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Abstract

In this paper, we study homomorphisms of 2-edge-colored graphs, that is graphs with edges
colored with two colors. We consider various graph classes (outerplanar graphs, partial 2-
trees, partial 3-trees, planar graphs) and the problem is tofind, for each class, the smallest
number of vertices of a 2-edge-colored graphH such that each graph of the considered
class admits a homomorphism toH.
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1 Introduction

Several papers related to the study of homomorphisms as a generalization of col-
orings have been done in the context of oriented graphs (see the monograph [5] by
Nešetřil and Hell for more details).
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Our general aim is to study homomorphisms of(n,m)-mixed graphs. This notion
was introduced by Nešetřil and Raspaud [8] as a generalization of the notion of
homomorphisms of edge-colored graphs (see e.g. [1]) and thenotion of oriented
coloring (see e.g. [13]).

A mixed graph Gis a graph in which some pair of vertices are linked by edges
and some are linked by arcs, and such that the underlying graph is simple (no
multiple edges/arcs or loops). A mixed graphG is usually denoted by an ordered
triple G = (V(G);A(G),E(G)) with V(G) its vertex set,E(G) its edge set, and
A(G) its arc set. Oriented and undirected graphs are special cases of mixed graphs.

An (n,m)-mixed graph Gis a generalisation of a mixed graph where vertices are
linked by arcsA(G) and edgesE(G) such that the arcs are colored withn col-
ors and the edges are colored withm colors. In other words, there is a partition
A(G) = A1(G)∪ . . .∪An(G) of the set of arcs ofG, wereAi(G) contains all arcs
with color i and a partitionE(G) = E1(G)∪ . . .∪Em(G) of the edges ofG, where
E j(G) contains all edges with colorj. Therefore, there exist 2n+mpossibilities of
adjacency between two vertices ofG. For a vertexu∈V(G), we defineN+

i (u) (resp.
N−

i (u)) to be the set of verticesv of G such that−→uv∈Ai(G) (resp.−→vu∈Ai(G)). Sim-
ilarly, we defineNi(u) to be the set of verticesv of G such thatuv∈ Ei(G). Then,
for two adjacent verticesu andv, we can define theadjacency typeof the ordered
pair (u,v) as:

t(u,v) =







i+ if v∈ N+
i (u)

i− if v∈ N−
i (u)

i if v∈ Ni(u)

Let u~v denote thatu andv are adjacent inG, that is eitheruv∈E(G), or−→uv∈A(G),
or−→vu∈ A(G).

A k-coloring of a (n,m)-mixed graphG is a mappingf from V(G) to a set ofk
colors such that(1) f (u) 6= f (v) wheneveru~v, and(2) f (u) 6= f (x) wheneveru~v
andx~y with f (v) = f (y) andt(u,v) 6= t(x,y). In other word, ak-coloring ofG is a
partition of the vertices ofG into k stable setsS1,S2, . . . ,Sk such that there are only
edges of the same color, or only arcs of the same orientation and the same color
between any pair of stable setsSi andSj .

LetG=(V(G);
Sn

i=1Ai(G),
Sm

j=1E j(G)) andH =(V(H);
Sn

i=1Ai(H),
Sm

j=1 E j(H))
be two (n,m)-mixed graphs. Ahomomorphismfrom G to H is a mappingh :

V(G) → V(H) such that
−−−−−−→
h(u),h(v) ∈ Ai(H) whenever−→uv∈ Ai(G) (for every i ∈

{1, . . .n}), andh(u)h(v) ∈ E j(H) wheneveruv∈ E j(G) (for every j ∈ {1, . . .m}).

A k-coloring of G can be equivalently viewed as a homomorphism fromG to H,
whereH is a (n,m)-mixed graph of orderk (the order of a graph is its number
of vertices). The existence of such a homomorphism fromG to H is denoted by
G → H. The vertices ofH are calledcolors, and we say thatG is H-colorable.
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Given an(n,m)-mixed graphG, the problem is to find the smallest number of col-
ors needed to colorG, or, in other words, to find the smallest number of vertices ofa
(n,m)-mixed graphH such thatG→H. This number is denoted byχ(n,m)(G) and is
called thechromatic numberof the(n,m)-mixed graphG. For a simple graphG, the
(n,m)-mixed chromatic numberis the maximum of the chromatic numbers taken
over all the possible(n,m)-mixed graphs havingG as underlying graph. Note that
χ(0,1)(G) is the ordinary chromatic numberχ(G), andχ(1,0)(G) is the oriented chro-
matic numberχo(G). Given a familyF of simple graphs, we denote byχ(n,m)(F)
the maximum ofχ(n,m)(G) taken over all membersG in F.

In this paper, we mainly study three particular classes of(0,2)-mixed graphs: outer-
planar graphs, partialk-trees, and planar graphs. This paper is organised as follows.
The next section is dedicated to state some known results andto give some prelim-
inary results on the(n,m)-mixed chromatic number of partialk-trees. In Section 3,
we describe the constructions of the target graphs we use in the next sections. In
Section 4, we give the complete classification for the(0,2)-mixed chromatic num-
ber of outerplanar graphs for every girth. Section 5 is devoted to partial 2-trees with
given girth and partial 3-trees. Finally, we obtain upper bounds for the(0,2)-mixed
chromatic number of planar graphs with given girth in Section 6.

Note that a complexity result of Edwards and McDiarmid [4] onthe harmonious
chromatic number implies that to find the(0,2)-mixed chromatic number of a graph
is in general an NP-complete problem.

Notation We use the following notions. LetG be a(n,m)-mixed graph. For a
vertex v of G, we denote bydG(v) its degree (subscripts are omitted when the
considered graph is clearly identified from the context). A vertex of degreek (resp.
at leastk, at mostk) is called ak-vertex(resp.≥k-vertex, ≤k-vertex). We denote by
δ(G) the smallest degree of a vertex inG. A pathPk = [u,v1, . . . ,vk−1,w] of length
k (i.e. formed byk edges) is called ak-path. If all internal verticesvi of Pk are
vertices of degreed, thenPk is a(k,d)-path. If two graphsG andH are isomorphic,
we denote it byG∼= H.

We denote byL (resp.F, O, T(k), P) the class of(n,m)-mixed paths (resp. forests,
outerplanar graphs, partialk-trees, planar graphs).

Drawing conventions In Sections 5 and 6, we adopt the following drawing con-
ventions for aconfiguration Ccontained in a graphG. If u andv are two vertices
of C, then they are adjacent inG if and only if they are adjacent inC. Moreover,
the neighbors of awhitevertex inG are exactly its neighbors inC, whereas ablack
vertex may have neighbors outside ofC. Two or more black vertices inC may coin-
cide in a single vertex inG, provided they do not share a common white neighbor.
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Finally, an edge between two verticesu andv will mean thatu~v (i.e. u andv are
linked by either an edge or an arc of any type).

2 Preliminary results

In this section, we state some known lower and upper bounds for the(n,m)-mixed
chromatic number of outerplanar graphs, partialk-trees, and planar graphs, for ev-
ery nonnegativen andm. We then improve lower bounds for the(n,m)-mixed chro-
matic number of partialk-trees and planar graphs for everym even.

Recall that anacyclic coloringof a simple graphG, is a proper vertex-coloring
satisfying that every cycle ofG receives at least three colors. Theacyclic chromatic
numberof G, denoted byχa(G), is the smallestk such thatG admits an acyclic
vertex-coloring. The class of graphs with acyclic chromatic number at mostk is
denoted byAk. Nešetřil and Raspaud [8] proved that the families of graphs with
bounded acyclic chromatic number have bounded(n,m)-mixed chromatic number.
More precisely:

Theorem 1 [8] χ(n,m)(Ak) ≤ k(2n+m)k−1.

Remark that this result implies the result of Raspaud and Sopena [11] for oriented
graphs (χ(1,0)(Ak) ≤ k · 2k−1) and the result of Alon and Marshall [1] for them-
edge-colored graphs (χ(0,m)(Ak) ≤ k ·mk−1). Recently, Huemer et al. [6] proved
that this bound is tight fork≥ 3: χ(n,m)(Ak) = k(2n+m)k−1.

Combining Theorem 1 with the well-known result of Borodin [2] (every planar
graph has an acyclic chromatic number at most five), we get thenext result:

Corollary 2 [8] χ(n,m)(P) ≤ 5(2n+m)4.

A k-tree is a simple graph obtained from the complete graphKk by repeatedly
inserting new vertices adjacent to an existing clique of size k. A partial k-tree is
a subgraph of ak-tree. It is not difficult to see that every partialk-tree has acyclic
chromatic number at most(k+1): starting with a properk-coloring of the complete
graphKk, every newly inserted vertex has exactlyk neighbors and can be thus
colored using a(k+1)-st color. Moreover, this coloring is clearly acyclic sinceall
the neighbors of a newly inserted vertex have pairwise distinct colors. Therefore,
by Theorem 1 we get:

Corollary 3 For every n≥ 0, m≥ 0, and k≥ 1, χ(n,m)(T
(k)) ≤ (k+1)(2n+m)k.

Concerning the class of partial 1-trees (which are usual forests), the previous theo-
rem givesχ(n,m)(F) ≤ 2(2n+m). Nešetřil and Raspaud [8] gave the exact(n,m)-
mixed chromatic number of(n,m)-mixed forests.
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Theorem 4 [8] χ(n,m)(F) = 2n+m+ε whereε = 1 for m odd or m= 0, andε = 2
for m> 0 even.

Huemer et al. [6] recently provided lower bounds for the(n,m)-mixed chromatic
number of some graph classes, such as paths, outerplanar graphs, partialk-trees, or
planar graphs. More precisely:

Theorem 5 [6] For every n≥ 0 and m≥ 0,

χ(n,m)(T
(k)) ≥ (2n+m)k + ε(2n+m)k−1+

(2n+m)k−1−1
(2n+m)−1

whereε = 1 for m odd or m= 0, andε = 2 for m> 0 even.

Theorem 6 [6] χ(n,m)(L) = χ(n,m)(F).

This proves that the lower bound of Theorem 4 is reached with paths. By means
of this result, one can get the following lower bounds for outerplanar graphs and
planar graphs:

Theorem 7 [6] Let ε = 1 for m odd or m= 0, andε = 2 for m> 0 even.

(1) χ(n,m)(O) ≥ (2n+m)2+ ε(2n+m)+1
(2) χ(n,m)(P) ≥ (2n+m)3+ ε(2n+m)2+(2n+m)+1

We shall prove that the lower bound for the(n,m)-mixed chromatic number of
partial k-trees given by Theorem 5 can be improved by one whenm is even and
k≥ 3. This will allow us to get a tight bound for the(0,2)-mixed chromatic number
of partial 3-trees in Section 5.

Theorem 8 For every k≥ 3, n≥ 0 and m> 0 even,

χ(n,m)(T
(k)) ≥ (2n+m)k +2(2n+m)k−1+

(2n+m)k−1−1
(2n+m)−1

+1

Proof. Let a(x) = (2n+m)x+2(2n+m)x−1+
(2n+m)x−1−1

(2n+m)−1 . To prove our result, we

construct an(n,m)-mixed partialk-treeT ′ which admits no homomorphism to any
(n,m)-mixed complete graph of ordera(k).

Theorem 5 insures that there exists a(n,m)-mixed partial(k−1)-treeT such that
χ(n,m)(T) ≥ a(k−1). Let T ′ be the(n,m)-mixed partialk-tree obtained by taking
2n+mdisjoint copies ofT, namelyT+

1 ,T+
2 , . . . ,T+

n , T−
1 ,T−

2 , . . . ,T−
n , T1,T2, . . . ,Tm,

and a universal vertexu in such a way thatt(u,v)= i+ (resp.t(u,v)= i−, t(u,v)= i)
for every v ∈ V(T+

i ) (resp.v ∈ V(T−
i ), v ∈ V(Ti)). Such a construction clearly

guaranties thatT ′ is a partialk-tree. By construction, a colorc cannot appear in two
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different copies ofT. Moreover, the vertexu must be assigned a color distinct from
those assigned to all other vertices. Hence, the number of colors needed to colorT ′

is at least(2n+m)×a(k−1)+1= a(k).

Suppose thatT ′ hasℓ vertices and letV(T ′) = {v1,v2, . . . ,vℓ}. Now consider the
(n,m)-mixed partialk-treeT ′′ obtained as follows. We takeℓ+ 1 copies ofT ′, a
first one namedT ′

0, and thek remaining one namedT ′
v1

,T ′
v2

, . . . ,T ′
vl

(one copy per
vertex of T ′). Then, for each vertexv of T ′

0, we glue the universal vertex ofT ′
v

with the vertexv of T ′
0. The graphT ′′ is clearly a partialk-tree. Suppose thatT ′′

is Ka(k)-colorable for some(n,m)-mixed complete graphKa(k) of ordera(k). Since
χ(n,m)(T

′
0) ≥ a(k), each of thea(k) colors appears on at least one vertex ofV(T′

0).
Therefore, since each vertexv ∈ V(T ′

0) is a universal vertex of a copy ofT ′, we
necessarily have, for every vertexw ∈ V(Ka(k)), |N

+
i (w)| ≥ a(k−1), |N−

i (w)| ≥
a(k−1), and|Nj(w)| ≥ a(k−1) for every 1≤ i ≤ n and 1≤ j ≤ m. SinceKa(k) has
a(k) vertices, its maximum degree isa(k)−1 = (2n+m)×a(k−1), that implies
that |N+

i (w)| = a(k− 1), |N−
i (w)| = a(k− 1), and |Nj(w)| = a(k− 1) for every

1≤ i ≤ n and 1≤ j ≤ m. Let us now consider the subgraphK′ of Ka(k) induced by
the edgesuvsuch thatt(u,v) = 1 (sincem> 0, there exist edges of type 1, and thus
K′ is non empty). This subgraph hasa(k) vertices and isa(k−1)-regular. Then, we
obviously have∑v∈V(K′) d(v) = a(k)×a(k−1). However, the sum of the degrees
should be even, buta(k)×a(k−1) is odd sincem is even. Then, the graphKa(k)
does not exist. 2

Note that for planar partial 3-trees, the partial 3-treeT ′′ constructed in the previ-
ous proof is also a planar graph. Therefore, this also improves the bound of Theo-
rem 7(2) for everym≥ 0 even.

Corollary 9 For every n≥ 0 and m> 0 even,

χ(n,m)(T
(3) ∩P) ≥ (2n+m)3+2(2n+m)2+(2n+m)+2.

3 The target graphs

In the rest of this paper, we focus on the class of(0,2)-mixed graphs, that is 2-
edge-colored graphs. Therefore, the target graphs provided in this section are 2-
edge-colored graphs.

When studying homomorphisms, to get upper bounds for the(n,m)-mixed chro-
matic number of a graph classC, one often tries to find anuniversaltarget graph
for C, that is a target graphH such that all the graphs ofC admits a homomorphism
to H. To prove that a target graph is universal for a graph class, we need “useful”
properties of this target graph. In this section, we construct five (0,2)-mixed tar-
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7 8

(a) C3×C3

7

1

3

6

2

4

5

0

(b)

3

1

25

4

(c) C5

Fig. 1. Construction of the three target graphsT9, T8, andT5.

get graphs which will be used to get upper bounds for the(0,2)-mixed chromatic
number. Their useful properties are given below.

First consider the three graphs depicted in Figures 1(a), 1(b), and 1(c). These graphs
are all self complementary (i.e. isomorphic to their complement). Thus, letT9 (resp.
T8, T5) be the complete(0,2)-mixed graphs on 9 (resp. 8, 5) vertices where the
edges of each color induce an isomorphic copy of the graph depicted in Figure 1(a)
(resp. 1(b), 1(c)). In other words, the edges of the graph depicted in Figure 1(a)
(resp. 1(b), 1(c)) are the edges of type 1 ofT9 (resp.T8, T5) and the non-edges are
the edges of type 2 ofT9 (resp.T8, T5).

It is not difficult to check thatT9 andT5 are vertex-transitiveandcolored-edge-
transitive(i.e. for every two edgesuv andu′v′ of the same color, there exists an
automorphism that mapsu to u′ andv to v′).

A type-vectorof sizen (or a n-type-vector) is a sequenceα = (α1,α2, . . . ,αn) ∈
{1,2}n of n elements. LetS= (v1,v2, . . . ,vn) be a sequence ofn vertices of a(0,2)-
mixed graphT = (V(T);

S2
i=1Ei(T)) which induces ann-clique subgraph; a vertex

u is said to be anα-neighbor of Sif for every i, 1≤ i ≤ n, we haveuvi ∈ Eαi(T).

In the remainder, we say that a(0,2)-mixed graphT hasPropertyPn,k if, for ev-
ery 1≤ ℓ ≤ n, for every sequenceS of ℓ vertices ofT which induces anℓ-clique
subgraph, and anyℓ-type-vectorα, there exist at leastk α-neighbors ofS.

Proposition 10 The graph T9 has PropertiesP1,4 andP2,1.

Proof. PropertyP1,4 is trivial.

Recall thatT9 is colored-edge-transitive, and that the two graphs induced by the
edges of each color inT9 are isomorphic. Therefore, it is enough to show that the
sequence of verticesS= (1,2) has at least oneα-neighbor for anyα ∈ {1,2}2. If
α = (1,1) (resp.(1,2), (2,1), (2,2)), then 3 (resp. 4, 5, 6) is anα-neighbor ofS.
2
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{1,2,6,7}

0

{3,4,5}

︷ ︸︸ ︷

︸ ︷︷ ︸

{0, . . . ,7}

{0, . . . ,7}\{4}

{0, . . . ,7}\{0}

{0, . . . ,7}

(a)

{3,4,6,7}

1

{0,2,5}

︷ ︸︸ ︷

︸ ︷︷ ︸

{0, . . . ,7}

{0, . . . ,7}{0, . . . ,7}\{5}

{0, . . . ,7}\{1}

(b)

Fig. 2. The vertices ofT8 reachable from 0 and 1 by each(0,2)-mixedk-path with 1≤ k≤ 3.

Proposition 11 The graph T8 (resp. T5) has propertyP1,3 (resp.P1,2).

Proof. It directly follows from|Ni(v)| ≥ 3 (resp.|Ni(v)| ≥ 2) for everyi ∈ 1,2. 2

Let P = [v0,v1,v2, . . . ,vk] be a(0,2)-mixedk-path,G a (0,2)-mixed graph, andu a
vertex ofG. We denoteNP(G,u) = {v∈ G,∃h : P→ G with h(v0) = u andh(vk) =
v}.

Proposition 12 For every(0,2)-mixed3-path P :

• for every u∈ T5, V(T5)\{u} ⊆ NP(T5,u)
• for every u∈ T8, NP(T8,u) = V(T8)

Proof.

(1) Recall thatT5 is colored-edge-transitive, and the two graphs induced by the
edges of each color inT5 are isomorphic. Therefore, it is enough to prove that
there exist the eight possible 3-paths linking 1 and 2. This easy case study is
left to the reader.

(2) Observe that there are two kinds of vertices inT8: the even vertices{0,2,4,6},
and the odd vertices{1,3,5,7}. It is not difficult to check that for every two
even (resp. odd) verticesu and v, there exists an automorphism ofT8 that
mapsu to v. Thus is sufficient to prove that there exists the eight(0,2)-mixed
3-paths joining 0 (resp. 1) to every vertex ofT8. Figures 2(a) and 2(b) show
the sets of vertices ofT8 reachable from 0 and 1 by each(0,2)-mixedk-path
with 1≤ k≤ 3.

2

Proposition 13 For every vertex u of T8 and for a every(0,2)-mixed2-path P,
there exists one vertex v∈ {u,u+4 (mod 8)} such that V(T8)\{v} ⊆ NP(T8,u).
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G′

v′

u′

u
v

G
∞

∞′

Fig. 3. The(0,2)-mixed tromp graphTr(G).

Proof. This can be easily checked on Figures 2(a) and 2(b).2

Proposition 14 For every vertex u of T5 and for every(0,2)-mixed 2-path P,
|NP(T5,u)| ≥ 3.

Proof. This can be easily checked.2

The last two target graphs we provide are obtained by usingTromp’s construc-
tion [14] extended to mixed graphs. LetG = (V(G);

S2
i=1Ei(G)) be a(0,2)-mixed

graph andG′ be an isomorphic copy ofG. The Tromp graphTr(G) = (V(Tr(G));
S2

i=1Ei(Tr(G))) has 2|V(G)|+2 vertices and is defined as follows:

• V(Tr(G)) = V(G)∪V(G′)∪{∞,∞′};
• ∀u∈V(G) : u∞,u′∞′ ∈ E1(Tr(G)) andu′∞,u∞′ ∈ E2(Tr(G));
• ∀uv∈ Ei(G) : uv,u′v′ ∈ Ei(Tr(G)) andu′v,uv′ ∈ E3−i(Tr(G)).

Figure 3 illustrates the construction ofTr(G). We can observe that, for everyu∈
V(G)∪ {∞}, there is no edge betweenu and u′. Such pairs of vertices will be
called twin vertices, and we denote by twin(u) the twin vertex ofu. Remark that
twin(twin(u)) = u.

By construction, the graphTr(G) satisfies the following property:

∀u∈ Tr(G) : N1(u) = N2(twin(u)) andN2(u) = N1(twin(u))

This construction was already used to construct target graphs to bound the oriented
chromatic number, i.e. the(1,0)-mixed chromatic number (see e.g. [10,12]).

In the remainder, letT12 = Tr(T5) and T20 = Tr(T9) be the Tromp graphs ob-
tained fromT5 and T9, respectively. The vertex set ofT12 (resp.T20) is V(T5)∪
V(T′

5)∪{∞,∞′} = {1,2,3,4,5}∪{1′,2′,3′,4′,5′}∪{∞,∞′} (resp.V(T9)∪V(T′
9)∪

{∞,∞′} = {1,2,3,4,5,6,7,8,9} ∪ {1′,2′,3′,4′,5′,6′,7′,8′,9′} ∪ {∞,∞′}). These
two graphs have remarkable symmetry and some useful properties given below.
It is not difficult to check thatT12 andT20 are vertex-transitive.
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X
X

X
X

X
X

XX
(α1,α2)

(∞,x)
(∞,1) (∞,1′)

(1,1) 2;5 1;3

(1,2) 3;4 4;5

(2,1) 3′;4′ 4′;5′

(2,2) 2′;5′ 1′;3′

Table 1. PropertyP2,2 of T12.

Proposition 15 The graph T12 has PropertiesP1,5 andP2,2.

Proof. PropertyP1,5 is trivial.

SinceT12 is vertex-transitive, it is enough to check that for every sequence of ver-
ticesS= (∞,x), x∈ V(T5)∪V(T ′

5), and every 2-type-vectorα, there exist at least
two α-neighbors ofS. However, there exists an obvious automorphismh :V(T12)→
V(T12) that fixes∞ and ∞′ (i.e. h(∞) = ∞, h(∞′) = ∞′) with orbits (1,2,3,4,5)
and(1′,2′,3′,4′,5′). Therefore, we only need to consider the sequences(∞,1) and
(∞,1′). Table 1 gives, for each above-mentioned case, theα-neighbor ofS. 2

Proposition 16 The graph T20 has propertiesP1,9, P2,4, andP3,1.

Proof. PropertyP1,9 is trivial.

SinceT20 is vertex-transitive, it is enough to check that for every sequence of ver-
ticesS= (∞,x), x∈ V(T9)∪V(T ′

9), and every 2-type-vectorα, there exist at least
four α-neighbors ofS. Table 2 gives, for each sequenceS= (∞,x) and each type-
vectorα, the fourα-neighbors ofS.

To prove PropertyP3,1, we have to check that for every triangle[u,v,w] and every 3-
type-vectorα, there exists at least oneα-neighbor ofS= (u,v,w). It is not difficult
to verify that it suffices to consider the following four cases:

Case 1:u,v,w ∈ V(T9) (sinceT9 is arc-transitive, we just consider the triangles
[1,2,3], [1,2,4], [1,2,5], and[1,2,6]).

Case 2:u,v∈ V(T9) andw∈ V(T ′
9) (by symmetry ofT9, we just consider the tri-

angles[1,2,3′], [1,2,4′], [1,2,5′], and[1,2,6′]).
Case 3:u,v ∈ V(T9) andw ∈ {∞,∞′} (by symmetry ofT9, we just consider the

triangles[1,2,∞] and[1,2,∞′]).
Case 4:u∈ V(T9), v∈ V(T ′

9), andw∈ {∞,∞′} (by symmetry ofT9, we just con-
sider the triangles[1,2′,∞] and[1,2′,∞′]).

Table 3 gives, for each above-mentioned case and each 3-type-vector α, the α-
neighbor ofS. 2

10



X
X

X
X

X
X

XX
(α1,α2)

(∞,x)
(∞,1) (∞,2) (∞,3) (∞,4) (∞,5) (∞,6) (∞,7) (∞,8) (∞,9)

(1,1) 2;3;4;7 1;3;5;8 1;2;6;9 1;5;6;7 2;4;6;8 3;4;5;9 1;4;8;9 2;5;7;9 3;6;7;8

(1,2) 5;6;8;9 4;6;7;9 4;5;7;8 2;3;8;9 1;3;7;9 1;2;7;8 2;3;5;6 1;3;4;6 1;2;4;5

(2,1) 5′;6′;8′;9′ 4′;6′;7′;9′ 4′;5′;7′;8′ 2′;3′;8′;9′ 1′;3′;7′;9′ 1′;2′;7′;8′ 2′;3′;5′;6′ 1′;3′;4′;6′ 1′;2′;4′;5′

(2,2) 2′;3′;4′;7′ 1′;3′;5′;8′ 1′;2′;6′;9′ 1′;5′;6′;7′ 2′;4′;6′;8′ 3′;4′;5′;9′ 1′;4′;8′;9′ 2′;5′;7′;9′ 3′;6′;7′;8′

X
X

X
X

X
X

XX
(α1,α2)

(∞,x)
(∞,1′) (∞,2′) (∞,3′) (∞,4′) (∞,5′) (∞,6′) (∞,7′) (∞,8′) (∞,9′)

(1,1) 5;6;8;9 4;6;7;9 4;5;7;8 2;3;8;9 1;3;7;9 1;2;7;8 2;3;5;6 1;3;4;6 1;2;4;5

(1,2) 2;3;4;7 1;3;5;8 1;2;6;9 1;5;6;7 2;4;6;8 3;4;5;9 1;4;8;9 2;5;7;9 3;6;7;8

(2,1) 2′;3′;4′;7′ 1′;3′;5′;8′ 1′;2′;6′;9′ 1′;5′;6′;7′ 2′;4′;6′;8′ 3′;4′;5′;9′ 1′;4′;8′;9′ 2′;5′;7′;9′ 3′;6′;7′;8′

(2,2) 5′;6′;8′;9′ 4′;6′;7′;9′ 4′;5′;7′;8′ 2′;3′;8′;9′ 1′;3′;7′;9′ 1′;2′;7′;8′ 2′;3′;5′;6′ 1′;3′;4′;6′ 1′;2′;4′;5′

Table 2. PropertyP2,4 of T20.

u,v,w ∈V(T9) u,v∈V(T9),w∈V(T ′
9)

u,v∈V(T9),
u∈V(T9),

w∈ {∞,∞′}
v∈V(T ′

9),

w∈ {∞,∞′}
P

P
P

P
P

P
α

(u,v,w)
(1,2,3) (1,2,4) (1,2,5) (1,2,6) (1,2,3′) (1,2,4′) (1,2,5′) (1,2,6′) (1,2,∞) (1,2,∞′) (1,2′,∞) (1,2′,∞′)

(1,1,1) ∞′ ∞′ ∞′ ∞′ 6′ 3 3 9′ 3 6′ 4 5′

(1,1,2) 6′ 3 3 9′ ∞′ ∞′ ∞′ ∞′ 6′ 3 5′ 4

(1,2,1) 5′ 7 5 4 4 5′ 7 5′ 4 5′ 3 6′

(1,2,2) 4 5′ 7 5′ 5′ 7 5 4 5′ 4 6′ 3

(2,1,1) 4′ 5 7′ 5 5 7′ 4′ 4′ 5 4′ 6 3′

(2,1,2) 5 7′ 4′ 4′ 4′ 5 7′ 5 4′ 5 3′ 6

(2,2,1) 6 3′ 3′ 9 ∞ ∞ ∞ ∞ 6 3′ 5 4′

(2,2,2) ∞ ∞ ∞ ∞ 6 3′ 3′ 9 3′ 6 4′ 5

Table 3. PropertyP3,1 of T20.

1
1



Proposition 17 For every vertex u of T20 (resp. T12) and for every(0,2)-mixed2-
path, there exists at most one vertex v∈V(T20) (resp. V(T12)) such that u and v are
not joined by such a(0,2)-mixed2-path. Moreover, v∈ {u, twin(u)}.

Proof. This follows directly from PropertyP2,4 for T20 and PropertyP2,2 for T12.
2

4 Outerplanar graphs

Let Og be the class of(0,2)-mixed outerplanar graphs with girth at leastg. Outer-
planar graphs form a strict subclass of partial 2-trees (also known as series-parallel
graphs orK4 minor-free graphs); therefore, Corollary 3 and Theorem 7 imply that
9≤ χ(0,2)(O3) ≤ 12. We improve this result and give the exact(0,2)-mixed chro-
matic number of outerplanar graphs for all girths:

Theorem 18

(1) χ(0,2)(O3) = 9;
(2) χ(0,2)(Og) = 5 for g≥ 4.

To prove Theorem 18, we need the following obvious proposition:

Proposition 19 Every outerplanar graph G with girth g andδ(G) ≥ 2 contains,
for someℓ ≥ g−1, a (ℓ,2)-path in which the end-vertices are adjacent.

Proof. Consider a 2-connected componentH of G which is linked to the rest of the
graph by at most one cut-vertex. Then, the dual of this 2-connected component is
either a single vertex (H is therefore a cycle) or a tree (H has at least two faces). IfH
is a cycle, it is clear that the required(ℓ,2)-path exists. IfH has at least two faces,
then consider a face which contains at most two≥3-vertices. These two vertices
are necessarily adjacent and therefore, sinceG has girthg, it contains the required
(ℓ,2)-path. 2

Proof of Theorem 18(1). We first prove thatχ(0,2)(O3) ≤ 9 by showing that every
(0,2)-mixed outerplanar graph admits aT9-coloring. Let H be a minimal (with
respect to the subgraph order)(0,2)-mixed outerplanar having noT9-coloring. We
show thatH contains neither a 1-vertex nor a(k,2)-path, for anyk ≥ 2, in which
the end-vertices are adjacent.

12



vg−1

vg

vg+1v2g−2

v0

v1

Fig. 4. An outerplanar graph with girthg≥ 4 and(0,2)-mixed chromatic number 5.

• Suppose thatH contains a 1-vertexu. By minimality of H, the outerplanar graph
H \{u} admits aT9-coloring. This coloring extends toH by PropertyP1,4.

• Suppose thatH contains a(2,2)-pathP= [v0,v1,v2] in which the end-verticesv0

andv2 are adjacent. By minimality ofH, the outerplanar graphH \ {v1} admits
aT9-coloring. By PropertyP2,1, this coloring can be extended to aT9-coloring of
H. It is then clear thatH contains no(k,2)-paths for anyk≥ 3.

We thus get a contradiction by Proposition 19. The graphH does not exist.

To complete the proof, observe that Theorem 7 givesχ(0,2)(O3) ≥ 9. 2

Proof of Theorem 18(2). We prove thatχ(0,2)(O4) ≤ 5 by showing that every
(0,2)-mixed outerplanar graph with girth at least 4 admits aT5-coloring. The proof
is almost the same as the previous one and can be obtained by replacingk ≥ 2 by
k≥ 3, use the fact thatT5 has propertyP1,2, and use Proposition 12.

To prove thatχ(0,2)(O4) ≥ 5, we construct, for everyg ≥ 4, a(0,2)-mixed outer-
planar graphGg with girth g and(0,2)-mixed chromatic number 5. The graphGg

consists of a cycle[v0,v1, . . . ,v2g−2,v0] with a chordv0vg; see Figure 4. Moreover,
the adjacency types are given below :

• t(vi,vi+1) = 1 for every 0≤ i ≤ g−1 (solid lines in Figure 4);
• t(vi,vi+1) = 2 for everyg≤ i ≤ 2g−1 (dashed line in Figure 4);
• t(v0,v2g−2) = 2 (dashed lines in Figure 4);
• t(v0,vg) = 1 if g is even,t(v0,vg) = 2 otherwise (gray line in Figure 4);

If g is even (resp. odd), the graph induced by the edges of type 1 (resp 2) is an odd
cycle, and the graph induced by the edges of type 2 (resp. 1) isan odd path. Suppose
that there exists a(0,2)-mixed graphT4 on four vertices such thatGg admits aT4-
coloring. Then,T4 must contain an odd cycle whose all edges are of type 1 (resp.
2): this is necessarily a triangle. Moreover,T4 must contains an odd path linking
h(v0) andh(vg) whose all edges are of type 2 (resp. 1). We can check that this is
impossible. 2
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5 Partial 2-trees and partial 3-trees

In this section, we study the(0,2)-mixed chromatic number of partial 2-trees (also
known as series-parallel graphs orK4 minor-free graphs) and partial 3-trees.

We first describe a suitable target graphs to color partialk-trees. This will allow us
to get bounds for the(0,2)-mixed chromatic number of partial 2-trees and partial
3-trees.

Theorem 20 Every(n,m)-mixed k-tree admits a T-coloring where T is a(n,m)-
mixed graph having PropertyPk,1.

Proof. We show that every(n,m)-mixed partialk-tree admits aT-coloring for ev-
ery (n,m)-mixed graphT having PropertyPk,1. We proceed by induction on the
numberℓ of vertices of a(n,m)-mixedk-treeG (observe that it suffices to consider
k-trees, since partialk-trees are subgraphs ofk-trees). Ifℓ = k thenG is a (n,m)-
mixed clique. A graph having PropertyPk,1 necessarily contains every(n,m)-mixed
k-clique as subgraph. Therefore, any(n,m)-mixed k-clique admits aT-coloring.
Suppose now that every(n,m)-mixedk-tree of orderℓ admits aT-coloring and let
G be any(n,m)-mixed k-tree of orderℓ+ 1. The graphG necessarily contains a
vertexv with degreek whose neighbors induce ak-clique and whose deletion leads
to ak-treeG′. The induction hypothesis ensures thatG′ admits aT-coloring f and
PropertyPk,1 ensures that we can extendf to T-coloring ofG. 2

We then give the exact(0,2)-mixed chromatic number of partial 2-trees for all
girths (T2

g denotes the class of partial 2-trees with girth at leastg):

Theorem 21

(1) χ(0,2)(T
2
3) = 9;

(2) χ(0,2)(T
2
g) = 8 for 4≤ g≤ 5;

(3) χ(0,2)(T
2
g) = 5 for g≥ 6.

Proof of Theorem 21(1). SinceT9 has PropertyP2,1, Theorem 20 ensures that
every partial 2-tree admits aT9-coloring.

By Theorem 18(1), there exist outerplanar graphs with(0,2)-mixed chromatic num-
ber 9. Since an outerplanar graph is a partial 2-tree, that completes the proof. 2

Concerning the class of partial 2-trees with given girth, Ochem and Pinlou [9]
proved the following structural lemma which is a generalization of a previous re-
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u1

u2

uk

k≥ 3

v
w2

Fig. 5. A vertex v s.t.
d(v) ≥ 3 andDH

4 (v) = 1.

w1

u1

u2

uk

k≥ 2

v
w2

(a)

x1

x2

xk′

u1

u2

uk

k≥ 2

v
w2w1

k′ ≥ 2

(b)

Fig. 6. A vertexv s.t.d(v) ≥ 3 andDH
4 (v) = 2.

sult proposed by Lih, Wang, and Zhu [7]. For a graphG with girth at leastg and a
vertexv∈V(G), we denote:

SG
g (v)= {u∈V(G),d(u)≥ 3,such that

there exist a unique path of 2-vertices linkingu andv,
or u andv are the end points of at least a(⌈g

2⌉,2)-path.}

Then, we denoteDG
g (v) = |SG

g (v)|.

Lemma 22 [9] Let G be a partial2–tree with girth g such thatδ(G) ≥ 2. Then,
one of the following holds:

(1) there exist a(⌈g
2⌉+1,2)–path;

(2) there exist a≥3–vertex v such that DGg (v) ≤ 2.

As a corollary, one can deduce the following:

Corollary 23 [9] Every partial 2-tree with girth g≥ 3 contains either a1-vertex
or a (

⌈g
2

⌉
,2)-path.

Proof of Theorem 21(2). We show that every partial 2-tree with girth at least 4
admits aT8-coloring. Note that is sufficient to consider the caseg = 4. LetH be a
minimal (with respect to the subgraph order)(0,2)-mixed partial 2-tree with girth
4 having noT8-coloring. It is assumed thatH is connected, as different components
can be independentlyT8-colored. We show thatH contains neither a 1-vertex, nor
a (3,2)-path, nor a vertexv with DH

4 (v) ≤ 2.

(1) Suppose thatH contains a 1-vertexv. Due to the minimality ofH, the graph
H \{v} admits aT8-coloring f . The coloringf can be extended toH by Prop-
erty P1,3.

(2) Suppose thatH contains a(3,2)-path[u,v1,v2,w]. Due to the minimality of
H, the graphH \ {v1,v2} admits aT8-coloring f . Proposition 12 ensures that
f can be extended to aT8-coloring ofH.

(3) Suppose thatH contains a vertexv such thatd(v) ≥ 3 andDH
4 (v) = 1; see

Figure 5. ThenSH
4 (v) = {w} and sinceH does not contains a(3,2)-path,

15



there exist at least three(2,2)-paths linkingv and w. Due to the minimal-
ity of H, the graphH \ {v,u1, . . . ,uk} admits aT8-coloring f . We then set
f (v) /∈ { f (w), f (w)+ 4 (mod 8)}. Proposition 13 ensures thatf can be ex-
tended toH.

(4) Suppose thatH contains a vertexv such thatd(v) ≥ 3 andDH
4 (v) = 2; see

Figure 6. ThenSH
4 (v) = {w1,w2}.

Suppose first that, for somei ∈ [1,2], sayi = 1, the arcvwi exists; see Fig-
ure 6(a). In this case, sinceH does not contain any(3,2)-path, the arcvw1

is the only path linkingu and w1. Then, sinced(v) ≥ 3, there are at least
two (2,2)-paths linkingv andw2. Due to the minimality ofH, the graphH \
{v,u1, . . . ,uk} admits aT8-coloring f . Then, by PropertyP1,3, w1 allows three
colors forv while w2 forbids two colors forv, namely f (w1) and f (w1)+ 4
(mod 8), by Proposition 13. The coloringf can be extended toH.

Suppose finally that there exist at least two(2,2)-paths linkingv andw1

(resp.w2); see Figure 6(b). Due to the minimality ofH, the graphH \ {v,
u1, . . . ,uk,x1, . . . ,xk′} admits aT8-coloring f . Then, by Proposition 13,w1 and
w2 each forbids two colors forv, namely f (w1), f (w1)+ 4 (mod 8), f (w2),
and f (w2)+ 4 (mod 8). We thus have four available colors forv and thusf
can be extended toH.

We thus get a contradiction by Lemma 22.

To complete the proof we construct a partial 2-tree with girth 5 and(0,2)-mixed
chromatic number 8.

The size of a universal graph is at least 5 by Theorem 18(2). Weused a computer
program to rule out target graphs on 5, 6, and 7 vertices, in that order. Let us con-
struct the familyGt , t ≥ 0, of series-parallel graphs of girth 5 as follows:

• G0 consists in two non-adjacent verticesu andx.
• Gt+1 consists in two non-adjacent verticesu andx joined by the eight possible

(3,2)-paths of the form[u,vi,wi ,z], 1≤ i ≤ 8 (recall that each edge can have two
different types), and eight copies ofGt such that the vertexu of Gt+1 is identified
with the vertexu of every copy ofGt , and every vertexwi of Gt+1 is identified
with the vertexx of one copy ofGt .

Consider a(0,2)-mixed complete graphT of ordern. We define a familyMt , t ≥ 0,
of Boolean square matrices of ordern as follows: for 1≤ i, j ≤ n; Mt [i, j] corre-
sponds to the existence of aT-coloring ofGt such that its vertexu gets colori and
its vertexx gets colorj.

If there existst ≥ 0 and 1≤ i ≤ n such thatMt [i, j] is false for every 1≤ j ≤ n, then
T is not universal. Indeed, since every potential target graph of order less thann
has been previously ruled out, there exists a series-parallel graphW such that alln
colors appear in everyT-coloring ofW. Now, if we identify each vertex ofW with
the vertexu of a copy ofGt , the vertexx of a copy ofGt attached to a vertex ofW
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coloredi cannot be colored.

2

Proof of Theorem 21(3). We show that every partial 2-tree with girth at least 6
admits aT5-coloring. Note that is sufficient to consider the caseg = 6. LetH be a
minimal (with respect to the subgraph order)(0,2)-mixed partial 2-tree with girth
6 having noT5-coloring. It is assumed thatH is connected, as different components
can be independentlyT5-colored. We show thatH contains neither a 1-vertex nor a
(3,2)-path.

(1) Suppose thatH contains a 1-vertexv. Due to the minimality ofH, the graph
H \{v} admits aT5-coloring f . The coloringf can be extended toH by Prop-
erty P1,2.

(2) Suppose thatH contains a(3,2)-path[u,v1,v2,w]. Due to the minimality of
H, the graphH \ {v1,v2} admits aT5-coloring f . Proposition 12 ensures that
f can be extended to aT5-coloring ofH

We thus get a contradiction by Corollary 23.

Note that Theorem 18 states that there exists, for every girth g≥ 4, an outerplanar
graphG with girth g such thatχ(0,2)(G) ≥ 5. Since the class of outerplanar graphs
is a strict subclass of the class of partial 2-trees, that complete the proof. 2

The last result of this section concerns partial 3-trees. Corollary 9 shows that
χ(0,2)(T

3) ≥ 20. We prove that this bound is tight:

Theorem 24 χ(0,2)(T
3) = 20.

Proof. SinceT20 has PropertyP3,1, Theorem 20 ensures that every partial 3-tree
admits aT20-coloring. 2

6 Planar graphs

Finally, we bound in this section the(0,2)-mixed chromatic number of sparse
graphs. Theaverage degreeof a graphG, denoted by ad(G), is defined as ad(G) =
2|E(G)|
|V(G)| . Themaximum average degreeof G, denoted by mad(G), is then defined as

the maximum of the average degrees taken over all subgraphs of G:

mad(G) = max
H⊆G

{ad(H)}.

17



Theorem 25 Let G be a(0,2)-mixed graph.

(1) If mad(G) < 10
3 , thenχ(0,2)(G) ≤ 20.

(2) If mad(G) < 3, thenχ(0,2)(G) ≤ 12.

(3) If mad(G) < 8
3, thenχ(0,2)(G) ≤ 8.

(4) If mad(G) < 7
3, thenχ(0,2)(G) = 5.

Bounds for the(0,2)-mixed chromatic number of planar graphs can be deduced
from the previous theorem since the maximum average degree and the girth of
planar graphs are linked by the following well-known relation:

Claim 26 [3] Let G be a planar graph with girth g. Thenmad(G) < 2+ 4
g−2.

By means of the previous claim, we get the following result, wherePg denotes the
class of(0,2)-mixed planar graphs with girth at leastg:

Theorem 27

(1) χ(0,2)(P5) ≤ 20.
(2) χ(0,2)(P6) ≤ 12.
(3) χ(0,2)(P8) ≤ 8.
(4) χ(0,2)(P14) = 5.

Our proof technique is based on the well-known method of reducible configura-
tions and discharging procedure. We consider a minimal counterexampleH to the
considered theorem. We prove thatH does not contain a setS of configurations.
Then we prove, using a discharging procedure, that every graph containing none of
the configurations ofShas maximum average degree greater than that required by
the theorem, that contradicting thatH is a counterexample.

6.1 Graphs with maximum average degree less than10
3

In this subsection, we prove that every(0,2)-mixed graph with maximum average
degree less that10

3 admits aT20-coloring.

Let us define the partial order�. Let n3(G) be the number of≥3-vertices inG.
For any two graphsG1 andG2, we haveG1 = G2 if and only if G1 andG2 are
isomorphic; moreover, we haveG1 ≺ G2 if and only if at least one of the following
conditions hold:

• G1 is a proper subgraph ofG2;
• n3(G1) < n3(G2).

Note that this partial order is well-defined, since ifG1 is a proper subgraph ofG2,
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Fig. 7.

thenn3(G1) ≤ n3(G2). So� is a partial linear extension of the subgraph poset.

Lemma 28 A minimal counterexample (according to≺) to Theorem 25(1) does
not contain the following configurations:

(1) a 1-vertex;
(2) the configuration depicted in Figure 7(a);
(3) the configuration depicted in Figure 7(b);
(4) the configuration depicted in Figure 7(c);

Proof. Let H be a minimal (with respect to≺) (0,2)-mixed graph with mad(H) <
10
3 which does not admit aT20-coloring.It is assumed thatH is connected, as differ-

ent components can be independentlyT20-colored.

(1) Suppose thatH contains a 1-vertexv. Due to the minimality ofH, the graph
H \{v} admits aT20-coloring f . PropertyP1,9 ensures thatf can be extended
to aT20-coloring ofH.

(2) Suppose thatH contains the configuration depicted in Figure 7(a). Due to
the minimality ofH, the graphH \{v,v1, . . . ,vn} admits aT20-coloring f . By
PropertyP1,9, u allows nine colors forv, while eachv′1, . . . ,v

′
n forbids only one

color for v by Proposition 17. Thus,f can be extended to aT20-coloring ofH
sincen≤ 8.

(3) Suppose thatH contains the configuration depicted in Figure 7(b). Due to the
minimality of H, the graphH \{v1, . . . ,vn,v′1, . . . ,v

′
n} admits aT20-coloring f .

By PropertyP2,4, u′1 andu′2 allows four colors forv while each ofv′1, . . . ,v
′
n

forbids only one color forv by Proposition 17. Thus,f can be extended to a
T20-coloring ofH sincen≤ 3.

(4) Suppose thatH contains the configuration depicted in Figure 7(c). SinceH
contains neither a≤1-vertex, nor configuration of Figure 7(b),u1, u2, andu3

are≥3-vertices. LetH ′ be the graph obtained fromH \{v} by adding, for every
1≤ i < j ≤ 3, a 2-path joiningui to u j in such a way that its type is the same
type as the path[ui,v,u j ] in H. We haveH ′ ≺ H sincen3(H ′) = n3(H)−1,
and one can check that mad(H ′) < 10

3 [10]. Any T20-coloring f of H ′ induces
a coloring ofH \{v} that can be extended toH by PropertyP3,1.

2
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Proof of Theorem 25(1). Let H be a minimal (with respect to≺) (0,2)-mixed
graph with mad(H)< 10

3 which does not admit aT20-coloring. We define the weight
functionω by ω(v) = d(v) for everyv∈V(H) and a discharging rule (R) as follows:

(R) Each≥4-vertex gives23 to each adjacent 2-vertex.

Let v be ak-vertex ofH. By Lemmas 28(1) and 28(4), we havek≥ 2 andk 6= 3.

• If k = 2, then by Lemma 28(2), every 2-vertex ofH has two neighbors of degree
at least 3. Therefore,v receives2

3 from each neighbor and hence,ω∗(v) = 2+

2× 2
3 = 10

3 .
• If 4 ≤ k ≤ 5, then by Lemma 28(3),v has at mostk−3 neighbors of degree 2.

Therefore,v gives at most2(k−3)
3 , and hence,ω∗(v) ≥ k− 2(k−3)

3 ≥ 10
3 .

• If 6 ≤ k ≤ 9, then by Lemma 28(2),v has at mostk−2 neighbors of degree 2.
Therefore,v gives at most2(k−2)

3 , and hence,ω∗(v) ≥ k− 2(k−2)
3 ≥ 10

3 .
• If k≥ 10, thenv gives at most2k

3 and henceω∗(v) ≥ k− 2k
3 ≥ 10

3 .

Then, for all v ∈ V(G), ω∗(v) ≥ 10
3 once the discharging is completed. Hence

mad(H) ≥ 10
3 , a contradiction. 2

6.2 Graphs with maximum average degree less than3

In this subsection, we prove that every(0,2)-mixed graph with maximum average
degree less that 3 admits aT12-coloring.

Lemma 29 A minimal counterexample to Theorem 25(2) does not contain the fol-
lowing configurations:

(1) a 1-vertex;
(2) the configuration depicted in Figure 8(a);
(3) the configuration depicted in Figure 8(b);

Proof. Let H be a minimal (with respect to subgraph the order)(0,2)-mixed graph
with mad(H) < 3 which does not admit aT12-coloring. It is assumed thatH is
connected, as different components can be independentlyT12-colored.
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(1) Suppose thatH contains a 1-vertexv. Due to the minimality ofH, the graph
H \{v} admits aT12-coloring f . PropertyP1,5 ensures thatf can be extended
to aT12-coloring ofH.

(2) Suppose thatH contains the configuration depicted in Figure 8(a). Due to
the minimality ofH, the graphH \{v,v1, . . . ,vn} admits aT12-coloring f . By
PropertyP1,5, u allows five colors forv, while eachv′1, . . . ,v

′
n forbids only one

color for v by Proposition 17. Thus,f can be extended to aT12-coloring ofH
sincen≤ 4.

(3) Suppose thatH contains the configuration depicted in Figure 8(b). Due to the
minimality of H, the graphH \{v} admits aT12-coloring f . By PropertyP2,2,
u′1 andu′2 allows two colors forw while v′ forbids only one color forw by
Proposition 17. Thus,f can be extended to aT12-coloring ofH.

2

Proof of Theorem 25(2). Let H be a minimal (with respect to subgraph the order)
(0,2)-mixed graph with mad(H) < 3 which does not admit aT12-coloring. We de-
fine the weight functionω by ω(v) = d(v) for everyv ∈ V(H) and a discharging
rule (R) as follows:

(R) Each≥3-vertex gives12 to each adjacent 2-vertex.

Let v be ak-vertex ofH. By Lemma 29(1), we havek≥ 2.

• If k = 2, then by Lemma 29(2), every 2-vertex ofH has two neighbors of degree
at least 3. Therefore,v receives1

2 from each neighbor and hence,ω∗(v) = 2+

2× 1
2 = 3.

• If k = 3, then by Lemma 29(3),v is not adjacent to a 2-vertex. Hence,ω∗(v) =
ω(v) = 3.

• If 4 ≤ k ≤ 5, then by Lemma 29(2),v has at mostk−2 neighbors of degree 2.
Therefore,v gives at mostk−2

2 and henceω∗(v) ≥ k− k−2
2 ≥ 3.

• If k≥ 6, thenv gives at mostk2 and henceω∗(v) ≥ k− k
2 ≥ 3.

Then, for allv∈V(G), ω∗(v)≥3 once the discharging is completed. Hence mad(H)≥
3, a contradiction. 2

6.3 Graphs with maximum average degree less than8
3

In this subsection, we prove that every(0,2)-mixed graph with maximum average
degree less that83 admits aT8-coloring.

Lemma 30 A minimal counterexample to Theorem 25(3) does not contain the fol-
lowing configurations:
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u
v1 v′1

v′2

v

v2

Fig. 9. Configuration of Lemma 30(3).

(1) a 1-vertex;
(2) a (3,2)-path P3 = [u,v1,v2,w];
(3) the configuration depicted in Figure 9.

Proof. Let H be a minimal (with respect to subgraph the order)(0,2)-mixed graph
with mad(H) < 8

3 which does not admit aT8-coloring. It is assumed thatH is
connected, as different components can be independentlyT8-colored.

(1) Suppose thatH contains a 1-vertexv. Due to the minimality ofH, the graph
H \ {v} admits aT8-coloring f . PropertyP1,3 ensures thatf can be extended
to aT8-coloring ofH.

(2) Suppose thatH contains a(3,2)-pathP3 = [u,v1,v2,w]. Due to the minimality
of H, the graphH \ {v1,v2} admits aT8-coloring f . Proposition 12 ensures
that f can be extended to aT8-coloring ofH.

(3) Suppose thatH contains the configuration depicted in Figure 9. Due to the
minimality of H, the graphH \ {v,v1,v2} admits aT8-coloring f . By Prop-
ertyP1,3, the vertexu allows three colors forv, while each ofv′1 andv′2 forbids
only one color forv by Proposition 13. The coloringf can be extended to a
T8-coloring ofH.

2

Proof of Theorem 25(3). Let H be a minimal (with respect to the subgraph order)
(0,2)-mixed graph with mad(H)< 8

3 which does not admit aT8-coloring. We define
the weight functionω by ω(v) = d(v) for everyv∈ V(H) and a discharging rule
(R) as follows:

(R) Each≥3-vertex gives13 to each adjacent 2-vertex.

Let v be ak-vertex ofH. By Lemma 30(1), we havek≥ 2.

• If k = 2, then by Lemma 30(2) every 2-vertex ofH has two neighbors of degree
at least 3. Therefore,v receives1

3 from each neighbor and hence,ω∗(v) = 2+

2× 1
3 = 8

3.
• If k= 3, then by Lemma 30(3),v has at most one neighbor of degree 2. Therefore,

v gives at most13, and hence,ω∗(v) ≥ 3− 1
3 = 8

3.
• If k≥ 4, thenv gives at mostk3 and henceω∗(v) ≥ k− k

3 ≥ 8
3.
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u1

v1

u

v
v2

u2

w

Fig. 10. Configuration of Lemma 31(3).

Then, for allv∈V(G), ω∗(v)≥ 8
3 once the discharging is completed. Hence mad(H)≥

8
3, a contradiction. 2

6.4 Graphs with maximum average degree less than7
3

In this subsection, we prove that every(0,2)-mixed graph with maximum average
degree less that73 admits aT5-coloring.

Lemma 31 A minimal counterexample to Theorem 25(4) does not contain the fol-
lowing configurations:

(1) a 1-vertex;
(2) a (4,2)-path P4 = [u,v1,v2,v3,w];
(3) the configuration of Figure 10.

Proof. Let H be a minimal (with respect to the subgraph order)(0,2)-mixed graph
with mad(H) < 7

3 which does not admit aT5-coloring. It is assumed thatH is
connected, as different components can be independentlyT5-colored.

(1) Suppose thatH contains a 1-vertexv. Due to the minimality ofH, the graph
H \ {v} admits aT5-coloring f . PropertyP1,2 ensures thatf can be extended
to aT5-coloring ofH.

(2) Suppose thatH contains a(4,2)-pathP4 = [u,v1,v2,v3,w]. Due to the min-
imality of H, the graphH \ {v1,v2,v3} admits aT5-coloring f . By Prop-
erty P1,2, u allows one color forv1 which is distinct fromf (w). Then, Propo-
sition 12 ensures thatf can be extended to aT5-coloring ofH.

(3) Suppose thatH contains the configuration of Figure 10. By the minimality
of G, the graphH \ {x,u1,u2,v1,v2,w1} admits aT5-coloring f . By Proposi-
tion 14, w forbids two colors forx, while each ofu andv forbids only one
color for x by Proposition 12. Thus, we have at least one color forx and thus
f can be extended to aT5-coloring ofH.

2

Proof of Theorem 25(4). Let H be a minimal (with respect to subgraph order)
(0,2)-mixed graph with mad(H)< 7

3 which does not admit aT5-coloring. We define
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the weight functionω by ω(v) = d(v) for everyv∈V(H). A weak2-vertex is a 2-
vertex adjacent to a 2-vertex, while astrong2-vertex is a 2-vertex not adjacent to a
2-vertex. The discharging rules (R1) and (R2) are defined as follows:

(R1) Each≥3-vertex gives13 to each adjacent weak 2-vertex.
(R2) Each≥3-vertex gives16 to each adjacent strong 2-vertex.

Let v be ak-vertex ofH. By Lemma 31(1), we havek≥ 2.

• If k = 2, then by Lemma 31(2), ifv is weak, it is nevertheless adjacent to a≥3-
vertex. Thus, it receives13 by (R1). If v is strong, then it receives16 from each of
its two neighbors of degree at least 3 by (R2). Hence,ω∗(v) = 2+ min{1

3;2×
1
6} = 7

3.
• If k = 3, then by Lemma 31(3),v gives at most max{2× 1

3;2× 1
6 + 1

3;3× 1
6}= 2

3.
Hence,ω∗(v) ≥ 3− 2

3 = 7
3.

• If k≥ 4, thenv gives at mostk3 and henceω∗(v) ≥ k− k
3 > 7

3.

Then, for allv∈V(G), ω∗(v)≥ 7
3 once the discharging is completed. Hence mad(H)≥

7
3, a contradiction. 2

7 Concluding remarks

In this paper, we investigated the chromatic number of 2-edge-colored graphs,
which are a special case of(n,m)-mixed graphs withn = 0 andm = 2. In addi-
tion, several results are known for the chromatic number of(0,1)-mixed graphs
(i.e. simple graphs) and(1,0)-mixed graphs (i.e. oriented graphs). For the other
values ofn andm, we only obtained estimates (see Section 2).

A natural question is whether these general bounds are tightfor some specific val-
ues ofn andm. In particular, the cases(n,m) = (1,1) and(n,m) = (2,0) seem to
be challenging cases to consider. One possible way to get bounds would might be
to construct target graphs with PropertyPk,1, for somek. We recently succeeded
to construct a(1,1)-mixed graph of order 21 and a(2,0)-mixed graph of order 28
having both PropertyP2,1. By means of Theorem 20, this gives that every(1,1)-
mixed 2-tree has chromatic number at most 21 and that every(2,0)-mixed 2-tree
has chromatic number at most 28.

References

[1] N. Alon and T. H. Marshall. Homomorphisms of edge-colored graphs and coxeter
groups.J. Algebraic Combin., 8(1):5–13, 1998.

24



[2] O. V. Borodin. On acyclic colorings of planar graphs.Discrete Math., 25:211–236,
1979.

[3] O. V. Borodin, A. V. Kostochka, J. Nešetřil, A. Raspaud, and É. Sopena. On the
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