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2 Colorings and girth of oriented planar graphs
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X 3Figure 1: Target digraphs on three vertiesA. The Oriented Coloring Problem : Given an oriented graph G = (V;A), �nd the smallestnumber of verties of an oriented graph G0 = (V 0; A0) for whih G! G0. This number will be denotedhere ~�(G) and alled the oriented hromati number of G.Observe that if we onsider symmetri digraphs as target graphs this number is then the usualhromati number. Another motivation stems from a reent paper [17℄ where it was proved that ~�(G)is bounded by a onstant for every planar graph G. In fat it was proved that ~�(G) � 80 for everyplanar graph G and presently this is the best known result.The oriented oloring problem was further studied in [18℄ where it was proved that orientationsof k-trees and of bounded degree graphs have bounded oriented hromati number. In partiular, themaximum oriented hromati number of a k-tree is determined up to a log k fator. Also, examplesof planar graphs G with ~�(G) � 16 are presented.The seond problem whih we onsider is :B. The Girth Problem : Given an integer g > 2, determine the quantity~�(g) = maxf ~�(G) ; G planar, girth(G) = g gWe prove the followingTheorem 1(1) For every g, ~�(g) � 5.(2) ~�(7) > 5.(3) If g � 16 then ~�(g) = 5.(4) If g � 11 then ~�(g) � 7.(5) If g � 7 then ~�(g) � 12.(6) If g � 6 then ~�(g) � 32.We view (3) as yet another 5-olor theorem (for high girth planar graphs).Thus it is lear that for oloring (i.e. homomorphism) of oriented planar graphs of (even) largegirth with at most 4 olors one needs some oppositely oriented edges. In this ontext, we studied in agreater detail elebrated Gr�otzsh Theorem [6℄ (see also [19℄ for a remarkably short proof), whih statesthat every undireted planar graph with no triangle is 3-olorable. Consider the digraphs X1; : : : ;X5depited on Figure 1. We prove :Theorem 2(1) For every g and every X 2 fX1; : : : ;X4g, there exists a graph GX;g with girth g suh that GX;g != X.(2) Let G be an oriented planar graph with girth(G) � 16 then G! X5.(3) There exists a graph G with girth 8 suh that G!= X5.This result shows in partiular that in order to obtain a 3-olor theorem for oriented planar graphswith a large girth we need to use a target graph having at least two symmetrial edges.How many symmetrial edges are needed for 4-olor theorem ? Under no girth assumption it islear that all edges need to be symmetri. The following theorem relates the girth parameter to the
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Y5 7Figure 2: Target digraphs on four vertiesexistene of homomorphisms to eah digraph with four verties. Note that the results obtained fora digraph H also hold for the digraph H�1, obtained from H by reversing all the edges. Thus letY1; : : : ; Y7 be the digraphs depited on Figure 2. Then we have :Theorem 3(1) For every g and every Y 2 fY1; Y2g there exists an oriented planar graph GY;g with girth g suhthat GY;g != Y .(2) If G is an oriented planar graph with girth g � 26 then G! Y3, G! Y4 and G! Y5.(3) If G is an oriented planar graph with girth g � 16 then G! Y6.(4) If G is an oriented planar graph with girth g � 11 then G! Y7.Thus at least one symmetri edge is needed for a high girth oriented 4-olor theorem. But this isnot suÆient (see Y2) and two symmetri edges are suÆient in general.By Theorem 1(3) for an oriented 5-olor theorem we do not need any symmetri edge. Below wegive the full disussion of this fat for tournaments on �ve verties. Let Z1; : : : ; Z5 be the tournamentsdepited on Figure 3 (as stated below, we do not have to onsider those tournaments having no4-yle). Then the following holds :Theorem 4(1) If Z is a tournament with either no 3-yle or no 4-yle then for every g there exists a planaroriented graph GZ;g with girth g suh that GZ;g != Z.(2) For every g and every Z 2 fZ1; Z2g there exists an oriented planar graph GZ;g with girth g suhthat GZ;g != Z.(3) If G is an oriented planar graph with girth g � 31 then G! Z3.(4) If G is an oriented planar graph with girth g � 26 then G! Z4.(5) If G is an oriented planar graph with girth g � 16 then G! Z5.(6) For every Z 2 fZ1; : : : ; Z5g there exists an oriented planar graph GZ;7 of girth 7 suh that GZ;7 != Z.In the next setion we prove the positive parts of Theorems 1, 2, 3 and 4. In Setion 3 we givesome examples thus proving the negative parts of the above statements. Setion 4 ontains some openproblems.One last note regarding oriented oloring of graphs with large girth. Let G = (V;E) be anundireted graph. Subdivide eah edge of G by a single vertex and orient the edges suh that eahnew (subdivision) vertex v satis�es d+(v) = d�(v) = 1. Call the resulting oriented graph G�. Then we
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Figure 3: Target tournaments on �ve vertieslearly have ~�(G�) � �(G). Note that the graph G� is bipartite and that girth(G�) � 2 � girth(G).Thus assuming a girth 6 for oriented graphs is generally not suÆient for high girth oloring results.We an for instane onstrut bipartite graphs G� with high girth and large ~�(G�). Note also that G�is 2-degenerate (every subgraph of G� has a vertex with degree at most 2).2 Upper boundsSine all the target graphs we will use have no soures and no sinks (that is verties with in-degree orout-degree zero) every vertex with degree one an be mapped into it. Thus we may assume that allour graphs are orientations of a graph G with minimal degree at least two.Given an undireted planar graph G = (V;E) we denote an arbitrary orientation of it by ~G. Denoteby V the set of all branhing verties of G (that is verties with degree at least 3). Clearly we mayview G as a subdivision of a graph G = (V ;E) whih we all the branhing graph of G. Note that G isplanar and has minimal degree at least 3. As there is a vertex in its dual whih has maximum degree5 we know that some of the faes of G have at most 5 inident edges. Now if girth(G) � 5d+ 1 thenone of the edges of G has to be subdivided by d points. De�ning the length of a path as the numberof edges on it, we thus proved the following :Lemma 5 Let G be a subdivision of a branhing graph G, let girth(G) � 5d+ 1. Then G ontains apath of length d+ 1 all of whose internal verties have degree 2 in G.We will all suh a path a long ear (of length d+ 1).Reall that the irulant (direted) graph G(n; a1; a2; : : : ; ak) is the graph whose vertex set is ZZnand whose ars are those pairs (x; y) suh that 9 i; 1 � i � k; y�x � ai (mod n). Cirulant graphsare learly transitive. We shall use (for Theorem 1) the irulant tournaments T5 = G(5; 1; 2) (alsodepited as Z5 on Figure 3) and T7 = G(7; 1; 2; 3). These tournaments have the following properties :Lemma 6 Let P3 be an arbitrary oriented path of length 3 with end-verties a and b. For every pairx; y of (not neessarily distint) verties of T7 there exists a homomorphism f : P3 ! T7 suh thatf(a) = x and f(b) = y.Lemma 7 Let P4 be an arbitrary oriented path of length 4 with end-verties a and b. For every pairx; y of (not neessarily distint) verties of T5 there exists a homomorphism f : P4 ! T5 suh thatf(a) = x and f(b) = y.



J. Ne�set�ril, A. Raspaud and E. Sopena 5Lemmas 6 and 7 an be derived from the following more general statement :Proposition 8 Let Gn;d be the irulant graph G(n; 1; 2; : : : ; d). Then the end-verties of every ori-ented path P of length at least n�1d�1 an be mapped by a homomorphism P ! Gn;d to any pair of (notneessarily distint) verties of Gn;d.Proof. Let P be an oriented path of length t � n�1d�1 with verties a0; a1; : : : ; at. As Gn;d is a transitivegraph we may assume that a0 maps to 0. Considering just the initial part Pi of P with vertiesa0; a1; : : : ; ai we denote by Ai the possible images of the vertex ai under a homomorphism fi : Pi !Gn;d. We learly have jA1j = d. It then suÆes to prove that for eah i � t, jAij = i(d � 1) + 1 sinewe will then have jAtj = n. However it is lear that the set A1 is formed by d onseutive (modulo n)integers (either f1; 2; : : : ; dg if (a0; a1) 2 P or fn� 1; n� 2; : : : ; n� dg if (a1; a0) 2 P ). And assumingthat Ai, i < t, is a set of onseutive integers then Ai+1 is again a set of onseutive integers of lengthjAij+ (d� 1). 2Note that the irulant tournament G(7; 1; 2; 4) also satis�es the laim of Lemma 6. This tour-nament has been used in [18℄ where it is proved that it is a homomorphi image of any orientedouterplanar graph. Moreover this tournament is optimal (and unique) sine there exist oriented out-erplanar graphs with oriented hromati number 7.Let us now turn to the proof of our statements.Proof of Theorem 1(3,4).(3) Let G = (V;E) be a planar graph of girth at least 16. We prove by indution on jV j that G! Z5.By Lemma 5 G ontains a long ear P of length at least 4, with end-verties a and b. For the graphG0 = G n P we an use the indution hypothesis and so get a homomorhism f 0 : G0 ! Z5. Putx = f 0(a), y = f 0(b) and apply lemma 7 to get a homomorphism f : P ! Z5. Clearly f 0 and f maybe ombined to get a homomorphism G ! Z5. Thus ~�(G) � 5 and using Theorem 1(1) we get thedesired result.(4) This an be proved analogously by using Lemmas 5 and 6. 2Proof of Theorem 2(2).It suÆes to hek that for every oriented path P of length 3 and for every pair x; y of (not neessarilydistint) verties of X5 there exists a homomorphism f : P ! X5 suh that f(a) = x and f(b) = y.Lemma 5 then implies the desired result. 2Proof of Theorem 3(2,3,4).(2; 3) This is obtained in the same way as before, by onsidering oriented paths of length 4 (Y6) and6 (Y3, Y4 and Y5).(4) The graph Y7 on Figure 2 is in fat the irulant graph G(4; 1; 2). Hene, ombining Lemma 5and Proposition 8 we get the desired result. 2Proof of Theorem 4(3,4,5).The result onerning Z5 has already been established in the proof of Theorem 1(3). For Z3 and Z4we still use the same tehnique by onsidering all paths of length respetively 7 and 6. 2It remains to establish the upper bounds in Theorem 1(5,6). For this we use a di�erent tehnique.Reall that an ayli k-oloring of an undireted graph is a oloring whih uses k olors and suhthat every yle uses at least three olors. The following has been proved in [17℄ :



6 Colorings and girth of oriented planar graphsLemma 9 [17℄ For every k, there exists an oriented graph Hk suh that for any orientation ~G of anundireted graph G with an ayli k-oloring there exists a homomorphism ~G ! Hk. Moreover, thesize of Hk is k � 2k�1.In [4℄ Borodin proved that any planar graph has an ayli 5-oloring. By Lemma 9 we thus obtainthat ~�(3) � 80 [17℄. Any planar graph with girth g � 11 ontains a long ear of length at least 3 andthus an be aylially 3-olored. Borodin, Kostohka and Woodall [5℄ reently proved that everyplanar graph with girth g � 6 (resp. g � 7) an be aylially 4-olored (resp. aylially 3-olored).This gives the bounds stated in Theorem 1(5,6). Relationships between oriented olorings and ayliolorings have been onsidered in [14℄ where it was proved that a family F of undireted graphs isaylially olorable using a bounded number of olors if and only if all the orientations of the graphsin F have oriented hromati number bounded by some onstant.3 Lower boundsIn this setion we will onstrut some sample planar graphs thus proving the negative statements ofTheorems 1, 2, 3 and 4.Proof of Theorem 1(1,2).(1) Suppose that there exists a tournament T4 on 4 verties suh that every oriented planar graphG with suÆiently large girth has T4 as a homomorphi image. Sine any (direted) yle having pverties with p � 1 or 2 (mod 3) annot be 3-olored, T4 ontains a direted 4-yle. Thus T4 is thetournament Y1 depited on Figure 2.For every g we now onstrut an oriented planar graph GT4;g suh that GT4;g != T4, thus leading toa ontradition. Let Pg be the oriented path on bg2 verties whose edges have alternatively forwardand bakward diretion and let u and v denote its end-verties :
........

u vThe graph GT4;g is then onstruted as follows : let x1x2 : : : xp be a direted yle on p � g verties,p � 1 or 2 (mod 3). To every vertex xi attah two opies of Pg by identifying the two u-verties withxi and adding an edge linking the two v-verties. The graph GT4;g thus obtained has learly girth gor g+1. Moreover, for every homomorphism f : GT4;g ! T4, one vertex xi at least satis�es f(xi) = 4.It is then easy to hek that the two v-verties of the paths attahed to xi are mapped to the sameolor, namely 1 or 4 depending on the parity of bg2. Sine these two verties are joined by an edgewe obtain the desired ontradition and the result follows.(2) Aording to Theorems 1(1) and 4(1) it suÆes to onsider the tournaments on �ve vertiesdepited on Figure 3. For Z1 and Z2 the result will be proved later (see the proof of Theorem 4(2)).We now onstrut for every tournament Z 2 fZ3; Z4; Z5g an oriented planar graph GZ;7 of girth 7suh that GZ;7 != Z. The three orresponding onstrutions are given below.Constrution of GZ3;7 : Let P be the following oriented path :
u vThe graph GZ3;7 is then obtained as follows : let x1; : : : ; x7 be a direted 7-yle. To every vertex xiattah �ve opies of P by identifying the u-verties with xi. Denote by v1; : : : ; v5 the orrespondingv-verties and add all the edges (vi; vi+1), 1 � i < 5. Let now f be any homomorphism from GZ3;7 toZ3. Sine all the direted 3-yles in Z3 ontain olor 4, at least one vertex xi is mapped by f to olor4. It is easy to hek that the orresponding v-verties must then be assigned olors 1, 2, 3 or 5. Butthe 4-tournament indued by these olors is transitive so that one annot olor all the �ve v-verties.Constrution of GZ4;7 : Let P3 denote the direted path of length 3 and u, v denote its end-verties. The graph GZ4;7 is onstruted as follows : let x1; : : : ; x7 be a direted 7-yle. To everyvertex xi attah four opies of P3 by identifying the u-verties with xi (denote by v1; : : : ; v4 the
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Figure 5: Constrution of GX5;8four orresponding v-verties) and four opies of P3 by identifying the v-verties with xi (denote byu1; : : : ; u4 the four orresponding u-verties). Add then the edges (vi; vi+1) and (ui; ui+1) for everyi; 1 � i < 4. Let now f be any homomorphism from GZ4;7 to Z4. Sine all the direted 3-yles inZ4 use olors 2 or 3 at least one of the verties xi is mapped by f to olor 2 or 3. If xi is mapped toolor 2 (resp. to olor 3) then all the orresponding u-verties (resp. v-verties) have to be mappedto olors 2, 3 or 4 (resp. to olors 1, 2 or 3). But in both ases these 3 olors indue a transitive3-tournament so that the orresponding u- or v-verties annot be olored.Constrution of GZ5;7 : This onstrution is illustrated by Figure 4. Let P3 denote the diretedpath of length 3 and u, v denote its end-verties. Take 49 opies of P3, identify all the u-vertiesand denote by v1; v2; : : : ; v49 the orresponding v-verties. Then add edges in order to onstrut thedireted 7-yle v7; v14; : : : ; v7j ; : : : ; v49. Finally, for every j, 1 � j � 7 add the edges (v7j�6; v7j�5),(v7j�4; v7j�5), (v7j�3; v7j�4), (v7j�3; v7j�2), (v7j�1; v7j�2), (v7j�1; v7j), and (v7j�6; v7j). Let us nowprove that there is no homomorphism from the graph GZ5;7 thus obtained to Z5. Let f be suh ahomomorphism. Sine Z5 is vertex-transitive we may assume that f(u) = 1. Then all the v-vertieshave to be assigned olors 1, 2, 4 or 5. Due to the 7-yle linking the verties v7j , 1 � j � 7 at leastone of them, say v7k, has to be assigned olor 4. It is then easy to hek that the 7-yle on vertiesv7k�6; v7k�5; : : : ; v7k annot be olored by using only olors 1, 2, 4 or 5.This onludes the proof. 2Proof of Theorem 2(1,3).



8 Colorings and girth of oriented planar graphs(1) The result for graphs X1 and X2 is already stated in Theorem 1(1). The graph X3 ontains a2-yle but no 3-yle so no direted yle having an odd number of verties an be mapped to X3. Forevery g let us now onstrut an oriented planar graph GX4;g of girth g suh that GX4;g != X4. Let Pgdenote the path of length bg2 whose edges have alternatively forward and bakward diretion and u,v denote its end-verties (as depited in the proof of Theorem 1(1)). Let x1; x2; : : : ; xg be a diretedyle on g verties. To every vertex xi attah two opies of Pg by identifying the two u-verties withxi and adding an edge linking the two v-verties. Let now f be any homomorphism from the graphGX4;g thus obtained to X4. At least one vertex xi must be assigned olor 3. It is easy to hek that thetwo orresponding v-verties have also to be assigned the same olor (3 or 2 aording to the parityof bg2), a ontradition sine they are linked by an edge.(3) We will onstrut a graph GX5;8 (see �gure 5) suh that GX5;8 != X5. Let P3 be the diretedpath of length 3 and u, v denote its end-verties. The graph GX5;8 is then onstruted as follows : letx1x2 : : : x9 be a direted yle of length 9. To every vertex xi, 1 � i � 9, we attah 39 opies of P3by identifying all the u-verties with vertex xi. Let v1; v2; : : : ; v39 denote the orresponding v-verties.Between every two verties vi and vi+1 we then add a path of length 2 having two bakward edges(those additional \middle" verties are drawn as full irles in �gure 5). Let a (resp. b) denote themiddle vertex lying between v1 and v2 (resp. v5 and v6). We then add an edge from a to b. We �nallyadd a direted 9-yle onneting all the middle verties lying between v6 and v7, v10 and v11, : : :, v38and v39. We will denote by 1; : : : ; 9 those middle verties linked by the 9-yle.Let us now prove that GX5;8 != X5. Sine x1x2 : : : x9 is a direted 9-yle, every homomorphism ffrom GX5;8 to X5 has to use all the three olors 1, 2 and 3. Hene there is at least one vertex xi withf(xi) = 3. It is then easy to hek that all the v-verties have to be mapped to olors 2 or 3. Theonly possibilities for oloring the middle verties are thus the following :
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3Therefore if a vertex vi is assigned olor 3 then all the verties vj , j < i must be also assigned olor 3.The 9-yle 1; 2; : : : ; 9 must use the olor 3. Then so do all the verties v1; v2; : : : ; v6, whih impliesthat both verties a and b are assigned the same olor 2, a ontradition sine there are linked by anedge. 2Proof of Theorem 3(1).For Y1 the result is a onsequene of Theorem 1(1). For every g let us now onstrut an orientedplanar graph GY2;g of girth g suh that GY2;g != Y2. Let Pg denote the path of length bg2 whoseedges have alternatively forward and bakward diretion and u, v denote its end-verties (as depitedin the proof of Theorem 1(1)). Let x1; x2; : : : ; x2k+1 be a direted yle on 2k+1 verties, 2k+1 � g.To every vertex xi attah two opies of Pg by identifying the two u-verties with xi and adding anedge linking the two v-verties. Let now f be any homomorphism from the graph GY2;g thus obtainedto Y2. Sine x1; : : : ; x2k+1 is an odd yle, at least one vertex xi must be assigned olor 4. Then thetwo orresponding v-verties have also to be assigned the same olor (4 or 1 aording to the parityof bg2), a ontradition sine they are linked by an edge. 2Proof of Theorem 4(1,2,6).(1) It is suÆient here to remark that if Z does not ontain a 3-yle (it is then a transitive tournament)then no direted yle an be mapped to Z. If Z does not ontain a 4-yle (it obviously neitherontains a 5-yle) then no direted yle on p verties, p � 1 or 2 (mod 3), an be mapped to Z.(2) We onstrut for every g an oriented planar graph GZ1;g suh that GZ1;g != Z1. Consider thegraph Gg used in proof of Theorem 1(1). Sine Gg annot be mapped to Y1 every homomorphismf : Gg ! Z1 has to use olor 5. The graph GZ1;g is then obtained from Gg by assoiating with everyvertex x of Gg a new vertex vx and an edge direted from vx to x. Sine olor 5 has inoming degree



J. Ne�set�ril, A. Raspaud and E. Sopena 90 in Z1 we are done.For Z2 it is also suÆient to onsider the graph Gg used in proof of Theorem 1(1). Every yle in Z2uses olor 3. Thus in every homomorphism f : Gg ! Z2 there is at least one vertex xi with olor 3.The two v-verties of the paths attahed to xi are then mapped to the same olor (3 or 4 aordingto the parity of bg2) whih leads to a ontradition sine they are linked by an edge.(6) This result is already stated in Theorem 1(2). 24 Disussion and open problems1. The main open problem is to narrow the di�erene between the lower and upper bounds for ourextremal funtion ~�(g).2. The omplexity of oloring by small digraphs was onsidered by Bang-Jensen, Hell andMGillivray [3℄. In partiular they proved that oloring by any semiomplete graph (that is a di-graph whih arises from a tournament by the addition of some ars) with 3 and 4 verties ontaining2 yles is an NP-omplete problem. This supports their general onjeture that the existene ofH-oloring is NP-omplete for a semiomplete graph H if and only if H ontains at least two yles.However this does not apply to the problems onsidered in this paper as we onsider problems re-strited to planar graphs of large girth. As shown for instane by the proofs of Theorem 1(3) andTheorem 3(4) these problems an be in P even under the existene of many yles in the target graph(Z5 and Y7 respetively).3. Given a lass K of graphs we say that a graph H is universal if G ! H for any graph G 2 K.Thus ~�(G) is bounded for K if and only if there exists a universal graph H. Universal graphs werestudied e.g. in [8, 12, 18℄. In a forthoming paper we will disuss lasses of planar graphs for whihthere exists a planar universal graph.Referenes[1℄ K. Appel and W. Haken, Every planar map is four olorable, Bull. Amer. Math. So. 82 (1976),711{712.[2℄ J. Bang-Jensen and P. Hell, The e�et of two yles on the omplexity of olourings by diretedgraphs, Disrete Applied Math. 26 (1990), 1{23.[3℄ J. Bang-Jensen, P. Hell and G. MaGillivray, The omplexity of olorings by semiomplete di-graphs, SIAM J. Disrete Math. 1 (1988), 1{23.[4℄ O. V. Borodin, On ayli oloring of planar graphs, Disrete Math. 25 (1979), 211{236.[5℄ O. V. Borodin, A. V. Kostohka and D. R. Woodall, unpublished manusript, 1995.[6℄ H. Gr�otzsh, Ein Dreifarbensatz f�ur dreikreisfreie Netze auf der Kuzel, Wiss. Z. Martin LutherUniv. Halle Wittenberg, Math.-Nat. Reihe 8 (1959), 109{120.[7℄ B. Gr�unbaum, Ayli olorings of planar graphs, Isra�el J. of Math. 14 (1973), 390{412.[8℄ R. P. H�aggkvist and P. Hell, Universality of A-mote graphs, Europ. J. of Combinatoris 14 (1993),23{27.[9℄ P. Hell and J. Ne�set�ril, On the omplexity of H-oloring, J. Combin. Theory B 48 (1990), 92{110.[10℄ P. Hell, J. Ne�set�ril and X. Zhu, Duality and polynomial testing of tree homomorphisms, Trans. ofthe Amerian Math. Soiety, to appear.[11℄ P. Hell, J. Ne�set�ril and X. Zhu, Duality of graph homomorphisms, Combinatoris, Paul Erd�os iseighty, Vol. 2, Bolyai Soiety Mathematial Studies, Budapest (Hungary), 1994.
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