixed chromatic number gh, m)-mixed forests.



Theorem 4 [8] X nm)(F) =2n+m+e wheree = 1for m odd or m= 0, ande = 2
form> O even.

Huemer et al. [6] recently provided lower bounds for them)-mixed chromatic
number of some graph classes, such as paths, outerplapasgpartiak-trees, or
planar graphs. More precisely:

Theorem 5 [6] For every n> 0and m> 0,

(2n+m)k1l_1
(2n+m) -1

Xnm)(T®) > (2n+m)*+e(2n+m)< T+

whereg = 1 for m odd or m= 0, ande = 2 for m> 0 even.
Theorem 6 [6] X(mm)(’EJ) = X(mm)(ffr)-

This proves that the lower bound of Theorem 4 is reached vdthgy By means
of this result, one can get the following lower bounds forepptanar graphs and
planar graphs:

Theorem 7 [6] Let € =1 for m odd or m= 0, ande = 2 for m> 0 even.

(1) X(nm(0) > (2n+m)?+g(2n+m) +1
(2) Xnm(P) > (2n+m)3+e(2n+m)2+ (2n+m) +1

We shall prove that the lower bound for tkie, m)-mixed chromatic number of
partial k-trees given by Theorem 5 can be improved by one wihésa even and
k > 3. This will allow us to get a tight bound for tH{8, 2)-mixed chromatic number
of partial 3-trees in Section 5.

Theorem 8 For every k> 3, n> 0and m> 0 even,

(2n+m)k1-1
(2n+m)—1

Xnm (T®) > (2n+m)* 4 2(2n+ m)* 1+ +1

Proof. Leta(x) = (2n+m)*+2(2n+m)*~ 1+ % To prove our result, we
construct ar{n,m)-mixed partiak-tree T’ which admits no homomorphism to any

(n,m)-mixed complete graph of orde(k).

Theorem 5 insures that there exist&nam)-mixed partial(k — 1)-treeT such that
Xinm)(T) > a(k—1). Let T’ be the(n, m)-mixed partialk-tree obtained by taking
2n+mdisjoint copies off, namelyT,", 7,5, ..., T,", T, Ty . Ty, Ta, T2, .., T,
and a universal vertexin such a way that(u,v) =i" (respt(u,v) =i, t(u,v) =i)
for everyv e V(T;*) (resp.v e V(T,”), v € V(Ti)). Such a construction clearly
guaranties thal’ is a partiak-tree. By construction, a colarcannot appear in two



different copies off . Moreover, the verten must be assigned a color distinct from
those assigned to all other vertices. Hence, the numbelafscoeeded to coloF’
is at least2n+m) x a(k—1) +1=a(k).

Suppose thal’ has/ vertices and le¥ (T’) = {v,vz,...,v,}. Now consider the
(n,m)-mixed partialk-tree T” obtained as follows. We také+ 1 copies ofT’, a
first one namedy, and thek remaining one named, , T,,,..., T, (one copy per
vertex of T’). Then, for each vertex of Tj, we glue the universal vertex df
with the vertexv of T;. The graphT” is clearly a partiak-tree. Suppose that”

is K4k -colorable for somén, m)-mixed complete grapK, ) of ordera(k). Since
Xmnm(Tg) > a(k), each of thea(k) colors appears on at least one vertex/¢T).
Therefore, since each vertexc V(Tj) is a universal vertex of a copy df, we
necessarily have, for every vertaxe V (Kq), IN"(w)| > a(k—1), [N (w)| >
a(k—1), and|N;j(w)| > a(k—1) for every 1<i <nand 1< j <m. SinceKy has
a(k) vertices, its maximum degreeak) — 1 = (2n+m) x a(k— 1), that implies
that IN"(w)| = a(k—1), N7 (w)| = a(k— 1), and [Nj(w)| = a(k— 1) for every
1<i<nand 1< j <m. Letus now consider the subgrakihof Kak induced by
the edgesivsuch that(u,v) = 1 (sincem > 0, there exist edges of type 1, and thus
K’ is non empty). This subgraph ha&) vertices and is(k— 1)-regular. Then, we
obviously havey ey k) d(v) = a(k) x a(k—1). However, the sum of the degrees
should be even, bud(k) x a(k—1) is odd sincemis even. Then, the grapyy)
does not exist. O

Note that for planar partial 3-trees, the partial 3-tféeconstructed in the previ-
ous proof is also a planar graph. Therefore, this also ingg ke bound of Theo-
rem 7(2) for everyn> 0 even.

Corollary 9 For every n> 0and m> 0 even,

Xnm (TE NP) > (2n+m)3+2(2n+m)? + (2n+m) + 2.

3 Thetarget graphs

In the rest of this paper, we focus on the class®®)-mixed graphs, that is 2-
edge-colored graphs. Therefore, the target graphs pravidénis section are 2-
edge-colored graphs.

When studying homomorphisms, to get upper bounds for(thin)-mixed chro-
matic number of a graph clags one often tries to find aoniversaltarget graph
for C, that is a target grapH such that all the graphs €fadmits a homomorphism
to H. To prove that a target graph is universal for a graph classpeed “useful”
properties of this target graph. In this section, we comstfive (0, 2)-mixed tar-



(@) CsxCg (b) (©) Cs
Fig. 1. Construction of the three target grafgbsTg, andTs.

get graphs which will be used to get upper bounds for(h&)-mixed chromatic
number. Their useful properties are given below.

First consider the three graphs depicted in Figures 1(B), &0d 1(c). These graphs
are all self complementary (i.e. isomorphic to their compat). Thus, leTg (resp.

Ts, Ts) be the completé0,2)-mixed graphs on 9 (resp. 8, 5) vertices where the
edges of each color induce an isomorphic copy of the grapictgelin Figure 1(a)
(resp. 1(b), 1(c)). In other words, the edges of the graphctipin Figure 1(a)
(resp. 1(b), 1(c)) are the edges of type Ilgfresp.Tg, Ts) and the non-edges are
the edges of type 2 df (resp.Tg, Ts).

It is not difficult to check thaflg and Ts are vertex-transitiveand colored-edge-
transitive (i.e. for every two edgesv andu’v' of the same color, there exists an
automorphism that mapsto U’ andv to V).

A type-vectorof sizen (or an-type-vectoy is a sequence = (a1,02,...,0p) €
{1,2}" of nelements. LeS= (v1,V2,...,Vy) be a sequence ofvertices of g0, 2)-
mixed graphT = (V(T); U?_ Ei(T)) which induces am-clique subgraph; a vertex
uis said to be am-neighbor of Sf for everyi, 1 <i <n, we haveuv; € Eq,(T).

In the remainder, we say that(, 2)-mixed graphT hasProperty ®, if, for ev-
ery 1< ¢ < n, for every sequencs of ¢ vertices ofT which induces arf-clique
subgraph, and ardttype-vectom, there exist at leasta-neighbors ofs.

Proposition 10 The graph § has PropertiesP; 4 and P ;.

Proof. Property?; 4 is trivial.

Recall thatTg is colored-edge-transitive, and that the two graphs indumethe
edges of each color ifiy are isomorphic. Therefore, it is enough to show that the
sequence of vertice8= (1,2) has at least one-neighbor for anya € {1,2}2. If
a=(1,1) (resp.(1,2), (2,1), (2,2)), then 3 (resp. 4, 5, 6) is am-neighbor ofS.

O



Fig. 2. The vertices ofg reachable from 0 and 1 by ea@ 2)-mixedk-path with 1< k < 3.

Proposition 11 The graph § (resp. ) has property?; 3 (resp.?; 2).

Proof. It directly follows from|N;(v)| > 3 (resp|Ni(v)| > 2) foreveryi€ 1,2. O

Let P = [vo,Vv1,V2,..., V| be a(0,2)-mixedk-path,G a (0, 2)-mixed graph, and a
vertex ofG. We denotéNp(G, u) = {v e G,3h: P — G with h(vp) = uandh(v) =
v}.

Proposition 12 For every(0, 2)-mixed3-path P :

e for every ue Ts, V(Ts) \ {u} € Np(Ts,u)
e for every uc Tg, Np(Tg,u) =V (Tg)

Pr oof.

(1) Recall thafTs is colored-edge-transitive, and the two graphs inducechby t
edges of each color if are isomorphic. Therefore, it is enough to prove that
there exist the eight possible 3-paths linking 1 and 2. Tagyease study is
left to the reader.

(2) Observe that there are two kinds of vertice$grthe even vertice$0, 2, 4,6},
and the odd vertice§l,3,5,7}. It is not difficult to check that for every two
even (resp. odd) verticas andv, there exists an automorphism of that
mapsu to v. Thus is sufficient to prove that there exists the ei@h®2)-mixed
3-paths joining O (resp. 1) to every vertex f Figures 2(a) and 2(b) show
the sets of vertices ofg reachable from 0 and 1 by ea¢d, 2)-mixedk-path
with 1 <k < 3.

O

Proposition 13 For every vertex u of grand for a every(0,2)-mixed2-path P,
there exists one vertexar{u,u+4 (mod 8} such that\(Tg) \ {v} C Np(Tg, u).



Fig. 3. The(0,2)-mixed tromp grapfTr(G).
Proof. This can be easily checked on Figures 2(a) and 2(k).

Proposition 14 For every vertex u of sTand for every(0,2)-mixed 2-path P,
INp(Ts,u)| > 3.

Proof. This can be easily checked.O

The last two target graphs we provide are obtained by u$iogp’s construc-
tion [14] extended to mixed graphs. L&t= (V(G); U?_; Ei(G)) be a(0,2)-mixed
graph and3’ be an isomorphic copy d&. The Tromp grapfr(G) = (V(Tr(G));
U, E(Tr(G))) has 2V(G)| + 2 vertices and is defined as follows:

e V(Tr(G)) =V(G) UV(G') U{e, '}
e YUeV(G):uw, U € E1(Tr(G)) andu'eo,uc’ € Ex(Tr(G));
e Vuve Ei(G) :uvuV € E(Tr(G)) andu'v,uv € E3_{(Tr(G)).

Figure 3 illustrates the construction of(G). We can observe that, for eveayc
V(G) U {0}, there is no edge betweanand u'. Such pairs of vertices will be
calledtwin vertices and we denote by twi) the twin vertex ofu. Remark that
twin(twin(u)) = u.

By construction, the graphr(G) satisfies the following property:
Yu e Tr(G) : Ng(u) = Np(twin(u)) andNz(u) = Ny (twin(u))

This construction was already used to construct targethgrapbound the oriented
chromatic number, i.e. th@, 0)-mixed chromatic number (see e.g. [10,12]).

In the remainder, lef;2 = Tr(Ts) and Tyo = Tr(Tg) be the Tromp graphs ob-
tained fromTs and To, respectively. The vertex set @i, (resp.Ty) is V(Ts) U
V(Tg)U{ew,0'} ={1,2,3,4,5}U{1,2,3,4 5} U{w, '} (respV(Tg) UV (Tg) U
{o0,00'} = {1,2,3,4,5,6,7,8,9} U {1',2/,3,4,5,6/,7,8,9} U {00, 0'}). These
two graphs have remarkable symmetry and some useful prepejiven below.
It is not difficult to check thafl12 andTyg are vertex-transitive.



iy || (0 | 1)
1,1) 2,5 1,3
12) 34 | 45
1) 3.4 | 45
22) 25 | 1:3

Table 1. Property?, » of Ty».

Proposition 15 The graph T, has PropertiesP; s and Ps 5.

Proof. Property?; s is trivial.

SinceTy2 is vertex-transitive, it is enough to check that for evergusance of ver-
ticesS= (,X), x € V(T5) UV (TZ), and every 2-type-vectar, there exist at least
two a-neighbors ofs. However, there exists an obvious automorphiisi (T;2) —
V(T12) that fixeseo and o’ (i.e. h(c) = oo, h(eo’) = o’) with orbits (1,2, 3,4,5)
and(1',2,3,4,5). Therefore, we only need to consider the sequefwes) and
(0,1"). Table 1 gives, for each above-mentioned caseatheighbor ofS. O

Proposition 16 The graph 3o has propertiesP; o, P 4, andPs 1.

Proof. Property?; g is trivial.

SinceTyg is vertex-transitive, it is enough to check that for evergusance of ver-
ticesS= (w,X), x € V(Tg) UV (Tg), and every 2-type-vectar, there exist at least
four a-neighbors ofS. Table 2 gives, for each sequer8e- («,x) and each type-
vectora, the foura-neighbors ofS.

To prove Property; 1, we have to check that for every trianglev, w| and every 3-
type-vector, there exists at least omeneighbor ofS= (u,v,w). It is not difficult
to verify that it suffices to consider the following four case

Case 1:u,v,w € V(Tg) (sinceTy is arc-transitive, we just consider the triangles
[1,2,3],[1,2,4], [1,2,5], and[1, 2, 6)).

Case 2:u,v € V(Tg) andw € V(Tg) (by symmetry ofTy, we just consider the tri-
angles1,2 37, [1,2,4], [1,2,5], and[1,2,6']).

Case 3:u,v e V(Tg) andw € {0, '} (by symmetry ofTg, we just consider the
triangles[1,2, ] and[1,2,«']).

Case 4:u e V(Tg), ve V(T§), andw € {0, 0’} (by symmetry ofTg, we just con-
sider the trianglefl, 2', 0] and|[1,2',0']).

Table 3 gives, for each above-mentioned case and each 3xper a, the a-
neighbor ofS. O

10



1T

00, X
o @y | @2 | @3 | @8 | @5 [ @8 | @) | @8 | @9
(1,2) 2;3;4;7 1;3;5;8 1;2;6;9 1,5;6;7 2;4;,6;8 3;4;5;9 1;4;8;9 2;5;7;9 3;6;7;8
1,2) 5;6;8;9 4:6;7;9 4:5;7;8 2;3;8;9 1;3;7;9 1;2;7;8 2;3;5;6 1;3;4;6 1;2;4;5
(2.1) 5:6;8,9 | 4,6,7,9 | 4;5,7:8 | 2,3;8,9 | 13,79 | 112,78 | 2;3,5;6 | 1,3;4;6 | 1;2;4'5
(2.2) 2;3,4;7 | 1;3;5;8 | 1;2;6;9 | 15,67 | 2,4,6,8 | 3;4;5;9 | 1;4;8,9 | 2,5,7;9 | 3,678
(007)() ! / )/ / / / ! /
(0(1 GZ) (oo,l) (0072) (0073) (0074) (0075) (0076) (0077) (0078) (00791)
(1,1) 5;6;8;9 4:6;7;9 4;5;7,8 2;3;8;9 1;3;7;9 1;2;7,8 2;3;5;6 1;3;4;6 1;2;4;5
1,2) 2;3,4;,7 1;3;5;8 1;2;6;9 1,5;6;7 2,4;,6;8 3;4;5;9 1,4;8;9 2;5;7;9 3;6;7;8
(2,1) 2:34;7 | 1;3;5;8 | 1;2;6;,9 | 1,5:6;7 | 2;4;6;8 | 3;4;5;9 | 1;4;8;9 | 2;5;7;,9 | 3,6;7;8
(2.2) 5,6,8;9 | 4,6,7,9 | 4,5,7,8 | 2,3,8,9 | 1,3,7,9 | 1,2,7,8 | 2;3,5,6 | 1,346 | 1;2;4,5
Table 2. Property?, 4 of Too.
ueV(Ty),
, u,v e V(Ty), (To)
u,v,w e V(To) u,veV(Tg),weV(Tg) , veVv(Ty),
We {o0,00'}
We {m,'}
WYW il (123) | (124) | (1L25) | (126) || (L23) | L24) | 125) | 126) | 120) | 120) [ 120 | (12,0)
(1,1, oo oo oo oo’ 6 3 3 9 3 6 4 5
(1,1,2) 6 3 oo’ oo’ oo’ oo’ 6 3 5 4
(1,2,1) 5 7 5 4 5 5 4 5 3 6
1,2,2) 4 5 7 5 5 7 5 4 5 4 6 3
(2,1,1) 4 5 7 5 5 7 4 4 5 4 6 3
2,1,2) 5 7 4 4 4 5 7 5 4 5 3 6
(2,2,1) 6 3 3 9 o o0 o0 o0 6 3 5 4
(2,2,2) o o o o0 6 3 3 9 3 6 4 5

Table 3. PropertyPs 1 of Too.




Proposition 17 For every vertex u of2p (resp. T2) and for every(0, 2)-mixed2-
path, there exists at most one vertexV (Typ) (resp. (T12)) such that u and v are
not joined by such &0, 2)-mixed2-path. Moreover, \e {u,twin(u)}.

Proof. This follows directly from Property? 4 for Ty and Property?, » for Ty».
O

4 Outerplanar graphs

Let Og be the class of0, 2)-mixed outerplanar graphs with girth at legsOuter-
planar graphs form a strict subclass of partial 2-tree® (at®wn as series-parallel
graphs oK minor-free graphs); therefore, Corollary 3 and Theorem glynthat
9 < X(0,2)(03) < 12. We improve this result and give the ex&at2)-mixed chro-
matic number of outerplanar graphs for all girths:

Theorem 18

(1) X(02)(03) =9;
(2) X(0.2(0g) =5forg=4.

To prove Theorem 18, we need the following obvious propositi

Proposition 19 Every outerplanar graph G with girth g and(G) > 2 contains,
for somel > g—1, a (¢,2)-path in which the end-vertices are adjacent.

Proof. Consider a 2-connected componkindf G which is linked to the rest of the
graph by at most one cut-vertex. Then, the dual of this 2-eoted component is
either a single vertex{ is therefore a cycle) or a trekl (has at least two faces).Hf

is a cycle, it is clear that the requiréd 2)-path exists. IH has at least two faces,
then consider a face which contains at most tW&vertices. These two vertices
are necessarily adjacent and therefore, s@¢®s girthg, it contains the required
(¢,2)-path. O

Proof of Theorem 18(1). We first prove thag o 2)(03) < 9 by showing that every
(0,2)-mixed outerplanar graph admitsTg-coloring. LetH be a minimal (with
respect to the subgraph ord¢@) 2)-mixed outerplanar having ny-coloring. We
show thatH contains neither a 1-vertex nor(l, 2)-path, for anyk > 2, in which
the end-vertices are adjacent.

12



Fig. 4. An outerplanar graph with girth> 4 and(0, 2)-mixed chromatic number 5.

e Suppose thatl contains a 1-verten. By minimality of H, the outerplanar graph
H \ {u} admits &aTg-coloring. This coloring extends td by Property?; 4.

e Suppose thatl contains g2, 2)-pathP = [vp, 1, V2] in which the end-verticeg
andv, are adjacent. By minimality dfl, the outerplanar grapH \ {v1} admits
aTg-coloring. By PropertyP; 1, this coloring can be extended tdgcoloring of
H. Itis then clear thaH contains ndk, 2)-paths for anyk > 3.

We thus get a contradiction by Proposition 19. The grdpdoes not exist.

To complete the proof, observe that Theorem 7 gjgs)(03) > 9. DO

Proof of Theorem 18(2). We prove thatx o) (04) <5 by showing that every
(0,2)-mixed outerplanar graph with girth at least 4 admifg-&oloring. The proof
is almost the same as the previous one and can be obtaineglbgingk > 2 by
k > 3, use the fact thalls has propertyP; », and use Proposition 12.

To prove thatxg2)(04) > 5, we construct, for everg > 4, a(0,2)-mixed outer-
planar graptGg with girth g and (0, 2)-mixed chromatic number 5. The grag
consists of a cyclévo, vi, . .., Vag—2, Vo] With a chordvgvg; see Figure 4. Moreover,
the adjacency types are given below :

t(vi,Vi+1) = 1 for every 0<i < g—1 (solid lines in Figure 4);
t(vi,vit1) = 2 for everyg <i < 2g— 1 (dashed line in Figure 4);
t(Vo,Vog—2) = 2 (dashed lines in Figure 4);

t(vo,Vg) = 1if gis event(vo,Vg) = 2 otherwise (gray line in Figure 4);

If gis even (resp. odd), the graph induced by the edges of typesp @) is an odd
cycle, and the graph induced by the edges of type 2 (respah)asld path. Suppose
that there exists &0, 2)-mixed graphTy on four vertices such th&y admits aTy-
coloring. Then,T, must contain an odd cycle whose all edges are of type 1 (resp.
2): this is necessarily a triangle. Moreoveéj, must contains an odd path linking
h(vo) andh(vg) whose all edges are of type 2 (resp. 1). We can check thatsthis i
impossible. O

13



5 Partial 2-treesand partial 3-trees

In this section, we study th@, 2)-mixed chromatic number of partial 2-trees (also
known as series-parallel graphsky minor-free graphs) and partial 3-trees.

We first describe a suitable target graphs to color pasttedes. This will allow us
to get bounds for th¢€0, 2)-mixed chromatic number of partial 2-trees and partial
3-trees.

Theorem 20 Every(n,m)-mixed k-tree admits a T -coloring where T i@ m)-
mixed graph having Propertg ;.

Proof. We show that everyn, m)-mixed partialk-tree admits & -coloring for ev-
ery (n,m)-mixed graphT having Property# ;. We proceed by induction on the
number? of vertices of an, m)-mixedk-treeG (observe that it suffices to consider
k-trees, since partid-trees are subgraphs kitrees). If¢ = k thenG is a (n,m)-
mixed clique. A graph having Proper 1 necessarily contains evefry, m)-mixed
k-cliqgue as subgraph. Therefore, afry m)-mixed k-clique admits ar-coloring.
Suppose now that evefy, m)-mixedk-tree of order admits aT -coloring and let
G be any(n,m)-mixedk-tree of order/ + 1. The graphG necessarily contains a
vertexv with degreek whose neighbors inducekeclique and whose deletion leads
to ak-treeG'. The induction hypothesis ensures tltadmits aT -coloring f and
Property# 1 ensures that we can extefdo T-coloring ofG. O

We then give the exadi0, 2)-mixed chromatic number of partial 2-trees for all
girths (J; 5 denotes the class of partial 2-trees with girth at Iggst

Theorem 21

(1) X(02)(73) =9;
(2) X(02)(75) =8for4<g<5;
(3) X(02)(T2) =5 for g > 6.

Proof of Theorem 21(1). SinceTg has Property?, 1, Theorem 20 ensures that
every partial 2-tree admitsTg-coloring.

By Theorem 18(1), there exist outerplanar graphs itR)-mixed chromatic num-
ber 9. Since an outerplanar graph is a partial 2-tree, thaptetes the proof. O

Concerning the class of partial 2-trees with given girthh@uo and Pinlou [9]
proved the following structural lemma which is a generai@aof a previous re-
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Fig. 6. A vertexv s.t.d(v) > 3 andD} (v) = 2.

Fig. 5. A vertexv s.t.
d(v) > 3 andD} (v) = 1.

sult proposed by Lih, Wang, and Zhu [7]. For a gr&plwith girth at leasg and a
vertexv € V(G), we denote:

S (v) ={u€eV(G),d(u) > 3,such that
there exist a unique path of 2-vertices linkingndv,
or uandv are the end points of at least 1, 2)-path}

Then, we denot®F (v) = |5 (v)].

Lemma 22 [9] Let G be a partial2—tree with girth g such thad(G) > 2. Then,
one of the following holds:

(1) there existd[3] +1,2)—path;
(2) there exist &3-vertex v such that @(V) <2

As a corollary, one can deduce the following:

Corollary 23 [9] Every partial 2-tree with girth g> 3 contains either dl-vertex
ora([4],2)-path.

Proof of Theorem 21(2). We show that every partial 2-tree with girth at least 4
admits aTg-coloring. Note that is sufficient to consider the cgse 4. LetH be a
minimal (with respect to the subgraph ordé®)2)-mixed partial 2-tree with girth

4 having noTlg-coloring. It is assumed thét is connected, as different components
can be independentliz-colored. We show thd#l contains neither a 1-vertex, nor
a(3,2)-path, nor a vertex with D} (v) < 2.

(1) Suppose thatl contains a 1-vertex. Due to the minimality oH, the graph
H \ {v} admits aTlg-coloring f. The coloringf can be extended td by Prop-
erty P, 3.

(2) Suppose thatl contains &(3,2)-path[u,vq, V2, w]. Due to the minimality of
H, the graphH \ {v1,v2} admits aTg-coloring f. Proposition 12 ensures that
f can be extended to®-coloring ofH.

(3) Suppose thatl contains a vertex such thatd(v) > 3 andD(v) = 1; see
Figure 5. ThenS; (v) = {w} and sinceH does not contains &3,2)-path,

15



there exist at least thre@,2)-paths linkingv andw. Due to the minimal-
ity of H, the graphH \ {v,us,...,u} admits aTg-coloring f. We then set
f(v) ¢ {f(w), f(w)+4 (mod 8}. Proposition 13 ensures thatcan be ex-
tended tcH.

(4) Suppose thatl contains a vertex such thatd(v) > 3 andD(v) = 2; see
Figure 6. Ther8] (v) = {w1,w,}.

Suppose first that, for somes [1,2], sayi = 1, the arovw; exists; see Fig-
ure 6(a). In this case, sind¢ does not contain ang3, 2)-path, the aro/w;
is the only path linkingu andw;. Then, sinced(v) > 3, there are at least
two (2, 2)-paths linkingv andw,. Due to the minimality oH, the graptH \
{V,ug,...,uc} admits alg-coloring f. Then, by Property 3, w; allows three
colors forv while w; forbids two colors forv, namely f(w;) and f(wy) +4
(mod 8), by Proposition 13. The coloring can be extended td.

Suppose finally that there exist at least t{&2)-paths linkingv andw;
(resp.w»); see Figure 6(b). Due to the minimality &f, the graphH \ {v,
ui,..., Uk X1, .., X } admits alg-coloring f. Then, by Proposition 13y; and
w, each forbids two colors fov, namelyf(w1), f(w1) +4 (mod 8, f(wy),
and f(w2) +4 (mod 8. We thus have four available colors feland thusf
can be extended td.

We thus get a contradiction by Lemma 22.

To complete the proof we construct a partial 2-tree withhgiitand(0, 2)-mixed
chromatic number 8.

The size of a universal graph is at least 5 by Theorem 18(2)us®e a computer
program to rule out target graphs on 5, 6, and 7 vertices andfder. Let us con-
struct the familyG;, t > 0, of series-parallel graphs of girth 5 as follows:

e (g consists in two non-adjacent vertiagandx.

e G;,1 consists in two non-adjacent verticesndx joined by the eight possible
(3,2)-paths of the formu, v;,w;, Z|, 1 < i < 8 (recall that each edge can have two
different types), and eight copiesGf such that the vertexof G;, ; is identified
with the vertexu of every copy ofG;, and every vertexy; of G;1 is identified
with the vertexx of one copy ofG;.

Consider g0, 2)-mixed complete graph of ordern. We define a family;, t > 0,
of Boolean square matrices of ordeas follows: for 1<, j < n; M[i, j] corre-
sponds to the existence offacoloring of G; such that its vertex gets color and
its vertexx gets colorj.

If there existg > 0 and 1< i < nsuch that[i, j] is false for every K j <n, then
T is not universal. Indeed, since every potential target lyi@porder less than
has been previously ruled out, there exists a series-phgaiphW such that alh
colors appear in every-coloring of W. Now, if we identify each vertex aiV with
the vertexu of a copy ofG;, the vertexx of a copy ofG; attached to a vertex av
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coloredi cannot be colored.

O

Proof of Theorem 21(3). We show that every partial 2-tree with girth at least 6
admits aTs-coloring. Note that is sufficient to consider the cgse 6. LetH be a
minimal (with respect to the subgraph ordéb)2)-mixed partial 2-tree with girth

6 having nols-coloring. It is assumed that is connected, as different components
can be independentliz-colored. We show thadtl contains neither a 1-vertex nor a
(3,2)-path.

(1) Suppose thatl contains a 1-vertex. Due to the minimality oH, the graph
H \ {v} admits aTs-coloring f. The coloringf can be extended td by Prop-
erty P ».

(2) Suppose thatl contains &(3,2)-path[u,vq, V2, w]. Due to the minimality of
H, the graphH \ {v1,v»} admits aTs-coloring f. Proposition 12 ensures that
f can be extended to®-coloring ofH

We thus get a contradiction by Corollary 23.

Note that Theorem 18 states that there exists, for every girt 4, an outerplanar
graphG with girth g such thai g 2)(G) > 5. Since the class of outerplanar graphs
is a strict subclass of the class of partial 2-trees, thafptera the proof. O

The last result of this section concerns partial 3-treesolzoy 9 shows that
X(02)(T3) > 20. We prove that this bound is tight:

Theorem 24 xg.2)(73) = 20.

Proof. SinceTyg has PropertyPs 1, Theorem 20 ensures that every partial 3-tree
admits alpp-coloring. O

6 Planar graphs

Finally, we bound in this section th@,2)-mixed chromatic number of sparse

graphs. Thaverage degreef a graphG, denoted by a@3), is defined as a@) =
z‘l/E((g))“ . Themaximum average degre¢ G, denoted by madb), is then defined as
the maximum of the average degrees taken over all subgrdygks o

mad(G) = max(adH)}.
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Theorem 25 Let G be &a(0,2)-mixed graph.

(1) IfmadG) < 10 thenx 02)(G) < 20.
(2) IfmadG) < 3 thenx 02)(G) <12
(3) IfmadG) < g thenx 2 (G) < 8.
(4) If madG) < 4, thenxg2)(G) =5.

Bounds for the(0,2)-mixed chromatic number of planar graphs can be deduced
from the previous theorem since the maximum average degreédhe girth of
planar graphs are linked by the following well-known redati

Claim 26 [3] Let G be a planar graph with girth g. ThemadG) < 2+ 9%42

By means of the previous claim, we get the following resulievePy denotes the
class of(0, 2)-mixed planar graphs with girth at leagt

Theorem 27
(1) X(02)(Ps) < 20.
(2) X(0,2)(Pe) <12
(3) X(0,2)(Ps) <8
(4) X(0,2)(P14) =5

Our proof technique is based on the well-known method of cxde configura-
tions and discharging procedure. We consider a minimal tepexampleH to the
considered theorem. We prove thtdoes not contain a s&of configurations.
Then we prove, using a discharging procedure, that evephgrantaining none of

the configurations o6 has maximum average degree greater than that required by
the theorem, that contradicting tHatis a counterexample.

6.1 Graphs with maximum average degree less t3§an

In this subsection, we prove that evefy 2)-mixed graph with maximum average
degree less thé}Q admits aTyg-coloring.

Let us define the partial ordet. Let n3(G) be the number of3-vertices inG.
For any two graph$s; and G,, we haveG; = Gy if and only if G; and G, are
isomorphic; moreover, we ha¥g, < G; if and only if at least one of the following
conditions hold:

e Gy is a proper subgraph @o;
e nN3(G1) < n3(Gy).

Note that this partial order is well-defined, sinc&i is a proper subgraph @3,
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Fig. 7.

thenng(G1) < n3(Gy). So= is a partial linear extension of the subgraph poset.

Lemma 28 A minimal counterexample (according t0) to Theorem 25(1) does
not contain the following configurations:

(1)
(2)
3)
(4)

a l-vertex;

the configuration depicted in Figure 7(a);
the configuration depicted in Figure 7(b);
the configuration depicted in Figure 7(c);

Proof. LetH be a minimal (with respect t&) (0, 2)-mixed graph with ma@H) <
%3 which does not admit &q-coloring.It is assumed th&t is connected, as differ-
ent components can be independeiity-colored.

(1)

(2)

3)

(4)

Suppose that contains a 1-vertex. Due to the minimality oH, the graph

H \ {v} admits aTxp-coloring f. Property?; g ensures that can be extended
to aTyg-coloring ofH.

Suppose thaH contains the configuration depicted in Figure 7(a). Due to
the minimality ofH, the graptH \ {v,v1,..., vy} admits aTyp-coloring f. By
Property?; g, u allows nine colors fov, while eachvy, ..., v, forbids only one
color forv by Proposition 17. Thud, can be extended toBg-coloring ofH
sincen < 8.

Suppose thatl contains the configuration depicted in Figure 7(b). Due & th
minimality of H, the graptH \ {v1,...,vn,v},...,V,} admits aTxp-coloring f.

By Property®, 4, U; andu, allows four colors fov while each ofv;,..., v,
forbids only one color fow by Proposition 17. Thusf, can be extended to a
Too-coloring ofH sincen < 3.

Suppose thatl contains the configuration depicted in Figure 7(c). Sikce
contains neither &1-vertex, nor configuration of Figure 7(h);, up, andu
are=3-vertices. LeH’ be the graph obtained frokh\ {v} by adding, for every

1 <i < j <3, a2-pathjoiningi to uj in such a way that its type is the same
type as the patfu;,v,u;j] in H. We haveH’ < H sincens(H’) = n3(H) — 1,
and one can check that matl) < 1—3? [10]. Any Txp-coloring f of H” induces

a coloring ofH \ {v} that can be extended td by Property?s ;.
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Proof of Theorem 25(1) Let H be a minimal (with respect t&) (0, 2)-mixed
graph with ma@H) < 20 WhICh does not admit &p-coloring. We define the weight
functionwby w(v) = d( v) for everyv € V(H) and a discharging rule (R) as follows:

(R) Each=4-vertex give% to each adjacent 2-vertex.
Letv be ak-vertex ofH. By Lemmas 28(1) and 28(4), we hake 2 andk # 3.

e If k=2, then by Lemma 28(2), every 2-vertextdthas two neighbors of degree
at Ieast 3. Thereforey receives% from each neighbor and henasgf(v) = 2+
2% 3 130

e If 4 <k <5, then by Lemma 28(3); has at mosk — 3 neighbors of degree 2.
Thereforey gives at most-2, and hencew' (v) > k— 253 > 10

e If 6 <k<9,then by Lemma 28(2); has at mosk — 2 nelghbors of degree 2.
Thereforey gives at mos£-2, and hencew' (v) > k— 242 > 10

o If k> 10, therv gives at mos& and henceo* (v) > k — % > 10

Then, for allv € V(G), w*(v) > 1—30 once the discharging is completed. Hence

madH) > £, a contradiction. O
6.2 Graphs with maximum average degree less than

In this subsection, we prove that evéfy 2)-mixed graph with maximum average
degree less that 3 admitslg-coloring.

Lemma29 A minimal counterexample to Theorem 25(2) does not contairict-
lowing configurations:

(1) al-vertex;
(2) the configuration depicted in Figure 8(a);
(3) the configuration depicted in Figure 8(b);

Proof. LetH be a minimal (with respect to subgraph the ord8rp)-mixed graph
with madH) < 3 which does not admit &;,-coloring. It is assumed thad is
connected, as different components can be independinthyolored.
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(1) Suppose thatl contains a 1-vertex. Due to the minimality oH, the graph
H\ {v} admits aTl,-coloring f. Property?; 5 ensures that can be extended
to aTy-coloring ofH.

(2) Suppose thaH contains the configuration depicted in Figure 8(a). Due to
the minimality ofH, the graprH \ {v,v1,...,vy} admits aT;,-coloring f. By
Property?; 5, u allows five colors fowv, while eachvy, .. ., v;, forbids only one
color forv by Proposition 17. Thud, can be extended toR2-coloring ofH
sincen < 4.

(3) Suppose thdtl contains the configuration depicted in Figure 8(b). Due & th
minimality of H, the graptH \ {v} admits aly,-coloring f. By Property? »,

u; andu, allows two colors fow while V' forbids only one color fow by
Proposition 17. Thusf, can be extended toB2-coloring ofH.

Proof of Theorem 25(2). LetH be a minimal (with respect to subgraph the order)
(0,2)-mixed graph with ma@) < 3 which does not admit &-coloring. We de-
fine the weight functiorw by w(v) = d(v) for everyv € V(H) and a discharging
rule (R) as follows:

(R) Each”3-vertex give% to each adjacent 2-vertex.
Letv be ak-vertex ofH. By Lemma 29(1), we havie> 2.

e If k=2, then by Lemma 29(2), every 2-vertextdthas two neighbors of degree
at least 3. Thereforey receives% from each neighbor and henasgf(v) = 2+

2x1=3
2
e If k=3, then by Lemma 29(3) is not adjacent to a 2-vertex. Heneg(v) =
w(v) =3.

e If 4 <k <5, then by Lemma 29(2); has at mosk — 2 neighbors of degree 2.
Thereforey gives at most;2 and hencev* (v) > k— 52 > 3.
e If k> 6, thenv gives at mosg and hencev*(v) > k—'g > 3.

Then, foralive V(G), w*(v) > 3 once the discharging is completed. Hence (hBd>
3, a contradiction. O

6.3 Graphs with maximum average degree less @an

In this subsection, we prove that evefy 2)-mixed graph with maximum average
degree less thdt admits aTg-coloring.

Lemma 30 A minimal counterexample to Theorem 25(3) does not contairict-
lowing configurations:
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Vo \/2
Fig. 9. Configuration of Lemma 30(3).

(1) al-vertex;
(2) a(3,2)-path B = [u,vq,Vv2,W;
(3) the configuration depicted in Figure 9.

Proof. LetH be a minimal (with respect to subgraph the ordérp)-mixed graph
with madH) < % which does not admit &g-coloring. It is assumed thadd is
connected, as different components can be independiatylored.

(1) Suppose thatl contains a 1-vertex. Due to the minimality oH, the graph
H \ {v} admits aTg-coloring f. Property?; 3 ensures thaf can be extended
to aTg-coloring ofH.

(2) Suppose that contains g3, 2)-pathPs; = [u, V1, V2, w]. Due to the minimality
of H, the graphH \ {v1,Vv2} admits aTg-coloring f. Proposition 12 ensures
that f can be extended to®-coloring ofH.

(3) Suppose thatl contains the configuration depicted in Figure 9. Due to the
minimality of H, the graphH \ {v,v1,v>} admits aTg-coloring f. By Prop-
erty 21 3, the vertexu allows three colors fov, while each of/; andv;, forbids
only one color forv by Proposition 13. The colorinfj can be extended to a
Tg-coloring ofH.

Proof of Theorem 25(3). LetH be a minimal (with respect to the subgraph order)
(0,2)-mixed graph with ma@H ) < % which does not admit &-coloring. We define
the weight functionw by w(v) = d(v) for everyv € V(H) and a discharging rule
(R) as follows:

(R) Each”3-vertex give% to each adjacent 2-vertex.
Letv be ak-vertex ofH. By Lemma 30(1), we havie> 2.

e If k=2, then by Lemma 30(2) every 2-vertextdthas two neighbors of degree
at least 3. Thereforey receives% from each neighbor and henasgf(v) = 2+
2 X % = %.

e If k=3, then by Lemma 30(3y,has at most one neighbor of degree 2. Therefore,
v gives at mos§, and hencew*(v) > 3— % =3

o If k> 4, thenv gives at mosE and henceo* (v) > k—

wlx
wloo

>
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Fig. 10. Configuration of Lemma 31(3).

Then, foralve V(G), w*(v) > % once the discharging is completed. Hence (kbd>

8 acontradiction. O

6.4 Graphs with maximum average degree less @an

In this subsection, we prove that evefy 2)-mixed graph with maximum average
degree less th%t admits als-coloring.

Lemma 31 A minimal counterexample to Theorem 25(4) does not contirict-
lowing configurations:

(1) al-vertex;
(2) a(4,2)-path B = [u,v1,V2,V3,W];
(3) the configuration of Figure 10.

Proof. LetH be a minimal (with respect to the subgraph ord8rp)-mixed graph
with madH) < % which does not admit ds-coloring. It is assumed thad is
connected, as different components can be independintylored.

(1) Suppose thatl contains a 1-vertex. Due to the minimality oH, the graph
H \ {v} admits aTs-coloring f. Property?; » ensures thaf can be extended
to aTs-coloring ofH.

(2) Suppose that contains &4,2)-pathPs = [u,Vv1,V2,V3,W|. Due to the min-
imality of H, the graphH \ {vi1,v2,v3} admits aTs-coloring f. By Prop-
erty P 5, u allows one color fow; which is distinct fromf (w). Then, Propo-
sition 12 ensures thdtcan be extended to&-coloring ofH.

(3) Suppose thatl contains the configuration of Figure 10. By the minimality
of G, the graphH \ {x,us, uz,v1,Vv2, w1} admits aTs-coloring f. By Proposi-
tion 14, w forbids two colors forx, while each ofu andv forbids only one
color forx by Proposition 12. Thus, we have at least one coloxfand thus
f can be extended to®-coloring ofH.

Proof of Theorem 25(4). Let H be a minimal (with respect to subgraph order)
(0,2)-mixed graph with ma@H ) < % which does not admit &-coloring. We define
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the weight functiorw by w(v) = d(v) for everyv e V(H). A weak2-vertex is a 2-
vertex adjacent to a 2-vertex, whilesaong2-vertex is a 2-vertex not adjacent to a
2-vertex. The discharging rules (R1) and (R2) are definedlasifs:

(R1) Each”3-vertex give% to each adjacent weak 2-vertex.
(R2) Each”3-vertex give% to each adjacent strong 2-vertex.

Letv be ak-vertex ofH. By Lemma 31(1), we havie> 2.

o If k=2, then by Lemma 31(2), ¥ is weak, it is nevertheless adjacent t6 2

vertex. Thus, it receive§ by (R1). If vis strong, then it receive@from each of
its two neighbors of degree at least 3 by (R2). Heng&y) = 2+ min{%;z X
1\ _ 7
6/ =3

o If k=3, then by Lemma 31(3),gives at mostmaf2 x 3;2x 2 +3;3x 1} =
Hencew*(v) >3- 2= 1.

o If k> 4, thenv gives at mosk and hences*(v) > k—

wiNy

>

wlx
Wi

Then, forallveV(G), w*(v) > % once the discharging is completed. Hence (ko>
£, a contradiction. O

7 Concluding remarks

In this paper, we investigated the chromatic number of Zemgored graphs,
which are a special case ¢f, m)-mixed graphs witm = 0 andm = 2. In addi-
tion, several results are known for the chromatic numbefOof)-mixed graphs
(i.e. simple graphs) andl, 0)-mixed graphs (i.e. oriented graphs). For the other
values ofn andm, we only obtained estimates (see Section 2).

A natural question is whether these general bounds areftgebme specific val-
ues ofn andm. In particular, the case®, m) = (1,1) and(n,m) = (2,0) seem to
be challenging cases to consider. One possible way to geidsomould might be
to construct target graphs with Propemy1, for somek. We recently succeeded
to construct g1, 1)-mixed graph of order 21 and(2,0)-mixed graph of order 28
having both Property, 1. By means of Theorem 20, this gives that evetyl)-
mixed 2-tree has chromatic number at most 21 and that é26y-mixed 2-tree
has chromatic number at most 28.
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