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GRAPH RELABELLING SYSTEMS:
A GENERAL OVERVIEW !

Abstract. Graph relabelling systems have been introduced as a suitable model for expressing and studying
distributed algorithms on a network of communicating processors. We recall the basic ideas underlying that
model and we survey the main questions that have been considered and the main results that have been obtained
in that framework.
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1 Introduction

Graph relabelling systems have been introduced in [2] as a suitable tool for expressing distributed
algorithms on a network of communicating processors. In that model a network is regarded as a labelled
graph whose vertices stand for processors and edges stand for communication links. Vertex labels are
used for describing the states of processors and edge labels for describing the states of communication
links. A computation in a network then corresponds to a sequence of labels transformations leading
to a final labelled graph considered as the result of the computation. KEvery elementary step in
such a computation will be described by a graph relabelling rule expressing the modification of the
corresponding labels.

Let us first illustrate this idea by considering a simple distributed algorithm which computes a
spanning tree of a network. Assume that a unique given processor is in an “active” state (encoded
by the label A), all other processors being in some “neutral” state (label N) and that all links are in
some “passive” state (label 0). The tree initially contains the unique active vertex. At any step of the
computation, an active vertex may activate one of its neutral neighbours and mark the corresponding
link which gets the new label 1. This computation stops as soon as all the processors have been
activated. The spanning tree is then obtained by considering all the links with label 1. Fig. 1
describes a sample computation using this algorithm.

An elementary step in this computation may be depicted as a relabelling step by means of the
following relabelling rule R which describes the corresponding label modifications:

A N A A
R o« 0 o . o ! o

An application of this relabelling rule on a given graph (or network) consists in (i) finding in the
graph a subgraph isomorphic to the left-hand-side of the rule (this subgraph is called the occurrence
of the rule) and (i7) modifying its labels according to the right-hand-side of the rule.

The relabelling sequence depicted in Fig. 1 illustrates a sequential computation since the relabelling
steps are sequentially applied. A distributed view of this computation can be obtained by considering
that relabelling steps concerning disjoint parts of the graph may be applied in any order, or even
concurrently (this is namely the case for the steps (2) and (3), or (4) and (5) in Fig. 1).

Among models related to those used here are computations defined by Fiksel et al. [6] and by
Angluin [1]. The first one considers a synchronous model based on graphs equipped with identical
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Figure 1: Computation of a spanning tree.

finite automata on all vertices. An elementary computation step then consists in computing the next
state of each processor according to its own state and the states of all its neighbours. The latter one
considers an asynchronous model. During an elementary computation step, two neighbouring vertices
exchange their labels and then compute their new ones.

In this paper, we recall the basic ideas underlying the graph relabelling model and we survey
the main questions that have been considered and the main results that have been obtained in that
framework. The rest of this paper is organized as follows. In Section 2 we give the basic definitions and
notation that will be used. In particular, we define two mechanisms, namely the notions of priorities
and forbidden contexts, which allow to increase the expressive power of graph relabelling systems by
adding some local control on the applicability of the relabelling rules.

One of the main motivations when introducing graph relabelling systems was to offer a suitable
model for studying and for proving properties of distributed algorithms. In Section 3 we show how
proof techniques issued from rewriting theory can be useful in this context.

Section 4 is devoted to the study of the well-known election problem. Starting from a graph whose
all vertices have the same label, a vertex is said to be elected if, after some computation, it is the
unique vertex in the graph having some distinguished label. This problem has only solutions for some
special graph classes. We provide in particular a graph relabelling system which solves this problem
for the class of so-called prime graphs.

From a more abstract point of view, graph relabelling systems allow to express local computations
on graphs. One of the main questions is then to characterize those fonctions that can be locally
computed in a graph. These notions are presented in Section 5.

In Section 6 we focus on the specific recognition problem. A graph relabelling system is said to
recognize a given class of graphs if, starting from any uniformly labelled graph, it computes a final
labelling which allows to decide whether the graph belongs to the class or not. We review some graph
classes that can or cannot be recognized in such a way.

In Section 7 we introduce the notion of k-covering which generalizes the classical notion of graph
covering. We show how this notion can be an useful tool for proving negative results concerning the
capabilities of graph relabelling systems.

Finally, in Section 8 we deal with the so-called termination detection criteria which is a major
parameter in distributed computing theory.
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2 Basic definitions and notation

Unless otherwise stated, all the graphs considered in this paper are finite, undirected, without multiple
edges, loopless and connected. For every graph G we denote by V(G) its set of vertices and by F(G)
its set of edges. If G and G’ are two graphs, we say that G’ is a subgraph of G if V(G') C V(@) and
E(G") C E(G). If X is a subset of V(G), the subgraph of G induced by X has vertex set X and
edge set the set of all edges whose both extremities belong to X. A homomorphism of a graph G to a
graph H is a mapping ¢ from V(G) to V(H) such that ¢(z)p(y) is an edge in H whenever zy is an
edge in G. We say that ¢ is an isomorphism if ¢ is bijective and ¢~ is also a homomorphism. In the
following, a set of graphs which is closed under isomorphism will be called a class of graphs.

Let £ be a set whose elements are called labels. A L-labelled graph is a pair (G, \) where G is a
graph and A a mapping from V(G) U E(G) to L. If (G, ) and (G', X') are two labelled graphs, we say
that (G',\') is a (labelled) subgraph of (G, ) if G' is a subgraph of G and )\’ is the restriction of A
to V(G') U E(G"). We will denote by G, the set of all L-labelled graphs. An isomorphism between
two labelled graphs (G, \) and (H,p) is an isomorphism ¢ between G and H which preserves the
labels, that is A(z) = p(e(x)) for every z in V(G) and A(zy) = pu(p(z)e(y)) for every zy in E(G).
An occurrence of (G, ) in (H,u) is an isomorphism ¢ between G and a subgraph (H', u') of (H, ).
We will then write (G, \) = (H', ).

A (graph) relabelling rule is a triple R = (Gg, Ar, A) such that (Ggr,Ar) and (Gg, \y) are two
labelled graphs. The labelled graph (Gg,Ar) (resp. (Gr,\7y)) is called the left-hand side (resp.
right-hand side) of R.

A graph relabelling system (GRS for short) is a triple R = (L£,Z, P) where L is a set of labels,
7 a subset of L called the set of initial labels and P a finite set of relabelling rules. A R-relabelling
step is a 5-tuple (G, \, R, ¢, \') such that R is a relabelling rule in P and ¢ is both an occurrence of
(GRr,Ar) in (G, A) and an occurrence of (Gg, A;) in (G, X'). Intuitively speaking, the labelling X’ of G
is obtained from A\ by modifying all the labels of the elements of (G, Agr) according to the labelling
Xg. Such a relabelling step will be denoted by (G,\) — g, (G,X). A R-relabelling sequence
is a tuple (G, Ao, Ro, ©0, A1, R1,©1, A2y -+ An—1, Rn—1, Pn—1, A\n) such that for every i, 0 < i < n,
(G, \i, Ri, pi, Ait1) is a R-relabelling step. The existence of such a relabelling sequence will be denoted
by (G, o) —% (G, A\n).

A labelled graph (G, \) is said to be R-irreducible if there exists no occurrence of (G, A\g) in (G, \)
for every relabelling rule R in P. For every labelled graph (G, ) in Gz we denote by Irredg(G,\)
the set of all R-irreducible labelled graphs (G, \') such that (G,\) —% (G, \’). Intuitively speaking,
the set Irredgr(G,\) contains all the final labellings that can be obtained from a Z-labelled graph
(G, ) by applying relabelling rules in P and may be viewed as the set of all the possible results of
the computation encoded by the system R.

Example 1 The algorithm introduced in Section 1 may be encoded by the graph relabelling system
Rl = (ﬁl,Il,Pl) defined by Ll = {N,A,O,l}, Il = {N,A,O}, and P1 = {R} where R is the
following relabelling rule:

AON AlA
R: ——— o — —— o

Fig. 1 describes a sample R-relabelling sequence.

The notion of relabelling sequence defined above obviously corresponds to a notion of sequential
computation. We can define a more distributed way of computing by saying that two relabelling steps
concerning “disjoint” occurrences may be applied in any order, or even concurrently. It is easy to
check that if (G, \j, R, pi, Ai+1) and (G, Ai11, Rit1, @it1, Aite) are two labelling steps such that ¢;(G)
and ¢;11(G) do not intersect then (G, \;, Ri11,pir1,X') and (G, N, R;, pi, Ai12) are two relabelling
steps leading to the same resulting labelled graph (G, \;;12). More generally, any two relabelling
sequences such that the latter one may be obtained from the former one by a succession of such
“commutations” lead to the same resulting graph. Hence, our notion of relabelling sequence may be
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Figure 2: A sample Rs-relabelling sequence.

regarded as a serialization [14] of some distributed computation. This model is clearly asynchronous:
several relabelling steps may be done at the same time but we do not demand all of them to be done.
In the sequel we will essentially deal with sequential relabelling sequences but the reader should keep
in mind that such sequences may be done in a distributed way.

In order to reach a satisfactory expressive power, we introduce some local control mechanisms.
These mechanisms allow us to restrict in some sense the applicability of relabelling rules.

A graph relabelling system with priorities (PGRS for short) is a 4-tuple R = (£,Z, P, >) such that
(L,Z, P) is a graph relabelling system and > is a partial order defined on the set P called the priority
relation. A R-relabelling step is then defined as a 5-tuple (G, A\, R, ¢, ') such that R is a relabelling
rule in P, ¢ is both an occurrence of (G, Ar) in (G, ) and an occurrence of (Gg, \) in (G, X') and
there exists no occurrence ¢’ of a relabelling rule R' in P with R’ > R such that ¢(Gr) and ¢(Grr)
intersect in G (that is V(p(GRr)) NV (p(Ggr)) = @). The notion of relabelling sequence is defined as
previously.

Example 2 Let Ry = (La,Zs, P»,>2) be the PGRS defined by Lo = {N,A,M, F,0,1}, 7, =
{N,A,0}, P, ={R;y, Ry} where R; and R, are the following relabelling rules:

A N M A
0 1
Ry: —— o — —— o
M A A F
1 1
Rs: —— o — —— o

with the priority relation: R; >o Ro.

Suppose that (G, ) is a labelled graph containing exactly one A-labelled vertex. As before, this
system computes a spanning tree of G but in a strictly sequential way, using the well-known depth-
first search algorithm: the (unique) active vertex, with label A, may activate one of its N-labelled
neighbours and become marked (label M). When an active vertex has no N-labelled neighbour, it
reactivates its “father” (which corresponds to the unique M-labelled vertex to which it is linked by a
1-labelled edge), and becomes F-labelled. Fig. 2 shows a sample Ro-relabelling sequence.

Let (G,)\) be a labelled graph. A context of (G,\) is a triple (H,u,1) such that (H,pu) is a
labelled graph and ¢ an occurrence of (G,\) in (H,u). A relabelling rule with forbidden contexts
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Figure 3: A sample R3-relabelling sequence.

is a 4-tuple R = (Gg, Ag, Ny, Fr) such that (Gg,Ag,\y) is a relabelling rule and Fg is a finite
set of contexts of (Gg,Ag). A graph relabelling system with forbidden contexts (FCGRS for short)
is a triple R = (£,Z, P) defined as a GRS except that the set P is a set of relabelling rules with
forbidden contexts. A R-relabelling step is a 5-tuple (G, \, R, p, ') such that R is a relabelling rule
with forbidden contexts in P, ¢ is both an occurrence of (Ggr,Ar) in (G, ) and an occurrence of
(GRr,\%) in (G, X'), and for every context (Hj, f1i,;) of (Gr, Ar), there is no occurrence ¢; of (Hj, 1)
in (G, ) such that ¢;(¢i(Gr,Ar)) = ¢(Gr,Ar). In other words, a relabelling rule with forbidden
contexts may be applied on some occurrence if and only if this occurrence is not “included” in an
occurrence of some of its forbidden contexts.

Example 3 Let R3 = (L3,Z3, P3) be the FCGRS defined by £3 = {N,A, M, F,0,1}, 73 = {N, A, 0},
P; = {R1, Ry, R3} where Ry, Ry and Rj3 are the following relabelling rules with forbidden contexts:

A o N A 4, A

th o———o —_— o————o ) 9
A’ N A’ A’
RQ: .L. ® 1 L] ) %
A’ F A’ A’ A’
R3: ® — [ J )
0 1 1 1 1
N A A’ A A’

The unique vertex of the left-hand side of the rule Rj3 is associated with the top vertex of its forbidden
contexts. Roughly speaking, the rule R3 means that a A’-labelled vertex may become F-labelled if it
has no N-labelled neighbour (in that case rule Ry should be applied) and at most one A- or A’-labelled
neighbour (it means that the A'-labelled vertex is a leaf of the computed spanning tree).

This system provides a distributed implementation of the sequential algorithm encoded in Exam-
ple 2 (we may have several active vertices, with label A or A’, at the same time). Fig. 3 shows a
sample R3-relabelling sequence.
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Due to the control mechanism on the applicability of relabelling rules in PGRSs and FCGRSs,
only relabelling steps concerning “far enough” occurrences may be applied concurrently [11]. Roughly
speaking, in order to check whether a relabelling rule may be applied on a given occurrence or not
it is necessary to consider some “control area” surrounding this occurrence. Two relabelling steps
are then “independant” if their corresponding control areas do not intersect. The reader should note
here that the diameter of this control area is bounded by some constant only depending on the graph
relabelling system.

The comparison between the expressive power of PGRSs and FCGRSs, together with some other
types of GRSs, has been done in [11]. In particular, it has been proved that PGRSs and FCGRSs are
equivalent: for every PGRS (resp. FCGRS) there exists a FCGRS (resp. PGRS) achieving the same
computation. In the rest of the paper we will thus indifferently provide examples under the PGRS or
FCGRS form.

3 Proof techniques

Graph relabelling systems provide a formal model for expressing distributed algorithms. The aim of
this Section is to show that this model is suitable for studying and proving properties of distributed
algorithms.

A graph relabelling system R is noetherian if there is no infinite R-relabelling sequence starting
from a graph with initial labels in Z. Thus, if a distributed algorithm is encoded by a noetherian
graph relabelling system then this algorithm always terminates. In order to prove that a given system
is noetherian we generally use the following technique. Let (S, <) be a partially ordered set with no
infinite decreasing chain (that is every decreasing chain 2y > 29 > ... > z, > ... in S is finite). We
say that < is a noetherian order compatible with R if there exists a mapping f from G, to S such that
for every R-relabelling step (G, \, R, ¢, \') we have f(G,\) > f(G,\). Tt is not difficult to see that if
such an order exists then the system R is noetherian: since there is no infinite decreasing chain in S,
there cannot exist any infinite R-relabelling sequence.

In order to prove the correctness of a graph relabelling system, that is the correctness of an
algorithm encoded by such a system, it is useful to exhibit (i) some invariant properties associated
with the system (by invariant property, we mean here some property of the graph labelling that is
satisfied by the initial labelling and that is preserved by the application of every relabelling rule) and
(74) some properties of irreducible graphs. These properties generally allow to derive the correctness
of the system.

Let us illustrate these techniques by considering the simple graph relabelling system R; given in
Example 1.

Termination: Let f be the mapping from G,, to the set of natural integers IN which associates with
each Li-labelled graph the number of its N-labelled vertices. Observing that this number strictly
decreases when we apply the relabelling rule R; we get that (IN, >) is a noetherian order compatible
with the system Ri. Thus R is a noetherian system.

Correctness: Let (G, A) be a Ly-labelled graph and P;, P, be the following properties:

P, : Every 1-labelled edge is incident with two A-labelled vertices,
P; : The subgraph of G made of the 1-labelled edges and the A-labelled vertices has no cycle.

Every Zi-labelled graph satisfies P; and P, since it has no 1-labelled edge. Moreover, these two
properties are clearly preserved when we apply the rule R;. Thus, P, and P, are invariant with
respect to Rq.

Let now (G, ) be any Z;-labelled graph having at least one A-labelled vertex and (G, \’') be a
labelled graph in Irredg, (G, ). Considering the relabelling rule Ry, (G,)\') cannot have any N-
labelled vertex. From property P,, we get that the subgraph of (G, \') induced by the 1-labelled edges
has no cycle. If (G, \) has exactly one A-labelled vertex we thus obtain a spanning tree of G. If (G, \)
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has more than one A-labelled vertex we obtain a spanning forest having as many components as the
number of these initially A-labelled vertices.

The reader interested in more substantial examples is referred to [9]. In particular, the graph
relabelling systems introduced in Examples 2 and 3 are considered there.

The complexity of a distributed algorithm encoded by a graph relabelling system can also be
studied by using classical techniques from rewriting theory. The space complexity is well-captured by
the number of labels that are used, and the (sequential) time complexity by the length of a relabelling
sequence. The degree of parallelism may also be measured by considering the ratio between the length
of a parallel relabelling sequence and the length of a sequential relabelling sequence. Of course, this
ratio strongly depends on the specific topology of the graph under consideration.

4 The election problem

The election problem is one of the paradigms of the theory of distributed computing [22]. Considering
a network of processors we say that a given processor p has been elected when the network is in some
global state such that the processor p knows that it is the elected processor and all other processors
know that they are not. Using our terminology, it means that we get a labelling of the graph in which
a unique vertex has some distinguished label.

This problem may be considered under various assumptions [22]: the network may be directed or
not, the network may be anonymous (all vertices have the same initial label) or not (every two distinct
vertices have distinct initial labels), all vertices, or some of them, may have some specific knowledge
on the network or not (such as the diameter of the network, the total number of vertices or simply an
upper bound of these parameters), etc.

We first illustrate this problem with a sample FCGRS electing a vertex in a tree.

Example 4 Let Ry = (L4,Z4, Py) be the FCGRS defined by £, = {N,F,E, 0}, Z, = {N,0} and
Py = {R1, Ry} where Ry, Ry are the following relabelling rules with forbidden contexts:

NON FON NON
Ry: ° ° ——o
0
N
N E N
RQZ [ —_— [ )
[0
N

Let us call a pendant vertex any N-labelled vertex having exactly one N-labelled neighbour. The rule
R then consists in “cutting” a pendant vertex in the tree, this cut vertex becoming F-labelled. Thus,
if (G, X) is a labelled tree whose all vertices are N-labelled and all edges are 0-labelled then this cuting
procedure leads to a unique N-labelled vertex which becomes elected thanks to the rule Rs.

It is not difficult to observe that every vertex in the tree may be elected by this algorithm. A
precise analysis of this algorithm is proposed in [18]. In particular, it is proved that there exist one or
two vertices having the highest probability of being elected, namely the medians of the graph (recall
here that a vertex is called a median if the sum of the distances of this vertex to all other vertices in
the graph is minimum).

The following algorithm has been proposed by Mazurkiewicz [15] and is designed for oriented rings
(that is networks whose corresponding graph is a directed cycle) having a prime number of vertices.
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Figure 5: Prime and not prime graphs.

Example 5 Let £ be the set of words on the alphabet {A, B} with length at most n, n > 3. Let €
denotes the empty word, |m| denotes the length of a word m and m; denote the i'* letter of the word
m. Consider the following rules:

€ € € A
Ry: ——o — ——o
For every non-empty word m:
m € m B
Rs(m): e——e — L —

For every words m and = with 0 < |z| < n and |z| < |m]:

m X m xm‘x|
R3(m,z): e——e — oo

Mazurkiewicz proved that if (G, ) is a directed cycle on n vertices, n being a prime number,
whose all vertices are initially e-labelled then this algorithm always terminates and leads to a final
labelling such that (i) all vertices are labelled by distinct words of length n, (i7) all these labels are
conjugate of some word w (recall that two words v and v are conjugate if u = ujus and v = usuq).
The elected vertex is then the vertex having the minimum label with respect to the lexicographic
ordering. Therefore, every vertex may know whether it has been elected or not by considering the set
of all the conjugates of its own final label. Fig. 4 shows a sample execution of this algorithm on an
oriented triangle. The vertex with final label AAB is the elected vertex.

Observe that this algorithm requires that every vertex knows the total number of vertices in the
cycle, this number being used in the definition of the relabelling rules.

The election problem has been considered in the undirected case in [19]. For instance, it has been
proved that the election problem can be solved for the so-called prime graphs, provided that every
vertex knows the total number of vertices in the graph. Let G be an undirected graph and r be a
positive integer. A r-decomposition of G is a spanning forest of G whose all connected components
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(trees) contain exactly r vertices. A graph having n vertices is then said to be prime if it only admits 1-
and n-decompositions. Fig. 5 illustrates this notion of primality. The class of prime graphs obviously
contains all the graphs having a prime number of vertices.

An election algorithm for the class of prime graphs can then be intuitively described as follows: we
associate with each vertex z of the graph a weight denoted by w(x). Initially, the weight of every vertex
is 1. The algorithm maintains a spanning forest of the graph whose every tree has a distinguished
vertex called the leader of the tree. The weight of this leader equals the size of the tree. Initially,
every vertex constitutes a tree of the spanning forest and it is the leader of this tree. We say that two
trees Ty and Th of the spanning forest are adjacent if there exists an edge x1x5 such that zq is a vertex
in T} and z5 is a vertex in T5. The algorithm then proceeds as follows:

1. If two leaders with weight 1 are adjacent then they are combined into a unique tree; one of them
becomes the new leader (with weight 2), the weight of the other one is set to 0.

2. A leader L with a weight w(L) > 2 tries to find an adjacent tree whose leader L' is such that
w(L) > w(L'). If it finds one, then the two trees are combined into a unique tree with leader L.
The weight of L becomes the size of the new tree and the weight of L' is set to 0.

If the graph is prime, it is not difficult to check that this algorithm stops when the spanning forest
contains a unique tree. The leader of this tree is then the elected vertex. The complete description of
this algorithm can be found in [19].

5 Local computations in graphs

One of the main characteristics of distributed algorithms is the locality of the computation [8, 22]. Ev-
ery computation step occurring on some processor only depends on the local context of this processor.
This locality concept is captured via the notion of local graph relabelling relations [13].

Let G be a graph, = a vertex in V(G) and k some positive integer. We denote by Bg(x,k) the
ball of radius k centered at x, that is the subgraph of G induced by all vertices that are at distance at
most k from z (recall that the distance between two vertices is the length of a shortest path linking
these two vertices). A graph relabelling relation (over L) is a binary relation R defined on the set
of L-labelled graphs such that every pair in R is of the form ((G,\),(G,)\')). Thus, two labelled
graphs in relation only differ on their labelling function. We will write (G, A\)R(G, \') whenever the
pair ((G,)\),(G,)\)) is in R. A L-labelled graph (G, \) is said to be R-irreducible if there exists no
(G, X) such that (G, \)R(G, \"). We will denote by R* the reflexive and transitive closure of R and,
for every L-labelled graph (G, \), by Irredgr(G, ) the set of R-irreducible graphs (G, \’) such that
(G, NR*(G,N).

We say that a graph relabelling relation R is k-local for some positive integer k if for every pair
((G, ), (G, X)) in R, there exists some vertex z in V(G) such that A and X coincide on V(G) \
V(Bg(z,k)) U E(G) \ E(Bg(z,k)). Intuitively speaking, it means that A and X only differ on a
centered ball of radius at most k. A graph relabelling relation is local if it is k-local for some k. A
graph relabelling relation R is k-locally generated if it can be computed for any graph as soon as it
is known on the set of graphs with diameter at most 2k. More formally, if (G, ), (G', ), (H,u),
(H', ') are four labelled graphs, Bg(z, k) and By (y, k) two isomorphic balls in G and H respectively
such that (i) A and X coincide on V(G) \ V(Bg(z,k)) U E(G) \ E(Bg(z,k)), (i7) p and p' coincide
on V(H)\V(Bu(y,k))UE(H)\ E(Br(y,k)) and (4i7) A and p coincide respectively on Bg(z, k) and
By (y, k) then (G,\)R(G',\") if and only if (H,u)R(H',i'). A graph relabelling relation is locally
generated if it is k-locally generated for some k.

Graph relabelling systems (GRSs, PGRSs, FCGRSs) are thus special cases of locally generated
graph relabelling relations. One of the main questions in that framework is “what can be computed by
means of locally generated graph relabelling relations 7”. This question is obviously strongly related to
the general problem of characterizing those functions that can be computed by distributed algorithms
in an asynchronous way (see e.g. [20]). The next Section is devoted to that question and discuss
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the problem of characterizing those classes of graphs that can be recognized by means of such local
computations.

6 The recognition problem

The problem adressed in this section can be informally described as follows: let F be some class of
(unlabelled) graphs. We will say that this class can be locally recognized if there exists some graph
relabelling system or, more generally, some locally generated graph relabelling relation, which, starting
from any uniformly labelled graph (G, Ag) (that is all vertices and edges have the same label), leads
to some final labelling that allows to decide whether G' belongs to the class F or not.

More formally, we define a graph recognizer as a pair (R, K) where R is a graph relabelling relation
and K a class of labelled graphs. The set of labelled graphs recognized by (R,K) is then defined as
the set of labelled graphs (G, ) such that Irredgr(G,\) N K # @. Such a recognizer is said to be
deterministic if (i) R is noetherian and (7i) for every labelled graph (G, \), either Irredr(G,\) C K
or Irredgr(G,\) N K = 0.

We are essentially interested in graph recognizers where the relation R is locally generated (with
the particular case of graph relabelling systems) and the set K is defined in some “simple way”. In [13]
this set I is defined by means of a so-called final condition, that is a logical formula inductively defined
as follows: (4) for every label ¢ € L, ¢ is a formula and (iz) if ¢ and 9 are formulas then so do -,
oV and p A1. Now, for £ € L, a labelled graph satisfies the formula £ if it contains at least one
¢-labelled component, and by induction, it satisfies ¢ V ® if it satisfies ¢ or 9 and so on in the usual
way. Thus, such final conditions allow to verify the presence or the absence of some specific labels
but not to count the number of such labels. We will denote by IC(¢) the set of labelled graphs which
satisfy the formula ¢.

We first illustrate this recognition mechanism with a tree recognizer given in [9].

Example 6 Let R5 = (Ls5,Z5, P5, >5) be the PGRS defined by £5 = {N,I,F,0}, Zs = {N,0},
Py = {Rl, Rs, R3, R4,R5} with the rules:

N 0 N 0 N N 0 I 0 N
Ry: [ 3 ° — [ ° °
I ¢ N o N I ¢ I ¢ N
Ry: ——— o — o — —— o — o
I N I I I I
Ra: 0 0 0 0
N N N F
0 0
Ry: ———o e —— o
I N N F
0 0
Rs: ———o e —— o

and the priority relation: {R1, Ro, R3} >5 {R4, R5}.

Let now ¢ be the final condition ¢ = —I. Tt can be proved that if (G, \) is a labelled graph whose all
vertices are N-labelled and all edges are 0-labelled then every labelled graph (G, \') in Irredg, (G, \)
has no I-labelled vertex, and thus satisfies ¢, if and only if G has no cycle. Hence, the pair (R5, K(y))
is a deterministic recognizer for the class of trees.

In [10, 13] the recognizable classes of graphs are compared to the classes of graphs definable by
logic formulas (see [4] for the notion of definability by logic formulas). In particular, it is proved that
(deterministically or not) recognizable classes of graphs are not comparable with classes of graphs
definable by logic formulas expressed in first-order logic (FOL), monadic second-order logic (MSOL)
or second-order logic (SOL). The case of the so-called 1-graphs, that is graphs having a distinguished
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Table 1: Recognizable and not-recognizable graph classes

Graph properties Graphs 1-Graphs
FOL
exactly one /-labelled vertex No Yes
k-regular Yes Yes
MSOL
bipartite No Yes
k-colorable (k > 2) No ?
hamiltonian No Yes
acyclic Yes Yes
SOL
even number of vertices No Yes

3 4 4 3
The graph G The graph H

Figure 6: The graph G is a 2-covering of the graph H.

vertex is also considered. Table 1 gives some sample graph classes or 1-graph classes that can or
cannot be deterministically recognized.

The class of graphs having an even number of vertices can be undeterministically recognized but
cannot be deterministically recognized. The class of graphs having an odd number of vertices cannot
be recognized, even in an undeterministic way. Thus, the set of deterministically recognizable classes of
graphs is not closed under taking complement and is strictly included in the set of undeterministically
recognizable classes of graphs. However, the set of deterministically recognizable classes of graphs is
closed under union and intersection [13].

The majority problem has been considered in [12]. It is proved that the class of graphs having
strictly more A-labelled vertices than B-labelled vertices is deterministically recognizable. However,
for every positive integer m, the class of graphs such that the difference between the number of A-
labelled vertices and the number of B-labelled vertices is at most m cannot be recognized, even in an
undeterministic way.

The main question here is to find some characterization of the classes of graphs that can be
recognized by locally generated graph relabelling relations. Up to now, this question is still an open
problem.

7 k-coverings of graphs

Inspired by techniques used by Angluin [1] and Fisher et al. [7], we define the notion of k-covering,
introduced in [13], which generalizes the classical notion of covering from graph theory. This notion
is useful for proving negative results concerning locally generated graph relabelling relations.
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Let k be a positive integer. We say that a labelled graph (G, \) is a k-covering of a labelled graph
(H, ) via a mapping v from V(G) to V(H) if -y is a surjective homomorphism such that for every vertex
z of V(G), the restriction of y to Bg(z, k) induces an isomorphism between Bg(z, k) and By (y(z), k)
which preserves vertex and edge labels. Fig. 6 shows two sample (unlabelled for simplicity) graphs G
and H such that G 2-covers H. The numbering of the vertices defines the corresponding 2-covering ~.

The notion of k-covering is related to k-locally generated graph relabelling relations by the following
result:

Theorem 7 [13] If a labelled graph (G, ) is a k-covering of a labelled graph (H, ) then every
k-locally generated graph relabelling relation R that recognizes (H,u) also recognizes (G,)\). If R
recognizes deterministically then (G, \) is recognized if and only if (H, u) is recognized.

This result follows from the easy observation that if (H,u)R(H, ') then there exists a labelling
function X' such that (G,\)R*(G,)\) and (G, ') k-covers (H,p'). If ' modifies the centered ball
By (z, k), then X is obtained from A by reproducing these modifications on the corresponding inverse
image y~!'(By(x,k)) (which is a finite set of balls isomorphic to By (z,k)), where v stands for the
k-covering of (H,u) by (G, \).

Since there exist planar graphs with non-planar k-coverings for every k, we get that the class of
planar graphs cannot be recognized, even in an undeterministic way [13].

Using this notion of k-covering, it is proved in [5] that every non-trivial minor-closed class of graphs
containing at least one graph with at least two cycles cannot be recognized by a k-locally generated
graph relabelling relation.

A standard method for producing coverings of a graph G is to consider the kronecker product of G
by the complete graph K (recall that the kronecker product of G and H is the graph with vertex set
V(G) x V(H) and with edge set those pairs {{z,y},{z,t}} with {z,2} € F(G) and {y,t} € E(H)).
This construction has been studied in [3]. By considering properties of this construction it has been
proved in particular that the classes of graphs having a cut-vertex or a cut-edge, of graphs with trivial
automorphism group, of non-bipartite or non-planar graphs are not recognizable by locally generated
graph relabelling relations, even in an undeterministic way.

In [21] Reidemeister gave an elegant method for constructing all the coverings of a graph. Up to
now, no such construction method is known in the case of k-coverings.

8 The termination detection problem

An important property in distributed computing theory is the capability, for a given vertex, to detect
the termination of the algorithm [22]. To be really effective, this detection should be done in some
simple way, namely by examining the labels of the “closed neighbourhood” of a vertex.

More formally, we will say that a graph relabelling system R has the k-local termination detection
property (k-LTDP for short) if () there exists a (not necessarily finite) set B of triples (B;, A;, ;) such
that (Bj, \;) is a labelled graph and z; a vertex in V(B;) such that z; is at distance at most &k from
any other vertex in V' (B;), and (i7) for every labelled graph (G, A), there exists a vertex = in V(G), a
positive integer k' < k and an isomorphism between Bg(z, k') and some (B;, \;, z;) which maps z to
z; if and only if the graph (G, \) is R-irreducible.

Let us illustrate this notion on the three examples given in Section 2. The graph relabelling system
R1 (see Example 1) is not k-LTDP, for every k. Every N-labelled vertex knows that the computation
is not terminated, but a A-labelled vertex cannot detect the termination since the computation may
be still “active” in a part of the graph which is unboundedly far from this vertex. On the contrary,
considering the PGRS Ry (see Example 2) and the FCGRS R3 (see Example 3), it is easy to check
that in both cases, if a A-labelled vertex is such that all its neighbours are F-labelled, then the graph
is necessarily irreducible. Thus, the systems Ry and R3 are both 1-LTDP.

In [17] it is proved that if C is a class of labelled graphs, (G, A) is a labelled graph and (H, ) is a
connected non-trivial k-covering of (G, \) such that both (G, \) and (H, ;1) belong to the class C, then
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we cannot locally detect whether a graph in C is irreducible with respect to any k-locally generated
graph relabelling relation. From other results given in [17] we can deduce that to elect a vertex in the
class of prime graphs (see Section 4) it is necessary to know the size of the graph.
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