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Abstra
t. Graph relabelling systems have been introdu
ed as a suitable model for expressing and studyingdistributed algorithms on a network of 
ommuni
ating pro
essors. We re
all the basi
 ideas underlying thatmodel and we survey the main questions that have been 
onsidered and the main results that have been obtainedin that framework.Keywords. Distributed algorithm, Ele
tion, k-
overing, Re
ognition, Lo
al 
omputations in graphs, Graphrelabelling system.1 Introdu
tionGraph relabelling systems have been introdu
ed in [2℄ as a suitable tool for expressing distributedalgorithms on a network of 
ommuni
ating pro
essors. In that model a network is regarded as a labelledgraph whose verti
es stand for pro
essors and edges stand for 
ommuni
ation links. Vertex labels areused for des
ribing the states of pro
essors and edge labels for des
ribing the states of 
ommuni
ationlinks. A 
omputation in a network then 
orresponds to a sequen
e of labels transformations leadingto a �nal labelled graph 
onsidered as the result of the 
omputation. Every elementary step insu
h a 
omputation will be des
ribed by a graph relabelling rule expressing the modi�
ation of the
orresponding labels.Let us �rst illustrate this idea by 
onsidering a simple distributed algorithm whi
h 
omputes aspanning tree of a network. Assume that a unique given pro
essor is in an \a
tive" state (en
odedby the label A), all other pro
essors being in some \neutral" state (label N) and that all links are insome \passive" state (label 0). The tree initially 
ontains the unique a
tive vertex. At any step of the
omputation, an a
tive vertex may a
tivate one of its neutral neighbours and mark the 
orrespondinglink whi
h gets the new label 1. This 
omputation stops as soon as all the pro
essors have beena
tivated. The spanning tree is then obtained by 
onsidering all the links with label 1. Fig. 1des
ribes a sample 
omputation using this algorithm.An elementary step in this 
omputation may be depi
ted as a relabelling step by means of thefollowing relabelling rule R whi
h des
ribes the 
orresponding label modi�
ations:R: tA 0 tN tA 1 tA-An appli
ation of this relabelling rule on a given graph (or network) 
onsists in (i) �nding in thegraph a subgraph isomorphi
 to the left-hand-side of the rule (this subgraph is 
alled the o

urren
eof the rule) and (ii) modifying its labels a

ording to the right-hand-side of the rule.The relabelling sequen
e depi
ted in Fig. 1 illustrates a sequential 
omputation sin
e the relabellingsteps are sequentially applied. A distributed view of this 
omputation 
an be obtained by 
onsideringthat relabelling steps 
on
erning disjoint parts of the graph may be applied in any order, or even
on
urrently (this is namely the 
ase for the steps (2) and (3), or (4) and (5) in Fig. 1).Among models related to those used here are 
omputations de�ned by Fiksel et al. [6℄ and byAngluin [1℄. The �rst one 
onsiders a syn
hronous model based on graphs equipped with identi
al1Most of the work reported here has been supported by the Esprit Basi
 Resear
h Working Group COMPUGRAPH,the Esprit Basi
 Resear
h A
tion no 3166 (ASMICS) and the European Community Cooperation A
tion IC-1000(ALTEC). 1



2 Graph relabelling systems: a general overview
tN tNtA tNtN tN00000 00 -(1) tN tNtA tAtN tN01000 00 -(2) tN tNtA tAtA tN01001 00 -(3) tN tAtA tAtA tN01001 10

-(4) tA tAtA tAtA tN01101 10 -(5) tA tAtA tAtA tA01101 11Figure 1: Computation of a spanning tree.�nite automata on all verti
es. An elementary 
omputation step then 
onsists in 
omputing the nextstate of ea
h pro
essor a

ording to its own state and the states of all its neighbours. The latter one
onsiders an asyn
hronous model. During an elementary 
omputation step, two neighbouring verti
esex
hange their labels and then 
ompute their new ones.In this paper, we re
all the basi
 ideas underlying the graph relabelling model and we surveythe main questions that have been 
onsidered and the main results that have been obtained in thatframework. The rest of this paper is organized as follows. In Se
tion 2 we give the basi
 de�nitions andnotation that will be used. In parti
ular, we de�ne two me
hanisms, namely the notions of prioritiesand forbidden 
ontexts, whi
h allow to in
rease the expressive power of graph relabelling systems byadding some lo
al 
ontrol on the appli
ability of the relabelling rules.One of the main motivations when introdu
ing graph relabelling systems was to o�er a suitablemodel for studying and for proving properties of distributed algorithms. In Se
tion 3 we show howproof te
hniques issued from rewriting theory 
an be useful in this 
ontext.Se
tion 4 is devoted to the study of the well-known ele
tion problem. Starting from a graph whoseall verti
es have the same label, a vertex is said to be ele
ted if, after some 
omputation, it is theunique vertex in the graph having some distinguished label. This problem has only solutions for somespe
ial graph 
lasses. We provide in parti
ular a graph relabelling system whi
h solves this problemfor the 
lass of so-
alled prime graphs.From a more abstra
t point of view, graph relabelling systems allow to express lo
al 
omputationson graphs. One of the main questions is then to 
hara
terize those fon
tions that 
an be lo
ally
omputed in a graph. These notions are presented in Se
tion 5.In Se
tion 6 we fo
us on the spe
i�
 re
ognition problem. A graph relabelling system is said tore
ognize a given 
lass of graphs if, starting from any uniformly labelled graph, it 
omputes a �nallabelling whi
h allows to de
ide whether the graph belongs to the 
lass or not. We review some graph
lasses that 
an or 
annot be re
ognized in su
h a way.In Se
tion 7 we introdu
e the notion of k-
overing whi
h generalizes the 
lassi
al notion of graph
overing. We show how this notion 
an be an useful tool for proving negative results 
on
erning the
apabilities of graph relabelling systems.Finally, in Se
tion 8 we deal with the so-
alled termination dete
tion 
riteria whi
h is a majorparameter in distributed 
omputing theory.
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 de�nitions and notationUnless otherwise stated, all the graphs 
onsidered in this paper are �nite, undire
ted, without multipleedges, loopless and 
onne
ted. For every graph G we denote by V (G) its set of verti
es and by E(G)its set of edges. If G and G0 are two graphs, we say that G0 is a subgraph of G if V (G0) � V (G) andE(G0) � E(G). If X is a subset of V (G), the subgraph of G indu
ed by X has vertex set X andedge set the set of all edges whose both extremities belong to X. A homomorphism of a graph G to agraph H is a mapping ' from V (G) to V (H) su
h that '(x)'(y) is an edge in H whenever xy is anedge in G. We say that ' is an isomorphism if ' is bije
tive and '�1 is also a homomorphism. In thefollowing, a set of graphs whi
h is 
losed under isomorphism will be 
alled a 
lass of graphs.Let L be a set whose elements are 
alled labels. A L-labelled graph is a pair (G;�) where G is agraph and � a mapping from V (G)[E(G) to L. If (G;�) and (G0; �0) are two labelled graphs, we saythat (G0; �0) is a (labelled) subgraph of (G;�) if G0 is a subgraph of G and �0 is the restri
tion of �to V (G0) [ E(G0). We will denote by GL the set of all L-labelled graphs. An isomorphism betweentwo labelled graphs (G;�) and (H;�) is an isomorphism ' between G and H whi
h preserves thelabels, that is �(x) = �('(x)) for every x in V (G) and �(xy) = �('(x)'(y)) for every xy in E(G).An o

urren
e of (G;�) in (H;�) is an isomorphism ' between G and a subgraph (H 0; �0) of (H;�).We will then write '(G;�) = (H 0; �0).A (graph) relabelling rule is a triple R = (GR; �R; �0R) su
h that (GR; �R) and (GR; �0R) are twolabelled graphs. The labelled graph (GR; �R) (resp. (GR; �0R)) is 
alled the left-hand side (resp.right-hand side) of R.A graph relabelling system (GRS for short) is a triple R = (L;I; P ) where L is a set of labels,I a subset of L 
alled the set of initial labels and P a �nite set of relabelling rules. A R-relabellingstep is a 5-tuple (G;�;R; '; �0) su
h that R is a relabelling rule in P and ' is both an o

urren
e of(GR; �R) in (G;�) and an o

urren
e of (GR; �0R) in (G;�0). Intuitively speaking, the labelling �0 of Gis obtained from � by modifying all the labels of the elements of '(GR; �R) a

ording to the labelling�0R. Su
h a relabelling step will be denoted by (G;�) �!R;' (G;�0). A R-relabelling sequen
eis a tuple (G;�0; R0; '0; �1; R1; '1; �2; : : : ; �n�1; Rn�1; 'n�1; �n) su
h that for every i, 0 � i < n,(G;�i; Ri; 'i; �i+1) is a R-relabelling step. The existen
e of su
h a relabelling sequen
e will be denotedby (G;�0) �!�R (G;�n).A labelled graph (G;�) is said to beR-irredu
ible if there exists no o

urren
e of (GR; �R) in (G;�)for every relabelling rule R in P . For every labelled graph (G;�) in GI we denote by IrredR(G;�)the set of all R-irredu
ible labelled graphs (G;�0) su
h that (G;�) �!�R (G;�0). Intuitively speaking,the set IrredR(G;�) 
ontains all the �nal labellings that 
an be obtained from a I-labelled graph(G;�) by applying relabelling rules in P and may be viewed as the set of all the possible results ofthe 
omputation en
oded by the system R.Example 1 The algorithm introdu
ed in Se
tion 1 may be en
oded by the graph relabelling systemR1 = (L1;I1; P1) de�ned by L1 = fN;A;0;1g, I1 = fN;A;0g, and P1 = fRg where R is thefollowing relabelling rule: R: tA 0 tN tA 1 tA-Fig. 1 des
ribes a sample R1-relabelling sequen
e.The notion of relabelling sequen
e de�ned above obviously 
orresponds to a notion of sequential
omputation. We 
an de�ne a more distributed way of 
omputing by saying that two relabelling steps
on
erning \disjoint" o

urren
es may be applied in any order, or even 
on
urrently. It is easy to
he
k that if (G;�i; Ri; 'i; �i+1) and (G;�i+1; Ri+1; 'i+1; �i+2) are two labelling steps su
h that 'i(G)and 'i+1(G) do not interse
t then (G;�i; Ri+1; 'i+1; �0) and (G;�0; Ri; 'i; �i+2) are two relabellingsteps leading to the same resulting labelled graph (G;�i+2). More generally, any two relabellingsequen
es su
h that the latter one may be obtained from the former one by a su

ession of su
h\
ommutations" lead to the same resulting graph. Hen
e, our notion of relabelling sequen
e may be
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tN tNtA tNtN tN00000 00 - tN tNtM tAtN tN01000 00 - tN tNtM tMtN tA01000 01 - tN tNtM tMtA tM11000 01 -
tN tNtM tMtF tA11000 01 - tN tNtM tAtF tF11000 01 - tN tNtA tFtF tF11000 01 - tA tNtM tFtF tF11010 01 -
tM tAtM tFtF tF11110 01 - tA tFtM tFtF tF11110 01 - tF tFtA tFtF tF11110 01Figure 2: A sample R2-relabelling sequen
e.regarded as a serialization [14℄ of some distributed 
omputation. This model is 
learly asyn
hronous:several relabelling steps may be done at the same time but we do not demand all of them to be done.In the sequel we will essentially deal with sequential relabelling sequen
es but the reader should keepin mind that su
h sequen
es may be done in a distributed way.In order to rea
h a satisfa
tory expressive power, we introdu
e some lo
al 
ontrol me
hanisms.These me
hanisms allow us to restri
t in some sense the appli
ability of relabelling rules.A graph relabelling system with priorities (PGRS for short) is a 4-tuple R = (L;I; P;>) su
h that(L;I; P ) is a graph relabelling system and > is a partial order de�ned on the set P 
alled the priorityrelation. A R-relabelling step is then de�ned as a 5-tuple (G;�;R; '; �0) su
h that R is a relabellingrule in P , ' is both an o

urren
e of (GR; �R) in (G;�) and an o

urren
e of (GR; �0R) in (G;�0) andthere exists no o

urren
e '0 of a relabelling rule R0 in P with R0 > R su
h that '(GR) and '(GR0)interse
t in G (that is V ('(GR)) \ V ('(GR0 )) = �). The notion of relabelling sequen
e is de�ned aspreviously.Example 2 Let R2 = (L2;I2; P2; >2) be the PGRS de�ned by L2 = fN;A;M; F;0;1g, I2 =fN;A;0g, P2 = fR1; R2g where R1 and R2 are the following relabelling rules:R1: tA 0 tN tM 1 tA-R2: tM 1 tA tA 1 tF-with the priority relation: R1 >2 R2.Suppose that (G;�) is a labelled graph 
ontaining exa
tly one A-labelled vertex. As before, thissystem 
omputes a spanning tree of G but in a stri
tly sequential way, using the well-known depth-�rst sear
h algorithm: the (unique) a
tive vertex, with label A, may a
tivate one of its N-labelledneighbours and be
ome marked (label M). When an a
tive vertex has no N-labelled neighbour, itrea
tivates its \father" (whi
h 
orresponds to the unique M-labelled vertex to whi
h it is linked by a1-labelled edge), and be
omes F-labelled. Fig. 2 shows a sample R2-relabelling sequen
e.Let (G;�) be a labelled graph. A 
ontext of (G;�) is a triple (H;�;  ) su
h that (H;�) is alabelled graph and  an o

urren
e of (G;�) in (H;�). A relabelling rule with forbidden 
ontexts



Y. M�etivier and E. Sopena 5
tN tNtA tNtN tN00000 00 - tN tNtA tA'tN tN01000 00 - tN tNtA tA'tA' tN01001 00 - tN tA'tA tA'tA' tN01001 10 -
tA' tA'tA tA'tA' tN01101 10 - tF tA'tA tA'tA' tN01101 10 - tF tFtA tA'tA' tN01101 10 - tF tFtA tA'tA' tA'11101 10 -
tF tFtA tA'tA' tF11101 10 - tF tFtA tFtA' tF11101 10 - tF tFtA tFtF tF11101 10Figure 3: A sample R3-relabelling sequen
e.is a 4-tuple R = (GR; �R; �0R; FR) su
h that (GR; �R; �0R) is a relabelling rule and FR is a �niteset of 
ontexts of (GR; �R). A graph relabelling system with forbidden 
ontexts (FCGRS for short)is a triple R = (L;I; P ) de�ned as a GRS ex
ept that the set P is a set of relabelling rules withforbidden 
ontexts. A R-relabelling step is a 5-tuple (G;�;R; '; �0) su
h that R is a relabelling rulewith forbidden 
ontexts in P , ' is both an o

urren
e of (GR; �R) in (G;�) and an o

urren
e of(GR; �0R) in (G;�0), and for every 
ontext (Hi; �i;  i) of (GR; �R), there is no o

urren
e 'i of (Hi; �i)in (G;�) su
h that 'i( i(GR; �R)) = '(GR; �R). In other words, a relabelling rule with forbidden
ontexts may be applied on some o

urren
e if and only if this o

urren
e is not \in
luded" in ano

urren
e of some of its forbidden 
ontexts.Example 3 LetR3 = (L3;I3; P3) be the FCGRS de�ned by L3 = fN;A;M; F;0;1g, I3 = fN;A;0g,P3 = fR1; R2; R3g where R1, R2 and R3 are the following relabelling rules with forbidden 
ontexts:R1: tA 0 tN tA 1 tA'- , �R2: tA' 0 tN tA' 1 tA'- , �R3: tA' tF- , tA'0 tN tA'AAAA1 ���� 1tA' tA' tA'AAAA1 ���� 1tA tA'The unique vertex of the left-hand side of the rule R3 is asso
iated with the top vertex of its forbidden
ontexts. Roughly speaking, the rule R3 means that a A0-labelled vertex may be
ome F-labelled if ithas noN-labelled neighbour (in that 
ase rule R2 should be applied) and at most one A- or A0-labelledneighbour (it means that the A0-labelled vertex is a leaf of the 
omputed spanning tree).This system provides a distributed implementation of the sequential algorithm en
oded in Exam-ple 2 (we may have several a
tive verti
es, with label A or A0, at the same time). Fig. 3 shows asample R3-relabelling sequen
e.



6 Graph relabelling systems: a general overviewDue to the 
ontrol me
hanism on the appli
ability of relabelling rules in PGRSs and FCGRSs,only relabelling steps 
on
erning \far enough" o

urren
es may be applied 
on
urrently [11℄. Roughlyspeaking, in order to 
he
k whether a relabelling rule may be applied on a given o

urren
e or notit is ne
essary to 
onsider some \
ontrol area" surrounding this o

urren
e. Two relabelling stepsare then \independant" if their 
orresponding 
ontrol areas do not interse
t. The reader should notehere that the diameter of this 
ontrol area is bounded by some 
onstant only depending on the graphrelabelling system.The 
omparison between the expressive power of PGRSs and FCGRSs, together with some othertypes of GRSs, has been done in [11℄. In parti
ular, it has been proved that PGRSs and FCGRSs areequivalent: for every PGRS (resp. FCGRS) there exists a FCGRS (resp. PGRS) a
hieving the same
omputation. In the rest of the paper we will thus indi�erently provide examples under the PGRS orFCGRS form.3 Proof te
hniquesGraph relabelling systems provide a formal model for expressing distributed algorithms. The aim ofthis Se
tion is to show that this model is suitable for studying and proving properties of distributedalgorithms.A graph relabelling system R is noetherian if there is no in�nite R-relabelling sequen
e startingfrom a graph with initial labels in I. Thus, if a distributed algorithm is en
oded by a noetheriangraph relabelling system then this algorithm always terminates. In order to prove that a given systemis noetherian we generally use the following te
hnique. Let (S;<) be a partially ordered set with noin�nite de
reasing 
hain (that is every de
reasing 
hain x1 > x2 > : : : > xn > : : : in S is �nite). Wesay that < is a noetherian order 
ompatible with R if there exists a mapping f from GL to S su
h thatfor every R-relabelling step (G;�;R; '; �0) we have f(G;�) > f(G;�0). It is not diÆ
ult to see that ifsu
h an order exists then the system R is noetherian: sin
e there is no in�nite de
reasing 
hain in S,there 
annot exist any in�nite R-relabelling sequen
e.In order to prove the 
orre
tness of a graph relabelling system, that is the 
orre
tness of analgorithm en
oded by su
h a system, it is useful to exhibit (i) some invariant properties asso
iatedwith the system (by invariant property, we mean here some property of the graph labelling that issatis�ed by the initial labelling and that is preserved by the appli
ation of every relabelling rule) and(ii) some properties of irredu
ible graphs. These properties generally allow to derive the 
orre
tnessof the system.Let us illustrate these te
hniques by 
onsidering the simple graph relabelling system R1 given inExample 1.Termination: Let f be the mapping from GL1 to the set of natural integers IN whi
h asso
iates withea
h L1-labelled graph the number of its N-labelled verti
es. Observing that this number stri
tlyde
reases when we apply the relabelling rule R1 we get that (IN; >) is a noetherian order 
ompatiblewith the system R1. Thus R1 is a noetherian system.Corre
tness: Let (G;�) be a L1-labelled graph and P1, P2 be the following properties:P1 : Every 1-labelled edge is in
ident with two A-labelled verti
es,P2 : The subgraph of G made of the 1-labelled edges and the A-labelled verti
es has no 
y
le.Every I1-labelled graph satis�es P1 and P2 sin
e it has no 1-labelled edge. Moreover, these twoproperties are 
learly preserved when we apply the rule R1. Thus, P1 and P2 are invariant withrespe
t to R1.Let now (G;�) be any I1-labelled graph having at least one A-labelled vertex and (G;�0) be alabelled graph in IrredR1(G;�). Considering the relabelling rule R1, (G;�0) 
annot have any N-labelled vertex. From property P2, we get that the subgraph of (G;�0) indu
ed by the 1-labelled edgeshas no 
y
le. If (G;�) has exa
tly one A-labelled vertex we thus obtain a spanning tree of G. If (G;�)



Y. M�etivier and E. Sopena 7has more than one A-labelled vertex we obtain a spanning forest having as many 
omponents as thenumber of these initially A-labelled verti
es.The reader interested in more substantial examples is referred to [9℄. In parti
ular, the graphrelabelling systems introdu
ed in Examples 2 and 3 are 
onsidered there.The 
omplexity of a distributed algorithm en
oded by a graph relabelling system 
an also bestudied by using 
lassi
al te
hniques from rewriting theory. The spa
e 
omplexity is well-
aptured bythe number of labels that are used, and the (sequential) time 
omplexity by the length of a relabellingsequen
e. The degree of parallelism may also be measured by 
onsidering the ratio between the lengthof a parallel relabelling sequen
e and the length of a sequential relabelling sequen
e. Of 
ourse, thisratio strongly depends on the spe
i�
 topology of the graph under 
onsideration.4 The ele
tion problemThe ele
tion problem is one of the paradigms of the theory of distributed 
omputing [22℄. Consideringa network of pro
essors we say that a given pro
essor p has been ele
ted when the network is in someglobal state su
h that the pro
essor p knows that it is the ele
ted pro
essor and all other pro
essorsknow that they are not. Using our terminology, it means that we get a labelling of the graph in whi
ha unique vertex has some distinguished label.This problem may be 
onsidered under various assumptions [22℄: the network may be dire
ted ornot, the network may be anonymous (all verti
es have the same initial label) or not (every two distin
tverti
es have distin
t initial labels), all verti
es, or some of them, may have some spe
i�
 knowledgeon the network or not (su
h as the diameter of the network, the total number of verti
es or simply anupper bound of these parameters), et
.We �rst illustrate this problem with a sample FCGRS ele
ting a vertex in a tree.Example 4 Let R4 = (L4;I4; P4) be the FCGRS de�ned by L4 = fN;F;E, 0g, I4 = fN;0g andP4 = fR1; R2g where R1, R2 are the following relabelling rules with forbidden 
ontexts:R1: tN tN0 - tF tN0 , tN tN0tN0R2: tN - tE , tNtN0Let us 
all a pendant vertex any N-labelled vertex having exa
tly one N-labelled neighbour. The ruleR1 then 
onsists in \
utting" a pendant vertex in the tree, this 
ut vertex be
oming F-labelled. Thus,if (G;�) is a labelled tree whose all verti
es are N-labelled and all edges are 0-labelled then this 
utingpro
edure leads to a unique N-labelled vertex whi
h be
omes ele
ted thanks to the rule R2.It is not diÆ
ult to observe that every vertex in the tree may be ele
ted by this algorithm. Apre
ise analysis of this algorithm is proposed in [18℄. In parti
ular, it is proved that there exist one ortwo verti
es having the highest probability of being ele
ted, namely the medians of the graph (re
allhere that a vertex is 
alled a median if the sum of the distan
es of this vertex to all other verti
es inthe graph is minimum).The following algorithm has been proposed by Mazurkiewi
z [15℄ and is designed for oriented rings(that is networks whose 
orresponding graph is a dire
ted 
y
le) having a prime number of verti
es.
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t� t�t���� AAA��� AAU� - t� tAt���� AAA��� AAU� - t� tAtA��� AAA��� AAU� - tB tAtA��� AAA��� AAU� - tB tAtAB��� AAA��� AAU� -
tBA tAtAB��� AAA��� AAU� - tBA tAAtAB��� AAA��� AAU� - tBA tAAtABA��� AAA��� AAU� - tBA tAABtABA��� AAA��� AAU� - tBAA tAABtABA��� AAA��� AAU�Figure 4: Ele
tion in a prime oriented ring
t t t ttt����HHHHA prime tree t t t t tt

2-de
omposition of a treeFigure 5: Prime and not prime graphs.Example 5 Let L be the set of words on the alphabet fA;Bg with length at most n, n � 3. Let �denotes the empty word, jmj denotes the length of a word m and mi denote the ith letter of the wordm. Consider the following rules:R1: t� - t� t� - tA-For every non-empty word m:R2(m): tm - t� tm - tB-For every words m and x with 0 < jxj < n and jxj � jmj:R3(m;x): tm - tx tm - txmjxj-Mazurkiewi
z proved that if (G;�) is a dire
ted 
y
le on n verti
es, n being a prime number,whose all verti
es are initially �-labelled then this algorithm always terminates and leads to a �nallabelling su
h that (i) all verti
es are labelled by distin
t words of length n, (ii) all these labels are
onjugate of some word w (re
all that two words u and v are 
onjugate if u = u1u2 and v = u2u1).The ele
ted vertex is then the vertex having the minimum label with respe
t to the lexi
ographi
ordering. Therefore, every vertex may know whether it has been ele
ted or not by 
onsidering the setof all the 
onjugates of its own �nal label. Fig. 4 shows a sample exe
ution of this algorithm on anoriented triangle. The vertex with �nal label AAB is the ele
ted vertex.Observe that this algorithm requires that every vertex knows the total number of verti
es in the
y
le, this number being used in the de�nition of the relabelling rules.The ele
tion problem has been 
onsidered in the undire
ted 
ase in [19℄. For instan
e, it has beenproved that the ele
tion problem 
an be solved for the so-
alled prime graphs, provided that everyvertex knows the total number of verti
es in the graph. Let G be an undire
ted graph and r be apositive integer. A r-de
omposition of G is a spanning forest of G whose all 
onne
ted 
omponents



Y. M�etivier and E. Sopena 9(trees) 
ontain exa
tly r verti
es. A graph having n verti
es is then said to be prime if it only admits 1-and n-de
ompositions. Fig. 5 illustrates this notion of primality. The 
lass of prime graphs obviously
ontains all the graphs having a prime number of verti
es.An ele
tion algorithm for the 
lass of prime graphs 
an then be intuitively des
ribed as follows: weasso
iate with ea
h vertex x of the graph a weight denoted by w(x). Initially, the weight of every vertexis 1. The algorithm maintains a spanning forest of the graph whose every tree has a distinguishedvertex 
alled the leader of the tree. The weight of this leader equals the size of the tree. Initially,every vertex 
onstitutes a tree of the spanning forest and it is the leader of this tree. We say that twotrees T1 and T2 of the spanning forest are adja
ent if there exists an edge x1x2 su
h that x1 is a vertexin T1 and x2 is a vertex in T2. The algorithm then pro
eeds as follows:1. If two leaders with weight 1 are adja
ent then they are 
ombined into a unique tree; one of thembe
omes the new leader (with weight 2), the weight of the other one is set to 0.2. A leader L with a weight w(L) � 2 tries to �nd an adja
ent tree whose leader L0 is su
h thatw(L) > w(L0). If it �nds one, then the two trees are 
ombined into a unique tree with leader L.The weight of L be
omes the size of the new tree and the weight of L0 is set to 0.If the graph is prime, it is not diÆ
ult to 
he
k that this algorithm stops when the spanning forest
ontains a unique tree. The leader of this tree is then the ele
ted vertex. The 
omplete des
ription ofthis algorithm 
an be found in [19℄.5 Lo
al 
omputations in graphsOne of the main 
hara
teristi
s of distributed algorithms is the lo
ality of the 
omputation [8, 22℄. Ev-ery 
omputation step o

urring on some pro
essor only depends on the lo
al 
ontext of this pro
essor.This lo
ality 
on
ept is 
aptured via the notion of lo
al graph relabelling relations [13℄.Let G be a graph, x a vertex in V (G) and k some positive integer. We denote by BG(x; k) theball of radius k 
entered at x, that is the subgraph of G indu
ed by all verti
es that are at distan
e atmost k from x (re
all that the distan
e between two verti
es is the length of a shortest path linkingthese two verti
es). A graph relabelling relation (over L) is a binary relation R de�ned on the setof L-labelled graphs su
h that every pair in R is of the form ((G;�); (G;�0)). Thus, two labelledgraphs in relation only di�er on their labelling fun
tion. We will write (G;�)R(G;�0) whenever thepair ((G;�); (G;�0)) is in R. A L-labelled graph (G;�) is said to be R-irredu
ible if there exists no(G;�0) su
h that (G;�)R(G;�0). We will denote by R� the re
exive and transitive 
losure of R and,for every L-labelled graph (G;�), by IrredR(G;�) the set of R-irredu
ible graphs (G;�0) su
h that(G;�)R�(G;�0).We say that a graph relabelling relation R is k-lo
al for some positive integer k if for every pair((G;�); (G;�0)) in R, there exists some vertex x in V (G) su
h that � and �0 
oin
ide on V (G) nV (BG(x; k)) [ E(G) n E(BG(x; k)). Intuitively speaking, it means that � and �0 only di�er on a
entered ball of radius at most k. A graph relabelling relation is lo
al if it is k-lo
al for some k. Agraph relabelling relation R is k-lo
ally generated if it 
an be 
omputed for any graph as soon as itis known on the set of graphs with diameter at most 2k. More formally, if (G;�), (G0; �0), (H;�),(H 0; �0) are four labelled graphs, BG(x; k) and BH(y; k) two isomorphi
 balls in G and H respe
tivelysu
h that (i) � and �0 
oin
ide on V (G) n V (BG(x; k)) [ E(G) n E(BG(x; k)), (ii) � and �0 
oin
ideon V (H) n V (BH(y; k))[E(H) nE(BH(y; k)) and (iii) � and � 
oin
ide respe
tively on BG(x; k) andBH(y; k) then (G;�)R(G0; �0) if and only if (H;�)R(H 0; �0). A graph relabelling relation is lo
allygenerated if it is k-lo
ally generated for some k.Graph relabelling systems (GRSs, PGRSs, FCGRSs) are thus spe
ial 
ases of lo
ally generatedgraph relabelling relations. One of the main questions in that framework is \what 
an be 
omputed bymeans of lo
ally generated graph relabelling relations ?". This question is obviously strongly related tothe general problem of 
hara
terizing those fun
tions that 
an be 
omputed by distributed algorithmsin an asyn
hronous way (see e.g. [20℄). The next Se
tion is devoted to that question and dis
uss
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hara
terizing those 
lasses of graphs that 
an be re
ognized by means of su
h lo
al
omputations.6 The re
ognition problemThe problem adressed in this se
tion 
an be informally des
ribed as follows: let F be some 
lass of(unlabelled) graphs. We will say that this 
lass 
an be lo
ally re
ognized if there exists some graphrelabelling system or, more generally, some lo
ally generated graph relabelling relation, whi
h, startingfrom any uniformly labelled graph (G;�0) (that is all verti
es and edges have the same label), leadsto some �nal labelling that allows to de
ide whether G belongs to the 
lass F or not.More formally, we de�ne a graph re
ognizer as a pair (R;K) where R is a graph relabelling relationand K a 
lass of labelled graphs. The set of labelled graphs re
ognized by (R;K) is then de�ned asthe set of labelled graphs (G;�) su
h that IrredR(G;�) \ K 6= �. Su
h a re
ognizer is said to bedeterministi
 if (i) R is noetherian and (ii) for every labelled graph (G;�), either IrredR(G;�) � Kor IrredR(G;�) \ K = �.We are essentially interested in graph re
ognizers where the relation R is lo
ally generated (withthe parti
ular 
ase of graph relabelling systems) and the set K is de�ned in some \simple way". In [13℄this set K is de�ned by means of a so-
alled �nal 
ondition, that is a logi
al formula indu
tively de�nedas follows: (i) for every label ` 2 L, ` is a formula and (ii) if ' and  are formulas then so do :',' _  and ' ^  . Now, for ` 2 L, a labelled graph satis�es the formula ` if it 
ontains at least one`-labelled 
omponent, and by indu
tion, it satis�es ' _  if it satis�es ' or  and so on in the usualway. Thus, su
h �nal 
onditions allow to verify the presen
e or the absen
e of some spe
i�
 labelsbut not to 
ount the number of su
h labels. We will denote by K(') the set of labelled graphs whi
hsatisfy the formula '.We �rst illustrate this re
ognition me
hanism with a tree re
ognizer given in [9℄.Example 6 Let R5 = (L5;I5; P5; >5) be the PGRS de�ned by L5 = fN; I;F;0g, I5 = fN;0g,P5 = fR1; R2; R3; R4; R5g with the rules:R1: tN 0 tN 0 tN tN 0 tI 0 tN-R2: tI 0 tN 0 tN tI 0 tI 0 tN-R3: tI 0 tN 0 tI tI 0 tI 0 tI-R4: tN 0 tN tN 0 tF-R5: tI 0 tN tN 0 tF-and the priority relation: fR1; R2; R3g >5 fR4; R5g.Let now ' be the �nal 
ondition ' = :I. It 
an be proved that if (G;�) is a labelled graph whose allverti
es are N-labelled and all edges are 0-labelled then every labelled graph (G;�0) in IrredR5(G;�)has no I-labelled vertex, and thus satis�es ', if and only if G has no 
y
le. Hen
e, the pair (R5;K('))is a deterministi
 re
ognizer for the 
lass of trees.In [10, 13℄ the re
ognizable 
lasses of graphs are 
ompared to the 
lasses of graphs de�nable bylogi
 formulas (see [4℄ for the notion of de�nability by logi
 formulas). In parti
ular, it is proved that(deterministi
ally or not) re
ognizable 
lasses of graphs are not 
omparable with 
lasses of graphsde�nable by logi
 formulas expressed in �rst-order logi
 (FOL), monadi
 se
ond-order logi
 (MSOL)or se
ond-order logi
 (SOL). The 
ase of the so-
alled 1-graphs, that is graphs having a distinguished
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ognizable and not-re
ognizable graph 
lassesGraph properties Graphs 1-GraphsFOLexa
tly one `-labelled vertex No Yesk-regular Yes YesMSOLbipartite No Yesk-
olorable (k > 2) No ?hamiltonian No Yesa
y
li
 Yes YesSOLeven number of verti
es No Yes
t1 t2 t3 t4
t8 t7 t6 t5 t5 t6 t7 t8t4 t3 t2 t1������ �������

���BBBBBBBBBB
������The graph G t1 t2 t3 t4

t8 t7 t6 t5
������

The graph HFigure 6: The graph G is a 2-
overing of the graph H.vertex is also 
onsidered. Table 1 gives some sample graph 
lasses or 1-graph 
lasses that 
an or
annot be deterministi
ally re
ognized.The 
lass of graphs having an even number of verti
es 
an be undeterministi
ally re
ognized but
annot be deterministi
ally re
ognized. The 
lass of graphs having an odd number of verti
es 
annotbe re
ognized, even in an undeterministi
 way. Thus, the set of deterministi
ally re
ognizable 
lasses ofgraphs is not 
losed under taking 
omplement and is stri
tly in
luded in the set of undeterministi
allyre
ognizable 
lasses of graphs. However, the set of deterministi
ally re
ognizable 
lasses of graphs is
losed under union and interse
tion [13℄.The majority problem has been 
onsidered in [12℄. It is proved that the 
lass of graphs havingstri
tly more A-labelled verti
es than B-labelled verti
es is deterministi
ally re
ognizable. However,for every positive integer m, the 
lass of graphs su
h that the di�eren
e between the number of A-labelled verti
es and the number of B-labelled verti
es is at most m 
annot be re
ognized, even in anundeterministi
 way.The main question here is to �nd some 
hara
terization of the 
lasses of graphs that 
an bere
ognized by lo
ally generated graph relabelling relations. Up to now, this question is still an openproblem.7 k-
overings of graphsInspired by te
hniques used by Angluin [1℄ and Fisher et al. [7℄, we de�ne the notion of k-
overing,introdu
ed in [13℄, whi
h generalizes the 
lassi
al notion of 
overing from graph theory. This notionis useful for proving negative results 
on
erning lo
ally generated graph relabelling relations.



12 Graph relabelling systems: a general overviewLet k be a positive integer. We say that a labelled graph (G;�) is a k-
overing of a labelled graph(H;�) via a mapping 
 from V (G) to V (H) if 
 is a surje
tive homomorphism su
h that for every vertexx of V (G), the restri
tion of 
 to BG(x; k) indu
es an isomorphism between BG(x; k) and BH(
(x); k)whi
h preserves vertex and edge labels. Fig. 6 shows two sample (unlabelled for simpli
ity) graphs Gand H su
h that G 2-
overs H. The numbering of the verti
es de�nes the 
orresponding 2-
overing 
.The notion of k-
overing is related to k-lo
ally generated graph relabelling relations by the followingresult:Theorem 7 [13℄ If a labelled graph (G;�) is a k-
overing of a labelled graph (H;�) then everyk-lo
ally generated graph relabelling relation R that re
ognizes (H;�) also re
ognizes (G;�). If Rre
ognizes deterministi
ally then (G;�) is re
ognized if and only if (H;�) is re
ognized.This result follows from the easy observation that if (H;�)R(H;�0) then there exists a labellingfun
tion �0 su
h that (G;�)R�(G;�0) and (G;�0) k-
overs (H;�0). If �0 modi�es the 
entered ballBH(x; k), then �0 is obtained from � by reprodu
ing these modi�
ations on the 
orresponding inverseimage 
�1(BH(x; k)) (whi
h is a �nite set of balls isomorphi
 to BH(x; k)), where 
 stands for thek-
overing of (H;�) by (G;�).Sin
e there exist planar graphs with non-planar k-
overings for every k, we get that the 
lass ofplanar graphs 
annot be re
ognized, even in an undeterministi
 way [13℄.Using this notion of k-
overing, it is proved in [5℄ that every non-trivial minor-
losed 
lass of graphs
ontaining at least one graph with at least two 
y
les 
annot be re
ognized by a k-lo
ally generatedgraph relabelling relation.A standard method for produ
ing 
overings of a graph G is to 
onsider the krone
ker produ
t of Gby the 
omplete graph K2 (re
all that the krone
ker produ
t of G and H is the graph with vertex setV (G) � V (H) and with edge set those pairs ffx; yg; fz; tgg with fx; zg 2 E(G) and fy; tg 2 E(H)).This 
onstru
tion has been studied in [3℄. By 
onsidering properties of this 
onstru
tion it has beenproved in parti
ular that the 
lasses of graphs having a 
ut-vertex or a 
ut-edge, of graphs with trivialautomorphism group, of non-bipartite or non-planar graphs are not re
ognizable by lo
ally generatedgraph relabelling relations, even in an undeterministi
 way.In [21℄ Reidemeister gave an elegant method for 
onstru
ting all the 
overings of a graph. Up tonow, no su
h 
onstru
tion method is known in the 
ase of k-
overings.8 The termination dete
tion problemAn important property in distributed 
omputing theory is the 
apability, for a given vertex, to dete
tthe termination of the algorithm [22℄. To be really e�e
tive, this dete
tion should be done in somesimple way, namely by examining the labels of the \
losed neighbourhood" of a vertex.More formally, we will say that a graph relabelling system R has the k-lo
al termination dete
tionproperty (k-LTDP for short) if (i) there exists a (not ne
essarily �nite) set B of triples (Bi; �i; xi) su
hthat (Bi; �i) is a labelled graph and xi a vertex in V (Bi) su
h that xi is at distan
e at most k fromany other vertex in V (Bi), and (ii) for every labelled graph (G;�), there exists a vertex x in V (G), apositive integer k0 � k and an isomorphism between BG(x; k0) and some (Bi; �i; xi) whi
h maps x toxi if and only if the graph (G;�) is R-irredu
ible.Let us illustrate this notion on the three examples given in Se
tion 2. The graph relabelling systemR1 (see Example 1) is not k-LTDP, for every k. Every N-labelled vertex knows that the 
omputationis not terminated, but a A-labelled vertex 
annot dete
t the termination sin
e the 
omputation maybe still \a
tive" in a part of the graph whi
h is unboundedly far from this vertex. On the 
ontrary,
onsidering the PGRS R2 (see Example 2) and the FCGRS R3 (see Example 3), it is easy to 
he
kthat in both 
ases, if a A-labelled vertex is su
h that all its neighbours are F-labelled, then the graphis ne
essarily irredu
ible. Thus, the systems R2 and R3 are both 1-LTDP.In [17℄ it is proved that if C is a 
lass of labelled graphs, (G;�) is a labelled graph and (H;�) is a
onne
ted non-trivial k-
overing of (G;�) su
h that both (G;�) and (H;�) belong to the 
lass C, then
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annot lo
ally dete
t whether a graph in C is irredu
ible with respe
t to any k-lo
ally generatedgraph relabelling relation. From other results given in [17℄ we 
an dedu
e that to ele
t a vertex in the
lass of prime graphs (see Se
tion 4) it is ne
essary to know the size of the graph.Referen
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